Priešgaisrinės saugos enciklopedija

Kaip rasti aritmetinės progresijos sumą: formulės ir jų panaudojimo pavyzdys. Aritmetinė progresija

Pirmas lygis

Aritmetinė progresija. Išsami teorija su pavyzdžiais (2019 m.)

Skaitmeninė seka

Taigi, susėskime ir pradėkime rašyti skaičius. Pavyzdžiui:
Galite rašyti bet kokius skaičius, o jų gali būti tiek, kiek norite (mūsų atveju - jų). Kad ir kiek skaičių berašytume, visada galime pasakyti, kuris iš jų pirmas, kuris antras ir taip iki paskutinio, tai yra, galime juos sunumeruoti. Tai yra skaičių sekos pavyzdys:

Skaitmeninė seka
Pavyzdžiui, mūsų seka:

Priskirtas numeris būdingas tik vienam eilės numeriui. Kitaip tariant, sekoje nėra trijų sekundžių skaičių. Antrasis skaičius (kaip ir -tasis skaičius) visada yra tas pats.
Skaičius su skaičiumi vadinamas --uoju sekos nariu.

Visą seką dažniausiai vadiname kokia nors raide (pavyzdžiui,), o kiekvieną šios sekos narį – ta pačia raide, kurios indeksas lygus šio nario skaičiui: .

Mūsų atveju:

Tarkime, kad turime skaitinę seką, kurioje skirtumas tarp gretimų skaičių yra vienodas ir lygus.
Pavyzdžiui:

ir tt
Tokia skaitinė seka vadinama aritmetine progresija.
Terminą „progresija“ romėnų autorius Boethius įvedė dar VI amžiuje ir jis buvo suprantamas platesne prasme kaip nesibaigianti skaitinė seka. Pavadinimas „aritmetika“ buvo perkeltas iš ištisinių proporcijų teorijos, kuria užsiėmė senovės graikai.

Tai skaitinė seka, kurios kiekvienas narys yra lygus ankstesniam, pridėtas tuo pačiu numeriu. Šis skaičius vadinamas aritmetinės progresijos skirtumu ir žymimas.

Pabandykite nustatyti, kurios skaičių sekos yra aritmetinė progresija, o kurios ne:

a)
b)
c)
d)

Supratau? Palyginkite mūsų atsakymus:
Is aritmetinė progresija - b, c.
Nėra aritmetinė progresija - a, d.

Grįžkime prie duotosios progresijos () ir pabandykime rasti jos nario reikšmę. Egzistuoja du būdas jį rasti.

1. Metodas

Prie ankstesnės progresijos skaičiaus reikšmės galime pridėti tol, kol pasieksime tąjį progresijos narį. Gerai, kad neturime daug ką apibendrinti – tik trys vertybės:

Taigi aprašytos aritmetinės progresijos --asis narys yra lygus.

2. Metodas

Ką daryti, jei mums reikėtų rasti progresijos tosios nario vertę? Sumavimas būtų užtrukęs ne vieną valandą, ir tai nėra faktas, kad sudėdami skaičius nebūtume suklydę.
Žinoma, matematikai sugalvojo būdą, kaip prie ankstesnės reikšmės nereikia pridėti aritmetinės progresijos skirtumo. Atidžiai pažiūrėkite į nupieštą paveikslėlį... Tikrai jau pastebėjote tam tikrą modelį, būtent:

Pavyzdžiui, pažiūrėkime, kas sudaro šios aritmetinės progresijos --ojo nario reikšmę:


Kitaip tariant:

Pabandykite tokiu būdu savarankiškai rasti šios aritmetinės progresijos nario vertę.

Apskaičiuota? Palyginkite savo įrašus su atsakymu:

Atkreipkite dėmesį, kad gavote lygiai tokį patį skaičių kaip ir ankstesniame metode, kai prie ankstesnės reikšmės iš eilės pridėjome aritmetinės progresijos narius.
Pabandykime „nuasmeninti“ šią formulę- atvesk ją pas bendra forma ir gauti:

Aritmetinės progresijos lygtis.

Aritmetinės progresijos arba didėja, arba mažėja.

Didėja- progresija, kurioje kiekviena paskesnė terminų reikšmė yra didesnė už ankstesnę.
Pavyzdžiui:

Mažėjantis- progresija, kurioje kiekviena paskesnė terminų reikšmė yra mažesnė už ankstesnę.
Pavyzdžiui:

Išvestinė formulė naudojama skaičiuojant terminus tiek didėjančiais, tiek mažėjančiais aritmetinės progresijos nariais.
Pažiūrėkime tai praktiškai.
Mums pateikiama aritmetinė progresija, susidedanti iš sekančius skaičius: Pažiūrėkime, koks bus --asis šios aritmetinės progresijos skaičius, jei skaičiuodami naudosime savo formulę:


Nuo tada:

Taigi buvome įsitikinę, kad formulė veikia tiek mažėjant, tiek didinant aritmetinę progresiją.
Pabandykite patys rasti --ąjį ir -ąjį šios aritmetinės progresijos narius.

Palyginkime rezultatus:

Aritmetinės progresijos savybė

Sudėtinginkime užduotį – išvesime aritmetinės progresijos savybę.
Tarkime, kad mums pateikiama tokia sąlyga:
- aritmetinė progresija, raskite reikšmę.
Tai lengva, sakote, ir pradėkite skaičiuoti pagal jums jau žinomą formulę:

Leiskite, a, tada:

Visiškai teisus. Pasirodo, pirmiausia randame, tada pridedame prie pirmojo skaičiaus ir gauname tai, ko ieškome. Jei progresija vaizduojama mažomis reikšmėmis, tame nėra nieko sudėtingo, bet kas, jei sąlygoje mums pateikiami skaičiai? Sutikite, yra galimybė padaryti klaidų skaičiavimuose.
Dabar pagalvokite, ar įmanoma išspręsti šią problemą vienu žingsniu naudojant bet kokią formulę? Žinoma, taip, ir mes stengsimės tai iškelti dabar.

Norimą aritmetinės progresijos narį pažymėkime kaip, žinome jo radimo formulę – tai ta pati formulė, kurią išvedėme pradžioje:
, tada:

  • ankstesnis progreso narys yra:
  • kitas progresavimo terminas yra:

Susukime ankstesnius ir kitus progreso narius:

Pasirodo, kad ankstesnių ir paskesnių progresijos narių suma yra dvigubai didesnė už tarp jų esančios progresijos nario vertę. Kitaip tariant, norint rasti progresijos nario su žinomomis ankstesnėmis ir nuosekliomis reikšmėmis reikšmę, reikia jas pridėti ir padalinti iš.

Teisingai, mes gavome tą patį numerį. Pataisykime medžiagą. Progresavimo vertę apskaičiuokite patys, nes tai visai nesunku.

Šauniai padirbėta! Jūs žinote beveik viską apie progresą! Belieka išsiaiškinti tik vieną formulę, kurią, pasak legendos, vienas didžiausių visų laikų matematikų, „matematikų karalius“ – Karlas Gaussas, nesunkiai išvedė sau...

Kai Carlui Gaussui buvo 9 metai, mokytojas, užsiėmęs kitų klasių mokinių darbų tikrinimu, paklausė klasėje kita užduotis: "Apskaičiuokite visų natūraliųjų skaičių sumą nuo iki (pagal kitus šaltinius iki) imtinai." Kuo nustebino mokytojas, kai vienas iš jo mokinių (tai buvo Karlas Gaussas) po minutės teisingai atsakė į užduotį, o dauguma drąsuolių klasės draugų po ilgų skaičiavimų gavo neteisingą rezultatą ...

Jaunasis Carlas Gaussas pastebėjo modelį, kurį galite lengvai pastebėti.
Tarkime, kad turime aritmetinę progresiją, susidedančią iš -ti narių: Turime rasti nurodytų aritmetinės progresijos narių sumą. Žinoma, galime rankiniu būdu susumuoti visas reikšmes, bet ką daryti, jei užduotyje reikia rasti jos terminų sumą, kaip ieškojo Gaussas?

Pavaizduokime mums duotą progresą. Atidžiai pažiūrėkite į paryškintus skaičius ir pabandykite su jais atlikti įvairius matematinius veiksmus.


