Энциклопедия пожаробезопасности

Электронные колебательные и вращательные спектры молекул. Инфракрасные спектры, их происхождение. Получение ИК спектров

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетич. состояния в другое. M. с. определяются составом молекулы, её структурой, характером хим. связи и взаимодействием с внеш. полями (и, следовательно, с окружающими её атомами и молекулами). Наиб. характерными получаются M. с. разреженных молекулярных газов, когда отсутствует уширение спектральных линий давлением: такой спектр состоит из узких линий с доп-леровской шириной.

Рис. 1. Схема уровней энергии двухатомной молекулы: a и б -электронные уровни; u " и u "" - колебательные квантовые числа; J" и J "" - вращательные квантовые числа .


В соответствии с тремя системами уровней энергии в молекуле - электронной, колебательной и вращательной (рис. 1), M. с. состоят из совокупности электронных, колебат. и вращат. спектров и лежат в широком диапазоне эл--магн. волн - от радиочастот до рентг. области спектра. Частоты переходов между вращат. уровнями энергии обычно попадают в микроволновую область (в шкале волновых чисел 0,03-30 см -1), частоты переходов между колебат. уровнями -в ИК-обла-сть (400-10 000 см -1), а частоты переходов между электронными уровнями - в видимую и УФ-области спектра. Это разделение условное, т. к. часто вращат. переходы попадают и в ИК-область, колебат. переходы - в видимую область, а электронные переходы - в ИК-область. Обычно электронные переходы сопровождаются и изменением колебат. энергии молекулы, а при колебат. переходах изменяется и вращат. энергия. Поэтому чаще всего электронный спектр представляет собой системы электронно-колебат. полос, причём при высоком разрешении спектральной аппаратуры обнаруживается их вращат. структура. Интенсивность линий и полос в M. с. определяется вероятностью соответствующего квантового перехода. Наиб. интенсивные линии соответствуют переходу, разрешённому отбора правилами .К M. с. относят также оже-спектры и рентг. спектры молекул (в статье не рассматриваются; см. Оже-эффект, Оже-спектроскопия, Рентгеновские спектры, Рентгеновская спектроскопия) .

Электронные спектры . Чисто электронные M. с. возникают при изменении электронной энергии молекул, если при этом не меняются колебат. и вращат. энергии. Электронные M. с. наблюдаются как в поглощении (спектры поглощения), так и в испускании (спектры ). При электронных переходах обычно изменяется электрич. . Эле-ктрич. дипольный переход между электронными состояниями молекулы типа Г" и Г"" (см. Симметрия молекул )разрешён, если прямое произведение Г" Г"" содержит тип симметрии, по крайней мере одной из компонент вектора дипольного момента d . B спектрах поглощения обычно наблюдают переходы из основного (полносимметричного) электронного состояния в возбуждённые электронные состояния. Очевидно, что для осуществления такого перехода типы симметрии возбуждённого состояния и дипольного момента должны совпадать. T. к. электрич. дипольный момент не зависит от спина, то при электронном переходе спин должен сохраняться, т. е. разрешены только переходы между состояниями с одинаковой мультиплетностью (интер-комбинац. запрет). Это правило, однако, нарушается

для молекул с сильным спин-орбитальным взаимодействием, что приводит к интеркомбинационным квантовым переходам . В результате таких переходов возникают, напр., спектры фосфоресценции, к-рые соответствуют переходам из возбуждённого триплет-ного состояния в осн. синглетное состояние.

Молекулы в разл. электронных состояниях часто имеют разную геом. симметрию. В таких случаях условие Г" Г"" Г d должно выполняться для точечной группы низкосимметричной конфигурации. Однако при использовании перестановочно-инверсионной (ПИ) группы такая проблема не возникает, т. к. ПИ группа для всех состояний может быть выбрана одинаковой.

Для линейных молекул симметрии С ху тип симметрии дипольного момента Г d = S + (d z )-P(d x , d y) , поэтому для них разрешены только переходы S + - S + , S - - S - , П - П и т. д. с дипольным моментом перехода, направленным по оси молекулы, и переходы S + - П, П - D и т. д. с моментом перехода, направленным перпендикулярно оси молекулы (обозначения состояний см. в ст. Молекула ).

Вероятность В электрич. дипольного перехода с электронного уровня т на электронный уровень п , просуммированная по всем колебательно-вращат. уровням электронного уровня т , определяется ф-лой:

матричный элемент дипольного момента для перехода n - m , y еп и y em - волновые ф-ции электронов. Ин-тогральный коэф. поглощения, к-рый можно измерить экспериментально, определяется выражением

где N m - число молекул в нач. состоянии m , v nm - частота перехода т п . Часто электронные переходы характеризуются

Вращательные спектры

Рассмотрим вращение двух атомной молекулы вокруг ее оси. Наименьшую энергию молекула имеет при отсутствии вращения. Этому состоянию соответствует вращательное квантовое число j=0. Ближайшему возбужденному уровню (j=1) соответствует определенная скорость вращения. Для перевода молекулы на этот уровень надо затратить энергию Е 1 . При j=2,3,4… скорость вращения в 2,3,4… раза больше, чем при j=0. Внутренняя энергия молекулы возрастает с увеличением скорости вращения и расстояния между уровнями увеличивается. Разность энергий между соседними уровнями все время увеличивается на одну и ту же величину Е 1 . В связи с этим вращательный спектр состоит из отдельных линий; для первой линии ν 1 =Е 1 /ħ, а следующих 2ν 1 , 3 ν 1 и т.д.Разность энергий между вращательными уровнями очень мала, так даже при комнатной температуре кинетическая энергия молекул при их столкновении оказывается достаточной для возбуждения вращательных уровней. Молекула может поглотить фотон и перейти на более высокий вращательный уровень. Так можно исследовать спектры поглощения.