Išbandė? Ką pastebėjai? Teisingai! Jų sumos yra lygios


Dabar atsakykite, kiek tokių porų bus mums pateiktoje progresijoje? Žinoma, lygiai pusė visų skaičių, tai yra.
Remdamiesi tuo, kad dviejų aritmetinės progresijos narių suma yra lygi ir panašių lygių porų, gauname, kad bendra suma yra lygi:
.
Taigi bet kurios aritmetinės progresijos pirmųjų narių sumos formulė bus tokia:

Kai kuriose problemose mes nežinome termino, bet žinome progresavimo skirtumą. Pabandykite sumos formulę pakeisti th nario formule.
Ką tu gavai?

Šauniai padirbėta! Dabar grįžkime prie uždavinio, kuris buvo pateiktas Carlui Gaussui: patys apskaičiuokite, kokia yra skaičių, prasidedančių nuo -ojo, ir skaičių, prasidedančių nuo -ojo, suma.

Kiek gavai?
Gaussas pasirodė, kad terminų suma yra lygi, o terminų suma. Ar taip nusprendėte?

Tiesą sakant, aritmetinės progresijos narių sumos formulę dar III amžiuje įrodė senovės graikų mokslininkas Diofantas, ir visą tą laiką sąmojingi žmonės naudojo aritmetinės progresijos ypatybes.
Pavyzdžiui, įsivaizduokite Senovės Egiptą ir didžiausią to meto statybų aikštelę – piramidės statybą... Paveiksle pavaizduota viena jos pusė.

Sakai, kur čia progresas? Atidžiai pažiūrėkite ir suraskite smėlio blokų skaičių kiekvienoje piramidės sienos eilutėje.


Kodėl gi ne aritmetinė progresija? Suskaičiuokite, kiek blokų reikia vienai sienai pastatyti, jei į pagrindą dedamos blokinės plytos. Tikiuosi neskaičiuosite judindami pirštu per monitorių, ar pamenate paskutinę formulę ir viską, ką pasakėme apie aritmetinę progresiją?

Šiuo atveju progresas atrodo taip:
Aritmetinės progresijos skirtumas.
Aritmetinės progresijos narių skaičius.
Pakeiskime savo duomenis į paskutines formules (blokų skaičių skaičiuojame 2 būdais).

1 būdas.

2 būdas.

O dabar galite skaičiuoti ir monitoriuje: palyginkite gautas reikšmes su mūsų piramidėje esančių blokų skaičiumi. Ar sutiko? Puiku, jūs įvaldėte aritmetinės progresijos narių sumą.
Žinoma, jūs negalite statyti piramidės iš blokų prie pagrindo, bet iš? Pabandykite apskaičiuoti, kiek smėlio plytų reikia norint pastatyti sieną su tokia sąlyga.
Ar susitvarkei?
Teisingas atsakymas yra blokai:

Treniruotės

Užduotys:

  1. Maša įgauna formą vasarai. Kiekvieną dieną ji padidina pritūpimų skaičių. Kiek kartų Maša pritūps per savaites, jei darydavo pritūpimus per pirmąją treniruotę.
  2. Kokia yra visų nelyginių skaičių suma.
  3. Laikydami rąstus, medkirčiai juos sukrauna taip, kad kiekviename viršutiniame sluoksnyje būtų vienu rąstu mažiau nei ankstesniame. Kiek rąstų yra viename mūre, jei mūro pagrindas yra rąstai.

Atsakymai:

  1. Apibrėžkime aritmetinės progresijos parametrus. Tokiu atveju
    (savaitės = dienos).

    Atsakymas: Po dviejų savaičių Maša turėtų pritūpti kartą per dieną.

  2. Pirmas nelyginis skaičius, paskutinis numeris.
    Aritmetinės progresijos skirtumas.
    Tačiau nelyginių skaičių skaičius per pusę, tačiau patikrinkite šį faktą naudodami formulę, kaip rasti aritmetinės progresijos --ąjį narį:

    Skaičiuose yra nelyginių skaičių.
    Turimus duomenis pakeičiame į formulę:

    Atsakymas: Visų nelyginių skaičių suma yra lygi.

  3. Prisiminkite problemą dėl piramidžių. Mūsų atveju a , kadangi kiekvienas viršutinis sluoksnis sumažinamas vienu rąstu, yra tik krūva sluoksnių, tai yra.
    Pakeiskite duomenis formulėje:

    Atsakymas: Mūre yra rąstų.

Apibendrinant

  1. - skaitinė seka, kurioje gretimų skaičių skirtumas yra vienodas ir lygus. Jo daugėja ir mažėja.
  2. Formulės radimas aritmetinės progresijos narys užrašomas formule - , kur yra skaičių skaičius progresijoje.
  3. Aritmetinės progresijos narių savybė- - kur - skaičių skaičius progresijoje.
  4. Aritmetinės progresijos narių suma galima rasti dviem būdais:

    , kur yra reikšmių skaičius.

ARITMETINĖ PROGRESIJA. VIDUTINIS LYGIS

Skaitmeninė seka

Susėskime ir pradėkime rašyti keletą skaičių. Pavyzdžiui:

Galite rašyti bet kokius skaičius, jų gali būti tiek, kiek norite. Bet visada galite atskirti, kuris iš jų pirmas, kuris antras ir t.t., tai yra, galime juos sunumeruoti. Tai yra skaičių sekos pavyzdys.

Skaitmeninė seka yra skaičių rinkinys, kiekvienam iš kurių galima priskirti unikalų numerį.

Kitaip tariant, kiekvienas skaičius gali būti susietas su tam tikru natūraliu skaičiumi ir tik vienu. Ir mes nepriskirsime šio numerio jokiam kitam numeriui iš šio rinkinio.

Skaičius su skaičiumi vadinamas --uoju sekos nariu.

Visą seką dažniausiai vadiname kokia nors raide (pavyzdžiui,), o kiekvieną šios sekos narį – ta pačia raide, kurios indeksas lygus šio nario skaičiui: .

Labai patogu, jei --asis sekos narys gali būti pateiktas kokia nors formule. Pavyzdžiui, formulė

nustato seką:

Ir formulė yra tokia seka:

Pavyzdžiui, aritmetinė progresija yra seka (pirmasis narys čia yra lygus, o skirtumas). Arba (, skirtumas).

n-ojo termino formulė

Pasikartojančia vadiname formulę, kurioje, norint sužinoti -tąjį terminą, reikia žinoti ankstesnį ar kelis ankstesnius:

Norėdami, pavyzdžiui, pagal tokią formulę rasti progresijos t-ąjį narį, turime apskaičiuoti ankstesnius devynis. Pavyzdžiui, tegul. Tada:

Na, dabar aišku, kokia yra formulė?

Kiekvienoje eilutėje pridedame prie, padauginus iš tam tikro skaičiaus. Kam? Labai paprasta: tai yra dabartinio nario skaičius, atėmus:

Dabar daug patogiau, tiesa? Mes tikriname:

Spręskite patys:

Aritmetinėje progresijoje raskite n-ojo nario formulę ir suraskite šimtąjį narį.

Sprendimas:

Pirmasis terminas yra lygus. Ir koks skirtumas? Ir štai kas:

(juk jis vadinamas skirtumu, nes lygus eilės progresijos narių skirtumui).

Taigi formulė yra tokia:

Tada šimtasis terminas yra:

Kokia yra visų natūraliųjų skaičių suma nuo iki?

Pasak legendos, didysis matematikas Carlas Gaussas, būdamas 9 metų berniukas, šią sumą apskaičiavo per kelias minutes. Jis pastebėjo, kad pirmojo ir paskutinio skaičiaus suma yra lygi, antrojo ir priešpaskutinio – vienoda, trečio ir trečiojo nuo galo suma yra vienoda ir pan. Kiek tokių porų yra? Teisingai, lygiai pusė visų skaičių, tai yra. Taigi,

Bendra bet kurios aritmetinės progresijos pirmųjų narių sumos formulė bus tokia:

Pavyzdys:
Raskite visų dviženklių kartotinių sumą.

Sprendimas:

Pirmasis toks skaičius yra šis. Kiekvienas kitas gaunamas pridedant skaičių prie ankstesnio. Taigi mus dominantys skaičiai sudaro aritmetinę progresiją su pirmuoju nariu ir skirtumu.

Šios progresijos aštuntojo termino formulė yra tokia:

Kiek terminų yra progresijoje, jei jie visi turi būti dviejų skaitmenų?

Labai lengva: .

Paskutinis progresavimo terminas bus lygus. Tada suma:

Atsakymas:.

Dabar spręskite patys:

  1. Kiekvieną dieną sportininkas nubėga 1 m daugiau nei praėjusią dieną. Kiek kilometrų jis nubėgs per savaites, jei pirmą dieną nubėgo km m?
  2. Dviratininkas kiekvieną dieną nuvažiuoja daugiau mylių nei ankstesnis. Pirmą dieną nukeliavo km. Kiek dienų jis turi važiuoti, kad įveiktų kilometrą? Kiek kilometrų jis nuvažiuos paskutinę kelionės dieną?
  3. Kasmet tiek pat sumažinama šaldytuvo kaina parduotuvėje. Nustatykite, kiek kasmet sumažėjo šaldytuvo kaina, jei pardavimui už rublius, o po šešerių metų jis buvo parduotas už rublius.

Atsakymai:

  1. Čia svarbiausia atpažinti aritmetinę progresiją ir nustatyti jos parametrus. Šiuo atveju (savaitės = dienos). Turite nustatyti pirmųjų šios progresijos sąlygų sumą:
    .
    Atsakymas:
  2. Čia pateikiama:, reikia rasti.
    Akivaizdu, kad turite naudoti tą pačią sumos formulę kaip ir ankstesnėje užduotyje:
    .
    Pakeiskite reikšmes:

    Šaknis akivaizdžiai netinka, tad atsakymas.
    Apskaičiuokime per paskutinę dieną nuvažiuotą atstumą naudodami -tosios dalies formulę:
    (km).
    Atsakymas:

  3. Duota:. Rasti:.
    Lengviau netampa:
    (trinti).
    Atsakymas:

ARITMETINĖ PROGRESIJA. TRUMPAI APIE PAGRINDINĮ

Tai skaitinė seka, kurioje skirtumas tarp gretimų skaičių yra vienodas ir lygus.

Aritmetinė progresija didėja () ir mažėja ().

Pavyzdžiui:

Aritmetinės progresijos n-ojo nario radimo formulė

parašyta kaip formulė, kur yra skaičių skaičius progresijoje.

Aritmetinės progresijos narių savybė

Tai leidžia lengvai rasti progresijos narį, jei žinomi jo kaimyniniai nariai – kur yra skaičių skaičius progresijoje.

Aritmetinės progresijos narių suma

Yra du būdai, kaip rasti sumą:

Kur yra reikšmių skaičius.

Kur yra reikšmių skaičius.

Na, tema baigta. Jei skaitote šias eilutes, esate labai šaunus.

Nes tik 5% žmonių sugeba ką nors įvaldyti patys. Ir jei perskaitėte iki galo, tada esate 5%!

Dabar svarbiausia.

Jūs supratote teoriją šia tema. Ir, kartoju, tai... tai tiesiog super! Tu jau esi geresnis už didžiąją daugumą tavo bendraamžių.

Problema ta, kad to gali nepakakti...

Kam?

Dėl sėkmingas pristatymas Vieningas valstybinis egzaminas, stojant į institutą už biudžetą ir, SVARBIAUSIA, iki gyvos galvos.

Aš niekuo jūsų neįtikinsiu, pasakysiu tik vieną dalyką ...

Žmonės, kurie gavo geras išsilavinimas, uždirba daug daugiau nei tie, kurie jo negavo. Tai yra statistika.

Tačiau tai nėra pagrindinis dalykas.

Svarbiausia, kad jie būtų LAIMINGESNI (yra tokių tyrimų). Galbūt todėl, kad prieš juos daug kas atsiveria. daugiau galimybių ir gyvenimas taps šviesesnis? nezinau...

Bet pagalvok pats...

Ko reikia, kad egzamino metu būtumėte geresni už kitus ir galiausiai būtumėte... laimingesni?

UŽPILDYK RANKĄ, SPRENDŽI ŠIOS TEmos problemas.

Egzamine jums nebus klausiama teorijos.

Jums reikės laiku išspręsti problemas.

Ir, jei jų neišsprendėte (DAUG!), tikrai kur nors padarysite kvailą klaidą arba tiesiog nepadarysite jos laiku.

Tai kaip sporte – reikia daug kartų kartoti, kad laimėtum užtikrintai.

Raskite kolekciją bet kur, kur norite būtinai su sprendimais išsamią analizę ir nuspręsk, nuspręsk, nuspręsk!

Galite pasinaudoti mūsų užduotimis (nebūtina) ir mes jas tikrai rekomenduojame.

Kad galėtumėte pasinaudoti mūsų užduotimis, turite padėti pratęsti šiuo metu skaitomo YouClever vadovėlio gyvavimo laiką.

Kaip? Yra dvi parinktys:

  1. Atrakinkite prieigą prie visų paslėptų užduočių šiame straipsnyje - 299 rubliai.
  2. Atrakinkite prieigą prie visų paslėptų užduočių visuose 99 mokymo programos straipsniuose - 999 rubliai.

Taip, vadovėlyje turime 99 tokius straipsnius ir prieigą prie visų užduočių ir visko paslėptus tekstus juos galima nedelsiant atidaryti.

Antruoju atveju mes tau duosime simuliatorius "6000 užduočių su sprendimais ir atsakymais, kiekvienai temai, visiems sudėtingumo lygiams". Tikrai pakanka numoti ranka sprendžiant bet kokios temos problemas.

Tiesą sakant, tai yra daug daugiau nei tik treniruoklis – visa mokymo programa. Jei reikia, galite naudotis ir NEMOKAMAI.

Prieiga prie visų tekstų ir programų suteikiama visą svetainės veikimo laiką.

Apibendrinant...

Jei jums nepatinka mūsų užduotys, susiraskite kitus. Tiesiog nesustokite ties teorija.

„Supratau“ ir „Aš žinau, kaip išspręsti“ yra visiškai skirtingi įgūdžiai. Jums reikia abiejų.

Raskite problemas ir spręskite!

Aritmetinės progresijos problemos egzistavo nuo senų senovės. Jie pasirodė ir reikalavo sprendimo, nes turėjo praktinį poreikį.

Taigi, viename iš papirusų Senovės Egiptas, turinčiame matematinį turinį – Rindo papirusą (XIX a. pr. Kr.) – yra tokia užduotis: padalinti dešimt duonos matų dešimčiai žmonių, su sąlyga, kad skirtumas tarp jų yra viena aštuntadalis.

O senovės graikų matematiniuose darbuose yra elegantiškų teoremų, susijusių su aritmetine progresija. Taigi Hipsikliai iš Aleksandrijos (II a., sukūręs daug įdomių uždavinių ir keturioliktąją knygą pridėjęs prie Euklido „Elementų“) suformulavo mintį: „Aritmetinėje progresijoje su lyginiu narių skaičiumi II pusės narių suma. yra didesnė už 1-osios narių sumą kvadratu 1/2 narių.

Seka an yra pažymėta. Sekos skaičiai vadinami jos nariais ir dažniausiai žymimi raidėmis su indeksais, nurodančiais šio nario eilės numerį (a1, a2, a3 ... skaitykite: „a 1st“, „a 2nd“, „a 3rd“ ir taip toliau).

Seka gali būti begalinė arba baigtinė.

Kas yra aritmetinė progresija? Jis suprantamas kaip gautas pridedant ankstesnį terminą (n) su tuo pačiu skaičiumi d, kuris yra progresijos skirtumas.

Jei d<0, то мы имеем убывающую прогрессию. Если d>0, tada tokia progresija laikoma didėjančia.

Sakoma, kad aritmetinė progresija yra baigtinė, jei atsižvelgiama tik į keletą pirmųjų jos narių. Labai dideliais kiekiais nariai jau yra begalinis progresas.

Bet kokia aritmetinė progresija pateikiama pagal šią formulę:

an =kn+b, o b ir k yra kai kurie skaičiai.

Teiginys, kuris yra priešingas, yra visiškai teisingas: jei seka pateikiama panašia formule, tai yra būtent aritmetinė progresija, turinti savybes:

  1. Kiekvienas progresijos narys yra ankstesnio ir kito nario aritmetinis vidurkis.
  2. Priešingai: jei, pradedant nuo 2-osios, kiekvienas narys yra ankstesnio ir kito nario aritmetinis vidurkis, t.y. jei sąlyga įvykdyta, tai duotoji seka yra aritmetinė progresija. Ši lygybė kartu yra ir progresavimo požymis, todėl dažniausiai vadinama būdinga progresijos savybe.
    Lygiai taip pat teisinga šią savybę atspindinti teorema: seka yra aritmetinė progresija tik tuo atveju, jei ši lygybė teisinga bet kuriam sekos nariui, pradedant nuo 2-osios.

Bet kurių keturių aritmetinės progresijos skaičių būdingą savybę galima išreikšti formule an + am = ak + al, jei n + m = k + l (m, n, k yra progresijos skaičiai).

Aritmetinėje progresijoje bet kurį būtiną (N-ąjį) narį galima rasti taikant šią formulę:

Pavyzdžiui: pirmasis aritmetinės progresijos narys (a1) yra lygus trims, o skirtumas (d) lygus keturiems. Turite rasti keturiasdešimt penktąjį šios progresijos terminą. a45 = 1+4(45-1)=177

Formulė an = ak + d(n - k) leidžia nustatyti n-ąjį aritmetinės progresijos narį per bet kurį k-ąjį narį, jei jis žinomas.

Aritmetinės progresijos narių suma (darant prielaidą, kad yra 1 n narių baigtinė progresija) apskaičiuojamas taip:

Sn = (a1+an) n/2.

Jei žinomas ir 1-asis terminas, tada skaičiavimui patogu naudoti kitą formulę:

Sn = ((2a1+d(n-1))/2)*n.

Aritmetinės progresijos, kurią sudaro n narių, suma apskaičiuojama taip:

Skaičiavimų formulių pasirinkimas priklauso nuo užduočių sąlygų ir pradinių duomenų.

Natūralioji bet kokių skaičių, pvz., 1,2,3,...,n,...- paprasčiausias pavyzdys aritmetinė progresija.

Be aritmetinės progresijos, yra ir geometrinė, kuri turi savo savybes ir charakteristikas.


Taip, taip: aritmetinė progresija tau ne žaislas :)

Na, draugai, jei skaitote šį tekstą, tai vidinis dangtelio įrodymas man sako, kad jūs vis dar nežinote, kas yra aritmetinė progresija, bet tikrai (ne, taip: TAIP!) norite žinoti. Todėl nekankinsiu jūsų ilgomis įžangomis ir iškart kibsiu į reikalą.

Norėdami pradėti, pora pavyzdžių. Apsvarstykite keletą skaičių rinkinių:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Ką bendro turi visi šie rinkiniai? Iš pirmo žvilgsnio nieko. Bet iš tikrųjų kažkas yra. Būtent: kiekvienas kitas elementas nuo ankstesnio skiriasi tuo pačiu skaičiumi.

Spręskite patys. Pirmasis rinkinys yra tik iš eilės einantys skaičiai, kurių kiekvienas yra didesnis nei ankstesnis. Antruoju atveju skirtumas tarp gretimų skaičių jau lygus penkiems, tačiau šis skirtumas vis tiek yra pastovus. Trečiuoju atveju apskritai yra šaknys. Tačiau $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, tuo tarpu $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, t.y. Tokiu atveju kiekvienas kitas elementas tiesiog padidėja $\sqrt(2)$ (ir neišsigąskite, kad šis skaičius yra neracionalus).

Taigi: visos tokios sekos tiesiog vadinamos aritmetine progresija. Pateikime griežtą apibrėžimą:

Apibrėžimas. Skaičių seka, kurioje kiekvienas kitas lygiai tiek pat skiriasi nuo ankstesnio, vadinama aritmetine progresija. Pati suma, kuria skiriasi skaičiai, vadinama progresijos skirtumu ir dažniausiai žymima raide $d$.

Žymėjimas: $\left(((a)_(n)) \right)$ yra pati progresija, $d$ yra jos skirtumas.

Ir tik pora svarbių pastabų. Pirma, atsižvelgiama tik į progresą tvarkingas skaičių seka: juos leidžiama skaityti griežtai ta tvarka, kuria jie parašyti – ir nieko daugiau. Negalite pertvarkyti ar sukeisti numerių.

Antra, pati seka gali būti baigtinė arba begalinė. Pavyzdžiui, aibė (1; 2; 3) akivaizdžiai yra baigtinė aritmetinė progresija. Bet jei rašote kažką panašaus į (1; 2; 3; 4; ...) - tai jau yra begalinė progresija. Elipsė po keturių tarsi sufleruoja, kad nemažai skaičių eina toliau. Pavyzdžiui, be galo daug. :)

Taip pat norėčiau pastebėti, kad progresas didėja ir mažėja. Jau matėme didėjančius – tą patį rinkinį (1; 2; 3; 4; ...). Štai mažėjančio progresavimo pavyzdžiai:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Gerai, gerai: paskutinis pavyzdys gali atrodyti pernelyg sudėtingas. Bet visa kita, manau, jūs suprantate. Todėl pateikiame naujus apibrėžimus:

Apibrėžimas. Aritmetinė progresija vadinama:

  1. didėja, jei kiekvienas kitas elementas yra didesnis už ankstesnį;
  2. mažėja, jei, atvirkščiai, kiekvienas paskesnis elementas yra mažesnis nei ankstesnis.

Be to, yra taip vadinamos „stacionarios“ sekos – jos susideda iš to paties pasikartojančio skaičiaus. Pavyzdžiui, (3; 3; 3; ...).

Lieka tik vienas klausimas: kaip atskirti didėjančią progresą nuo mažėjančios? Laimei, čia viskas priklauso tik nuo skaičiaus $d$ ženklo, t.y. progresavimo skirtumai:

  1. Jei $d \gt 0$, tai progresija didėja;
  2. Jei $d \lt 0$, tai progresija akivaizdžiai mažėja;
  3. Galiausiai yra atvejis $d=0$ — šiuo atveju visa progresija redukuojama į stacionarią identiškų skaičių seką: (1; 1; 1; 1; ...) ir t.t.

Pabandykime apskaičiuoti skirtumą $d$ trims pirmiau nurodytoms mažėjančioms pakopoms. Norėdami tai padaryti, pakanka paimti bet kuriuos du gretimus elementus (pavyzdžiui, pirmąjį ir antrąjį) ir atimti iš dešinėje esančio skaičiaus, o iš skaičiaus kairėje. Tai atrodys taip:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Kaip matote, visais trimis atvejais skirtumas tikrai buvo neigiamas. Ir dabar, kai daugiau ar mažiau išsiaiškinome apibrėžimus, laikas išsiaiškinti, kaip aprašomos progresijos ir kokios jos savybės.

Progresavimo ir pasikartojimo formulės nariai

Kadangi mūsų sekų elementai negali būti sukeisti, jie gali būti sunumeruoti:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \teisingai\)\]

Atskiri šios aibės elementai vadinami progresijos nariais. Jie nurodomi tokiu būdu skaičiaus pagalba: pirmasis narys, antrasis narys ir pan.

Be to, kaip jau žinome, kaimyniniai progreso nariai yra susieti pagal formulę:

\[((a)_(n))-((a)_(n-1))=d\Rodyklė dešinėn ((a)_(n))=((a)_(n-1))+d \]

Trumpai tariant, norėdami rasti progresijos $n$-ąjį narį, turite žinoti $n-1$-ąjį narį ir skirtumą $d$. Tokia formulė vadinama pasikartojančia, nes jos pagalba galima rasti bet kokį skaičių, tik žinant ankstesnįjį (o iš tikrųjų – visus ankstesnius). Tai labai nepatogu, todėl yra sudėtingesnė formulė, kuri sumažina bet kokį skaičiavimą iki pirmojo termino ir skirtumo:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Tikriausiai jau esate susidūrę su šia formule. Jie mėgsta tai pateikti visokiose žinynuose ir rešebnikuose. Ir bet kuriame protingame matematikos vadovėlyje jis yra vienas iš pirmųjų.

Tačiau siūlau šiek tiek pasitreniruoti.

Užduotis numeris 1. Užrašykite pirmuosius tris aritmetinės progresijos $\left(((a)_(n)) \right)$ narius, jei $((a)_(1))=8,d=-5$.

Sprendimas. Taigi, mes žinome pirmąjį terminą $((a)_(1))=8$ ir progresijos skirtumą $d=-5$. Naudokime ką tik pateiktą formulę ir pakeiskime $n=1$, $n=2$ ir $n=3$:

\[\begin(lygiuoti) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(lygiuoti)\]

Atsakymas: (8; 3; -2)

Tai viskas! Atkreipkite dėmesį, kad mūsų progresas mažėja.

Žinoma, $n=1$ negalėjo būti pakeistas – mes jau žinome pirmąjį terminą. Tačiau pakeitę vienetą įsitikinome, kad mūsų formulė veikia net pirmą kadenciją. Kitais atvejais viskas susivedė į banalią aritmetiką.

Užduotis numeris 2. Užrašykite pirmuosius tris aritmetinės progresijos narius, jei jos septintasis narys yra –40, o septynioliktasis – –50.

Sprendimas. Problemos sąlygą rašome įprastomis sąlygomis:

\[((a)_(7)) = -40;\quad ((a)_(17)) = -50.\]

\[\left\( \begin(lygiuoti) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(lygiuoti) \right.\]

\[\left\( \begin(lygiuoti) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(lygiuoti) \teisingai.\]

Aš dedu sistemos ženklą, nes šie reikalavimai turi būti įvykdyti vienu metu. Ir dabar pastebime, kad atėmę pirmąją lygtį iš antrosios lygties (turime teisę tai padaryti, nes turime sistemą), gauname štai ką:

\[\begin(lygiuoti) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(lygiuoti)\]

Kaip tik taip, mes nustatėme progresavimo skirtumą! Lieka pakeisti rastą skaičių bet kurioje iš sistemos lygčių. Pavyzdžiui, pirmajame:

\[\begin(matrica) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1)) = -40 + 6 = -34. \\ \end(matrica)\]

Dabar, žinant pirmąjį terminą ir skirtumą, belieka rasti antrą ir trečią terminus:

\[\begin(lygiuoti) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(lygiuoti)\]

Pasiruošę! Problema išspręsta.

Atsakymas: (-34; -35; -36)

Atkreipkite dėmesį į keistą progresijos savybę, kurią aptikome: jei paimsime $n$-ąją ir $m$-ąją dalį ir atimsime juos vieną iš kitos, gausime progresijos skirtumą, padaugintą iš skaičiaus $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Paprasta, bet labai naudingą turtą, kurį būtinai turite žinoti – jo pagalba galite žymiai pagreitinti daugelio progresuojančių problemų sprendimą. Štai puikus pavyzdys:

Užduotis numeris 3. Penktasis aritmetinės progresijos narys yra 8,4, o dešimtasis – 14,4. Raskite penkioliktą šios progresijos narį.

Sprendimas. Kadangi $((a)_(5))=8.4$, $((a)_(10))=14.4$ ir turime rasti $((a)_(15))$, atkreipiame dėmesį į šiuos dalykus:

\[\begin(lygiuoti) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(lygiuoti)\]

Bet pagal sąlygą $((a)_(10))-((a)_(5))=14.4-8.4=6$, taigi $5d=6$, iš kur turime:

\[\begin(lygiuoti) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(lygiuoti)\]

Atsakymas: 20.4

Tai viskas! Nereikėjo sudaryti jokių lygčių sistemų ir skaičiuoti pirmojo nario bei skirtumo – viskas buvo nuspręsta vos per porą eilučių.

Dabar panagrinėkime kitą problemos tipą – neigiamų ir teigiamų progreso narių paiešką. Ne paslaptis, kad jei progresija didėja, o jos pirmasis terminas yra neigiamas, tai anksčiau ar vėliau joje atsiras teigiami terminai. Ir atvirkščiai: mažėjančios progresijos sąlygos anksčiau ar vėliau taps neigiamos.

Tuo pačiu metu toli gražu ne visada įmanoma rasti šį momentą „ant kaktos“, nuosekliai rūšiuojant elementus. Dažnai uždaviniai yra suplanuoti taip, kad nežinant formulių skaičiavimai užtruktų kelis lapus – tiesiog užmigtume, kol rastume atsakymą. Todėl mes stengsimės šias problemas išspręsti greičiau.

Užduotis numeris 4. Kiek neigiamų narių aritmetinėje progresijoje -38,5; -35,8; …?

Sprendimas. Taigi, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, iš kurių iškart randame skirtumą:

Atkreipkite dėmesį, kad skirtumas yra teigiamas, todėl progresas didėja. Pirmasis narys yra neigiamas, todėl iš tikrųjų tam tikru momentu mes suklupsime ant teigiamų skaičių. Tik klausimas, kada tai įvyks.

Pabandykime išsiaiškinti: iki kurio laiko (t. y. iki ko natūralusis skaičius$n$) terminų neigiamumas išsaugomas:

\[\begin(lygiuoti) & ((a)_(n)) \lt 0\Rodyklė dešinėn ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rodyklė dešinėn ((n)_(\max ))=15. \\ \end(lygiuoti)\]

Paskutinę eilutę reikia paaiškinti. Taigi žinome, kad $n \lt 15\frac(7)(27)$. Kita vertus, mums tiks tik sveikosios skaičiaus reikšmės (be to: $n\in \mathbb(N)$), todėl didžiausias leistinas skaičius yra būtent $n=15$ ir jokiu būdu ne 16.

Užduotis numeris 5. Aritmetine progresija $(()_(5))=-150,(()_(6))=-147$. Raskite pirmojo teigiamo šios progresijos nario skaičių.

Tai būtų lygiai tokia pati problema kaip ir ankstesnė, bet mes nežinome $((a)_(1))$. Tačiau kaimyniniai terminai yra žinomi: $((a)_(5))$ ir $((a)_(6))$, todėl galime lengvai rasti progresijos skirtumą:

Be to, pabandykime išreikšti penktą terminą pirmuoju ir skirtumu, naudodami standartinę formulę:

\[\begin(lygiuoti) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1)) = -150-12 = -162. \\ \end(lygiuoti)\]

Dabar tęsiame analogiją su ankstesne problema. Sužinome, kuriame mūsų sekos taške atsiras teigiami skaičiai:

\[\begin(lygiuoti) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rodyklė dešinėn ((n)_(\min ))=56. \\ \end(lygiuoti)\]

Mažiausias sveikasis šios nelygybės sprendimas yra skaičius 56.

Atkreipkite dėmesį, kad paskutinėje užduotyje viskas buvo sumažinta iki griežtos nelygybės, todėl variantas $n=55$ mums netiks.

Dabar, kai išmokome spręsti paprastas problemas, pereikime prie sudėtingesnių. Bet pirmiausia išmokime dar vieną labai naudingą aritmetinės progresijos savybę, kuri ateityje sutaupys daug laiko ir nevienodų langelių. :)

Aritmetinis vidurkis ir lygios įtraukos

Apsvarstykite kelis iš eilės didėjančios aritmetinės progresijos $\left(((a)_(n)) \right)$ narius. Pabandykime pažymėti juos skaičių eilutėje:

Aritmetinės progresijos nariai skaičių tiesėje

Aš konkrečiai atkreipiau dėmesį į savavališkus narius $((a)_(n-3)),...,((a)_(n+3))$, o ne bet kokius $((a)_(1)) , \ ((a)_(2)),\ ((a)_(3))$ ir kt. Nes taisyklė, kurią dabar jums pasakysiu, galioja bet kokiems „segmentams“.

O taisyklė labai paprasta. Prisiminkime rekursinę formulę ir užrašykite ją visiems pažymėtiems nariams:

\[\begin(lygiuoti) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(lygiuoti)\]

Tačiau šias lygybes galima perrašyti skirtingai:

\[\begin(lygiuoti) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(lygiuoti)\]

Na ir kas? Tačiau faktas, kad terminai $((a)_(n-1))$ ir $((a)_(n+1))$ yra tokiu pat atstumu nuo $((a)_(n)) $ . Ir šis atstumas lygus $d$. Tą patį galima pasakyti apie terminus $((a)_(n-2))$ ir $((a)_(n+2))$ – jie taip pat pašalinami iš $((a)_(n) )$ tuo pačiu atstumu, lygiu $2d$. Galite tęsti neribotą laiką, tačiau paveikslėlis gerai iliustruoja prasmę


Progresijos nariai guli tokiu pat atstumu nuo centro

Ką tai reiškia mums? Tai reiškia, kad galite rasti $((a)_(n))$, jei žinomi gretimi skaičiai:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Išvedėme puikų teiginį: kiekvienas aritmetinės progresijos narys yra lygus gretimų narių aritmetiniam vidurkiui! Be to, mes galime nukrypti nuo mūsų $((a)_(n))$ į kairę ir į dešinę ne vienu žingsniu, o $k$ žingsniais — ir vis tiek formulė bus teisinga:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Tie. nesunkiai galime rasti $((a)_(150))$, jei žinome $((a)_(100))$ ir $((a)_(200))$, nes $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Iš pirmo žvilgsnio gali atrodyti, kad šis faktas mums nieko naudingo neduoda. Tačiau praktikoje daugelis užduočių yra specialiai „paaštrintos“ aritmetinio vidurkio vartojimui. Pažiūrėk:

Užduotis numeris 6. Raskite visas $x$ reikšmes taip, kad skaičiai $-6((x)^(2))$, $x+1$ ir $14+4((x)^(2))$ būtų nuoseklūs aritmetinė progresija (nurodyta tvarka).

Sprendimas. Kadangi šie skaičiai yra progresijos nariai, jiems tenkinama aritmetinio vidurkio sąlyga: centrinis elementas $x+1$ gali būti išreikštas gretimais elementais:

\[\begin(lygiuoti) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(lygiuoti)\]

Rezultatas yra klasikinė kvadratinė lygtis. Jo šaknys: $x=2$ ir $x=-3$ yra atsakymai.

Atsakymas: -3; 2.

Užduotis numeris 7. Raskite $$ reikšmes tokias, kad skaičiai $-1;4-3;(()^(2))+1$ sudarytų aritmetinę progresiją (ta tvarka).

Sprendimas. Išreikšime dar kartą vidurinis narys per gretimų narių aritmetinį vidurkį:

\[\begin(lygiuoti) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(lygiuoti)\]

Kita kvadratinė lygtis. Ir vėl dvi šaknys: $x=6$ ir $x=1$.

Atsakymas: 1; 6.

Jei spręsdami problemą gaunate žiaurius skaičius arba nesate visiškai tikri dėl rastų atsakymų teisingumo, tada yra nuostabus triukas, leidžiantis patikrinti: ar teisingai išsprendėme problemą?

Tarkime, 6 uždavinyje gavome atsakymus -3 ir 2. Kaip galime patikrinti, ar šie atsakymai teisingi? Tiesiog prijunkite juos prie pradinės būklės ir pažiūrėkime, kas atsitiks. Priminsiu, kad turime tris skaičius ($-6(()^(2))$, $+1$ ir $14+4(()^(2))$), kurie turėtų sudaryti aritmetinę progresiją. Pakaitalas $x=-3$:

\[\begin(lygiuoti) & x=-3\Rodyklė dešinėn \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(lygiuoti)\]

Gavome skaičius -54; −2; 50, kurie skiriasi 52, neabejotinai yra aritmetinė progresija. Tas pats atsitinka su $x=2$:

\[\begin(lygiuoti) & x=2\Rodyklė dešinėn \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(lygiuoti)\]

Vėl progresija, bet su 27 skirtumu. Taigi, problema išspręsta teisingai. Norintys antrą užduotį gali pasitikrinti patys, bet iš karto pasakysiu: ir ten viskas teisingai.

Apskritai, spręsdami paskutines užduotis, užkliuvome už kitos įdomus faktas, kurį taip pat reikia atsiminti:

Jei trys skaičiai yra tokie, kad antrasis yra vidurkis pirmiausia aritmetika ir paskutinis, šie skaičiai sudaro aritmetinę progresiją.

Ateityje šio teiginio supratimas leis mums tiesiogine to žodžio prasme „sukonstruoti“ reikiamas pažangas pagal problemos būklę. Tačiau prieš įsitraukdami į tokią „konstrukciją“, turėtume atkreipti dėmesį į dar vieną faktą, kuris tiesiogiai išplaukia iš to, kas jau buvo svarstyta.

Elementų grupavimas ir suma

Vėl grįžkime prie skaičių eilutės. Atkreipiame dėmesį į keletą progreso narių, tarp kurių galbūt. verti daug kitų narių:

Skaičių eilutėje pažymėti 6 elementai

Pabandykime „kairę uodegą“ išreikšti $((a)_(n))$ ir $d$, o „dešinę uodegą“ – $((a)_(k))$ ir $ d$. Tai labai paprasta:

\[\begin(lygiuoti) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(lygiuoti)\]

Dabar atkreipkite dėmesį, kad šios sumos yra lygios:

\[\begin(lygiuoti) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(lygiuoti)\]

Paprasčiau tariant, jei laikysime pradžią du progreso elementus, kurie iš viso yra lygūs tam tikram skaičiui $S$, tada pradedame nuo šių elementų pereiti prie priešingos pusės(vienas kito link arba atvirkščiai, kad pašalintumėte), tada elementų sumos, į kurias atsidursime, taip pat bus lygios$S$. Geriausiai tai galima pavaizduoti grafiškai:


Tos pačios įtraukos suteikia vienodas sumas

Supratimas Šis faktas leis mums daugiau išspręsti problemas iš esmės aukštas lygis sudėtingesnis nei aptartas aukščiau. Pavyzdžiui, šie:

Užduotis numeris 8. Nustatykite aritmetinės progresijos skirtumą, kai pirmasis narys yra 66, o antrojo ir dvyliktojo narių sandauga yra mažiausia įmanoma.

Sprendimas. Užsirašykime viską, ką žinome:

\[\begin(lygiuoti) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(lygiuoti)\]

Taigi, mes nežinome progresijos $d$ skirtumo. Tiesą sakant, visas sprendimas bus sukurtas atsižvelgiant į skirtumą, nes produktas $((a)_(2))\cdot ((a)_(12))$ gali būti perrašytas taip:

\[\begin(lygiuoti) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(lygiuoti)\]

Tiems, kurie yra bake: aš išėmiau bendrą koeficientą 11 iš antrojo laikiklio. Taigi norima sandauga yra kvadratinė funkcija kintamojo $d$ atžvilgiu. Todėl apsvarstykite funkciją $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ – jos grafikas bus parabolė su šakomis į viršų, nes jei atidarysime skliaustus, gausime:

\[\begin(lygiuoti) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end (lygiuoti)\]

Kaip matote, koeficientas su didžiausiu terminu yra 11 - tai teigiamas skaičius, todėl mes iš tikrųjų susiduriame su parabole su šakomis į viršų:


kvadratinės funkcijos grafikas – parabolė

Pastaba: minimali vertėši parabolė užima $((d)_(0))$ savo viršūnėje su abscisėmis. Žinoma, šią abscisę galime apskaičiuoti naudodami standartinė schema(yra formulė $((d)_(0))=(-b)/(2a)\;$), tačiau būtų daug protingiau pastebėti, kad norima viršūnė yra ant simetrijos ašies. parabolė, taigi taškas $((d) _(0))$ yra vienodu atstumu nuo lygties $f\left(d \right)=0$ šaknų:

\[\begin(lygiuoti) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(lygiuoti)\]

Todėl skliausteliuose neskubėjau atversti: originalioje formoje šaknis buvo labai labai lengva rasti. Todėl abscisė yra lygi skaičių −66 ir −6 aritmetiniam vidurkiui:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Kas suteikia mums atrastą skaičių? Su juo reikalinga prekė įgauna mažiausią reikšmę (beje, mes neskaičiavome $((y)_(\min ))$ - to iš mūsų nereikalaujama). Kartu šis skaičius yra pradinės progresijos skirtumas, t.y. radome atsakymą. :)

Atsakymas: -36

Užduotis numeris 9. Tarp skaičių $-\frac(1)(2)$ ir $-\frac(1)(6)$ įterpkite tris skaičius, kad kartu su nurodytais skaičiais sudarytų aritmetinę progresiją.

Sprendimas. Tiesą sakant, turime sudaryti penkių skaičių seką, kurių pirmasis ir paskutinis skaičiai jau žinomi. Trūkstamus skaičius pažymėkite kintamaisiais $x$, $y$ ir $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Atkreipkite dėmesį, kad skaičius $y$ yra mūsų sekos "viduris" – jis yra vienodu atstumu nuo skaičių $x$ ir $z$ bei nuo skaičių $-\frac(1)(2)$ ir $-\frac. (1) (6) $. Ir jei iš skaičių $x$ ir $z$ mes patenkame Šis momentas negalime gauti $y$, tada situacija kitokia su progresijos galais. Prisiminkite aritmetinį vidurkį:

Dabar, žinodami $y$, rasime likusius skaičius. Atminkite, kad $x$ yra tarp $-\frac(1)(2)$ ir $y=-\frac(1)(3)$ ką tik rasta. Štai kodėl

Ginčiuodami panašiai, randame likusį skaičių:

Pasiruošę! Mes radome visus tris skaičius. Užrašykite juos atsakyme tokia tvarka, kokia jie turėtų būti įterpti tarp pradinių skaičių.

Atsakymas: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Užduotis numeris 10. Tarp skaičių 2 ir 42 įterpkite kelis skaičius, kurie kartu su nurodytais skaičiais sudaro aritmetinę progresiją, jei žinoma, kad pirmojo, antrojo ir paskutinio įterptų skaičių suma yra 56.

Sprendimas. Dar sunkesnė užduotis, kuri vis dėlto sprendžiama taip pat, kaip ir ankstesnės – per aritmetinį vidurkį. Problema ta, kad mes tiksliai nežinome, kiek skaičių įterpti. Todėl tikslumui darome prielaidą, kad įterpus bus lygiai $n$ skaičiai, o pirmasis iš jų yra 2, o paskutinis - 42. Šiuo atveju norima aritmetinė progresija gali būti pavaizduota taip:

\[\left(((a)_(n)) \right)=\left\( 2;(a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+(a)_(3))+(a)_(n-1)) = 56\]

Tačiau atkreipkite dėmesį, kad skaičiai $((a)_(2))$ ir $((a)_(n-1))$ gaunami iš skaičių 2 ir 42, stovinčių kraštuose vienu žingsniu vienas kito link. , t.y. į sekos centrą. O tai reiškia, kad

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Bet tada aukščiau pateiktą išraišką galima perrašyti taip:

\[\begin(lygiuoti) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+(a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(lygiuoti)\]

Žinodami $((a)_(3))$ ir $((a)_(1))$, galime lengvai rasti progresijos skirtumą:

\[\begin(lygiuoti) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rodyklė dešinėn d=5. \\ \end(lygiuoti)\]

Belieka tik surasti likusius narius:

\[\begin(lygiuoti) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(lygiuoti)\]

Taigi, jau 9 žingsniu pateksime į kairįjį sekos galą – skaičių 42. Iš viso reikėjo įterpti tik 7 skaičius: 7; 12; 17; 22; 27; 32; 37.

Atsakymas: 7; 12; 17; 22; 27; 32; 37

Tekstinės užduotys su progresais

Baigdamas norėčiau apsvarstyti keletą paprastos užduotys. Na, kaip paprasti: daugumai mokinių, kurie mokykloje mokosi matematikos ir neskaitė to, kas parašyta aukščiau, šios užduotys gali atrodyti kaip gestas. Nepaisant to, būtent tokios užduotys kyla OGE ir USE matematikoje, todėl rekomenduoju su jomis susipažinti.

Užduotis numeris 11. Sausio mėnesį komanda pagamino 62 dalis, o kiekvieną kitą mėnesį pagamino 14 dalių daugiau nei praėjusį. Kiek dalių brigada pagamino lapkritį?

Sprendimas. Akivaizdu, kad dalių skaičius, nudažytas pagal mėnesį, bus didėjanti aritmetinė progresija. Ir:

\[\begin(lygiuoti) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(lygiuoti)\]

Lapkritis yra 11 metų mėnuo, todėl turime rasti $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Todėl lapkričio mėnesį bus pagamintos 202 dalys.

Užduotis numeris 12. Įrišimo dirbtuvės sausio mėnesį įrišo 216 knygų, o kiekvieną mėnesį įrišo 4 knygomis daugiau nei praėjusį mėnesį. Kiek knygų seminaras įrišo gruodžio mėnesį?

Sprendimas. Visi vienodi:

$\begin(lygiuoti) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(lygiuoti)$

Gruodis yra paskutinis, 12 metų mėnuo, todėl ieškome $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Tai yra atsakymas – gruodžio mėnesį bus įrišta 260 knygų.

Na, o jei perskaitėte iki šiol, skubu jus pasveikinti: sėkmingai baigėte „jaunojo kovotojo kursą“ aritmetinėje progresijoje. Galime drąsiai pereiti prie kitos pamokos, kurioje išnagrinėsime progresavimo sumos formulę, taip pat svarbias ir labai naudingas jos pasekmes.

Aritmetinės progresijos suma.

Aritmetinės progresijos suma yra paprastas dalykas. Ir prasme, ir formule. Tačiau šia tema yra visokių užduočių. Nuo elementarių iki gana solidžių.

Pirmiausia panagrinėkime sumos reikšmę ir formulę. Ir tada mes nuspręsime. Savo malonumui.) Sumos prasmė tokia pat paprasta kaip sumažėjimas. Norėdami rasti aritmetinės progresijos sumą, tereikia atidžiai pridėti visus jos narius. Jei šių terminų nedaug, galite pridėti be jokių formulių. Bet jei yra daug, ar daug... papildymas erzina.) Tokiu atveju formulė gelbsti.

Sumos formulė paprasta:

Išsiaiškinkime, kokios raidės yra įtrauktos į formulę. Tai daug ką išaiškins.

S n yra aritmetinės progresijos suma. Papildymo rezultatas visi nariai, su Pirmasįjungta paskutinis. Svarbu. Pridėkite tiksliai visi nariai iš eilės, be tarpų ir šuolių. Ir tiksliai, pradedant nuo Pirmas. Tokiose problemose kaip trečiojo ir aštuntojo terminų sumos arba penkių iki dvidešimties terminų sumos radimas, tiesioginis formulės taikymas bus nuviliantis.)

a 1 - Pirmas progresijos narys. Čia viskas aišku, viskas paprasta Pirmas eilutės numeris.

a n- paskutinis progresijos narys. Paskutinis eilutės numeris. Nelabai pažįstamas pavadinimas, bet, pritaikius prie sumos, labai tinka. Tada pamatysite patys.

n yra paskutinio nario numeris. Svarbu suprasti, kad formulėje šis skaičius sutampa su pridėtų terminų skaičiumi.

Apibrėžkime sąvoką paskutinis narys a n. Užpildomas klausimas: koks narys bus paskutinis, jei duota begalinis aritmetinė progresija?

Norėdami gauti patikimą atsakymą, turite suprasti elementarią aritmetinės progresijos reikšmę ir ... atidžiai perskaityti užduotį!)

Atliekant užduotį rasti aritmetinės progresijos sumą, paskutinis narys visada pasirodo (tiesiogiai arba netiesiogiai), kuris turėtų būti ribojamas. Kitu atveju – baigtinė, konkreti suma tiesiog neegzistuoja. Sprendimui nesvarbu, kokia progresija pateikiama: baigtinė ar begalinė. Nesvarbu, kaip jis pateikiamas: skaičių seka, ar n-ojo nario formule.

Svarbiausia suprasti, kad formulė veikia nuo pirmojo progresijos nario iki termino su skaičiumi n. Tiesą sakant, visas formulės pavadinimas atrodo taip: aritmetinės progresijos pirmųjų n narių suma.Šių pačių pirmųjų narių skaičius, t.y. n, lemia tik užduotis. Užduotyje visa ši vertinga informacija dažnai yra užšifruota, taip ... Bet nieko, toliau pateiktuose pavyzdžiuose atskleisime šias paslaptis.)

Aritmetinės progresijos sumos užduočių pavyzdžiai.

Visų pirma, Naudinga informacija:

Pagrindinis sunkumas atliekant užduotis dėl aritmetinės progresijos sumos yra teisingas formulės elementų nustatymas.

Užduočių autoriai šiuos elementus užšifruoja beribe fantazija.) Svarbiausia čia nebijoti. Suvokus elementų esmę, pakanka tik juos iššifruoti. Išsamiai pažvelkime į kelis pavyzdžius. Pradėkime nuo užduoties, pagrįstos tikru GIA.

1. Aritmetinė progresija pateikiama sąlyga: a n = 2n-3.5. Raskite pirmųjų 10 terminų sumą.

Šaunuolis. Lengva.) Ką turime žinoti, norėdami nustatyti sumą pagal formulę? Pirmasis narys a 1, Paskutinis terminas a n, taip paskutinio termino numeris n.

Kur gauti paskutinio nario numerį n? Taip, toje pačioje vietoje, tokios būklės! Sako, surask sumą pirmieji 10 narių. Na, koks skaičius bus paskutinis, dešimtas narys?) Nepatikėsite, jo skaičius yra dešimtas!) Todėl vietoj a n pakeisime į formulę a 10, bet vietoj to n- dešimt. Vėlgi, paskutinio nario skaičius yra toks pat kaip narių skaičius.

Belieka nustatyti a 1 ir a 10. Tai nesunkiai apskaičiuojama pagal n-ojo nario formulę, kuri pateikiama problemos teiginyje. Nežinote, kaip tai padaryti? Apsilankykite ankstesnėje pamokoje, be šios - nieko.

a 1= 2 1 - 3,5 = -1,5

a 10\u003d 2 10–3,5 \u003d 16,5

S n = S 10.

Išsiaiškinome visų aritmetinės progresijos sumos formulės elementų reikšmę. Belieka juos pakeisti ir suskaičiuoti:

Tai viskas. Atsakymas: 75.

Kita užduotis, pagrįsta GIA. Šiek tiek sudėtingiau:

2. Duota aritmetinė progresija (a n), kurios skirtumas lygus 3,7; a 1 \u003d 2.3. Raskite pirmųjų 15 terminų sumą.

Iš karto parašome sumos formulę:

Ši formulė leidžia mums rasti bet kurio nario vertę pagal jo skaičių. Ieškome paprasto pakaitalo:

a 15 \u003d 2,3 + (15-1) 3,7 \u003d 54,1

Belieka aritmetinės progresijos suma pakeisti visus formulės elementus ir apskaičiuoti atsakymą:

Atsakymas: 423.

Beje, jei sumos formulėje vietoj a n tiesiog pakeiskite n-ojo nario formulę, gausime:

Pateikiame panašius, gauname naują aritmetinės progresijos narių sumos formulę:

Kaip matote, n-asis terminas čia nereikalingas. a n. Kai kuriose užduotyse ši formulė labai padeda, taip... Šią formulę galite atsiminti. Ir jūs galite tiesiog atsiimti jį tinkamu laiku, kaip čia. Juk reikia visaip atsiminti sumos formulę ir n-ojo nario formulę.)

Dabar užduotis trumpo šifravimo forma):

3. Raskite visų teigiamų dviženklių skaičių, kurie yra trijų kartotiniai, sumą.

Kaip! Nei pirmo nario, nei paskutinio, nei progreso visai... Kaip gyventi!?

Turėsite mąstyti galva ir ištraukti iš sąlygos visus aritmetinės progresijos sumos elementus. Kas yra dviženkliai skaičiai – žinome. Jie susideda iš dviejų skaičių.) Koks dviženklis skaičius bus Pirmas? 10, tikriausiai.) paskutinis dalykas dviženklis numeris? 99, žinoma! Triženkliai seks paskui jį...

Trijų kartotiniai... Hm... Tai skaičiai, kurie tolygiai dalijasi iš trijų, štai! Dešimt nesidalija iš trijų, 11 nesidalija... 12... dalijasi! Taigi, kažkas atsiranda. Jau galite parašyti seriją pagal problemos būklę:

12, 15, 18, 21, ... 96, 99.

Ar ši serija bus aritmetinė progresija? Žinoma! Kiekvienas terminas nuo ankstesnio skiriasi griežtai trimis. Jei prie termino pridedamas 2 arba 4, tarkime, rezultatas, t.y. naujas skaičius nebebus dalinamas iš 3. Galite iš karto nustatyti aritmetinės progresijos į krūvą skirtumą: d = 3. Naudinga!)

Taigi, galime saugiai užrašyti kai kuriuos progreso parametrus:

Koks bus skaičius n paskutinis narys? Kas galvoja, kad 99 – mirtinai klysta... Skaičiai – jie visada eina iš eilės, o mūsų nariai peršoka per trejetuką. Jie nesutampa.

Čia yra du sprendimai. Vienas iš būdų – itin darbštiems. Galite nupiešti progresiją, visą skaičių seką ir pirštu suskaičiuoti terminų skaičių.) Antrasis būdas – mąstantiems. Reikia atsiminti n-ojo termino formulę. Jei formulė taikoma mūsų uždaviniui, gauname, kad 99 yra trisdešimtasis progresijos narys. Tie. n = 30.

Mes žiūrime į aritmetinės progresijos sumos formulę:

Žiūrime ir džiaugiamės.) Iš problemos būklės ištraukėme viską, ko reikia sumai apskaičiuoti:

a 1= 12.

a 30= 99.

S n = S 30.

Lieka elementari aritmetika. Pakeiskite skaičius formulėje ir apskaičiuokite:

Atsakymas: 1665 m

Kitas populiarių galvosūkių tipas:

4. Pateikiama aritmetinė progresija:

-21,5; -20; -18,5; -17; ...

Raskite terminų sumą nuo dvidešimties iki trisdešimt ketvirtos.

Mes žiūrime į sumos formulę ir ... esame nusiminę.) Priminsiu, formulė apskaičiuoja sumą nuo pirmos narys. Ir užduotyje reikia apskaičiuoti sumą nuo dvidešimties... Formulė neveiks.

Žinoma, galima piešti visą eigą iš eilės, o narius sudėti nuo 20 iki 34. Bet... kažkaip kvailai ir ilgam išeina, tiesa?)

Yra elegantiškesnis sprendimas. Padalinkime seriją į dvi dalis. Pirmoji dalis bus nuo pirmos kadencijos iki devynioliktos. Antroji dalis - nuo dvidešimt iki trisdešimt keturių. Aišku, kad jei paskaičiuotume pirmosios dalies sąlygų sumą S 1-19, pridėkime prie antrosios dalies narių sumos S 20-34, gauname progresijos sumą nuo pirmos iki trisdešimt ketvirtosios S 1-34. Kaip šitas:

S 1-19 + S 20-34 = S 1-34

Tai rodo, kad reikia rasti sumą S 20-34 galima atlikti paprastu atėmimu

S 20-34 = S 1-34 - S 1-19

Nagrinėjamos abi sumos dešinėje pusėje nuo pirmos narys, t.y. standartinė sumos formulė jiems yra gana tinkama. Ar pradedame?

Progresavimo parametrus išskiriame iš užduoties sąlygos:

d = 1,5.

a 1= -21,5.

Norint apskaičiuoti pirmųjų 19 ir pirmųjų 34 terminų sumas, mums reikės 19 ir 34 terminų. Skaičiuojame juos pagal n-ojo nario formulę, kaip ir 2 uždavinyje:

a 19\u003d -21,5 + (19-1) 1,5 \u003d 5,5

a 34\u003d -21,5 + (34-1) 1,5 \u003d 28

Nieko nebelieka. Iš 34 terminų sumos atimkite 19 terminų sumą:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Atsakymas: 262,5

Viena svarbi pastaba! Yra labai naudinga funkcija sprendžiant šią problemą. Vietoj tiesioginio skaičiavimo ko jums reikia (S 20-34), suskaičiavome ko, atrodytų, nereikia - S 1-19. Ir tada jie nusprendė S 20-34, iš viso rezultato išmesdami nereikalingus dalykus. Toks „apgaulė su ausimis“ dažnai gelbsti bloguose galvosūkiuose.)

Šioje pamokoje nagrinėjome uždavinius, kuriems pakanka suprasti aritmetinės progresijos sumos reikšmę. Na, jūs turite žinoti keletą formulių.)

praktinių patarimų:

Sprendžiant bet kokį uždavinį dėl aritmetinės progresijos sumos, rekomenduoju nedelsiant išrašyti dvi pagrindines formules iš šios temos.

N-ojo nario formulė:

Šios formulės iš karto pasakys, ko ieškoti, kuria kryptimi galvoti, norint išspręsti problemą. Padeda.

O dabar savarankiško sprendimo užduotys.

5. Raskite visų dviženklių skaičių, kurie nesidalija iš trijų, sumą.

Šaunu?) Užuomina paslėpta pastaboje apie 4 uždavinį. Na, 3 uždavinys padės.

6. Aritmetinė progresija pateikiama sąlyga: a 1 =-5,5; a n+1 = a n +0,5. Raskite pirmųjų 24 terminų sumą.

Neįprasta?) Tai pasikartojanti formulė. Apie tai galite perskaityti ankstesnėje pamokoje. Neignoruokite nuorodos, tokie galvosūkiai dažnai randami GIA.

7. Vasya sutaupė pinigų Šventei. Net 4550 rublių! Ir nusprendžiau mylimiausiam žmogui (sau) padovanoti kelias laimės dienas). Gyvenk gražiai, nieko sau neneigdamas. Pirmą dieną išleiskite 500 rublių, o kiekvieną kitą dieną išleiskite 50 rublių daugiau nei praėjusią! Kol baigsis pinigai. Kiek dienų Vasya turėjo laimės?

Ar sunku?) Padės papildoma formulė iš 2 užduoties.

Atsakymai (netvarkingai): 7, 3240, 6.

Jei jums patinka ši svetainė...

Beje, turiu jums dar keletą įdomių svetainių.)

Galite praktikuotis spręsdami pavyzdžius ir sužinoti savo lygį. Testavimas su momentiniu patvirtinimu. Mokymasis – su susidomėjimu!)

galite susipažinti su funkcijomis ir išvestinėmis.

Panašūs įrašai