Частота зависит от массы молекулы и ее размеров. При увеличении массы расстояние между уровнями уменьшается и весь спектр смещается в сторону больших длин волн.

Вращательные спектры можно наблюдать у веществ в газообразном состоянии. В жидких и твердых телах вращения образном практически нет. Необходимость перевода анализируемого вещества в газообразное состояние без его разрушения сильно ограничивает использование вращательных спектров(также, как и трудность работы в далекой ИК- области).

Если молекуле сообщить дополнительную энергию, меньшую, чем энергия разрыва связи Е хим, то атомы будут колебаться вокруг положения равновесия, причем амплитуда колебаний будет иметь только определенные значения. В колебательных спектрах наблюдаются полосы, а не отдельные линии (как для атомов или во вращательных спектрах). Дело в том, что энергия молекулы зависит как от положений отдельных атомов, так и от вращения всей молекулы. Так любой колебательный уровень оказывается сложным и расщепляется на ряд простых уровней.

В колебательных спектрах газообразных веществ хорошо видны отдельные линии вращательной структуры. В жидкостях и твердых телах определенных вращательных уровней нет. Так в них наблюдается одна широкая полоса. Колебания многоатомных молекул значительно сложнее, чем 2-х атомных, т.к. число возможных типов колебаний быстро растет с увеличением числа атомов в молекуле.

Например, линейная молекула СО 2 имеет колебания 3-х типов.

Первые 2 типа- валентное(одно симметричное, др.-антисимметричное). При колебаниях третьего типа изменяться валентные углы и атомы смещаются в направлениях, перпендикулярных валентным связям, длина которых остается почти постоянной. Такие колебания называются деформационными. Для возбуждения деформационных колебаний требуется меньше энергии, чем для валентных. Полосы поглощения, связанные с возбуждением деформационных переходов, имеют в 2-3 раза меньшую частоту, чем частоты валентных колебаний. Колебания в СО 2 затрагивают сразу все атомы. Такие колебания называются скелетными. Они характерны только для данной молекулы и соответствующие им полосы не совпадают даже веществ с близким строением.



В сложных молекулах также выделяются колебания в которых участвуют только небольшие группы атомов. Полосы таких колебаний являются характерными для определенных групп и их частоты мало изменяются при изменении строения остальной части молекулы. Так в спектрах поглощения химических соединений легко обнаружить наличие определенных групп.

Итак, любая молекула имеет свой определенный спектр поглощения в ИК-области спектра. Практически невозможно найти 2 вещества с одинаковыми спектрами.

Одновременно со сменой колебательного состояния молекулы изменяется и его вращательное состояние. Изменение колебательных и вращательных состояний приводит к возникновению вращательно-колебательных спектров. Колебательная энергия молекул приблизительно в сто раз больше её вращательной энергии, поэтому вращение не нарушает колебательную структуру молекулярных спектров. Наложение небольших в энергетическом отношении вращательных квантов на сравнительно большие по энергии колебательные кванты, смещает линии колебательного спектра в ближнюю инфракрасную область электромагнитного спектра и превращает их в полосы. По этой причине вращательно-колебательный спектр, который наблюдается в близкой инфракрасной области, имеет линейчато-полосатую структуру.

Каждая полоса такого спектра имеет центральную линию (пунктирная линия), частота которой определяется разницей колебательных термов молекулы. Совокупность таких частот представляет чистый колебательный спектр молекулы. Квантово-механические расчёты, связанные с решением волнового уравнения Шрёдингера с учётом взаимного влияния вращательных и колебательных состояний молекулы, приводят к выражению:

где и не являются постоянными для всех энергетических уровней и зависят от колебательного квантового числа.

где и - постоянные, меньшие по величине, чем и . В силу малости параметров и , в сравнении с величинами и , вторыми слагаемыми в данных соотношениях можно пренебречь и рассматривать собственно вращательно-колебательную энергию молекулы, как сумму колебательной и вращательной энергии жёсткой молекулы , тогда соответственно выражение:

Это выражение хорошо передаёт структуру спектра и приводит к искажению только при больших значениях квантовых чисел и . Рассмотрим вращательную структуру вращательно-колебательного спектра. Так, при излучении, молекула переходит с высших энергетических уровней и на нижние, и в спектре появляются линии с частотами:

т.е. для частоты линии вращательно-колебательного спектра можно записать соответственно:

совокупность частот даёт вращательно-колебательный спектр. Первый член в данном уравнении выражает спектральную частоту, возникающую при изменении только лишь колебательной энергии . Рассмотрим распределение вращательных линий в полосах спектра. В границах одной полосы её тонкая вращательная структура определяется только лишь значением вращательного квантового числа . Для такой полосы можно записать в виде:


Согласно правилу отбора Паули:

вся полоса разделяется на две группы спектральных серий, которые располагаются относительно по обе стороны. Действительно, если:

т.е. когда:

то получаем группу линий:

т.е. когда:

то получаем группу линий:

В случае переходов когда молекула переходит с - го вращательного уровня на вращательный энергетический уровень, возникает группа спектральных линий с частотами . Эта группа линий называется позитивной или - веткой полосы спектра, начинающаяся с . При переходах , когда молекула переходит с -го на энергетический уровень, возникает группа спектральных линий, с частотами . Эта группа линий называется негативной или - веткой полосы спектра, начинающаяся с . Это объясняется тем, что значение , что отвечает не имеющего физического смысла. - и - ветки полосы, на основании уравнений вида:

состоят из линий:

Таким образом, каждая полоса вращательно-колебательного спектра состоит из двух групп равноудалённых линий с расстоянием между соседними линиями:

для реальной нежёсткой молекулы, учитывая уравнение:

для частоты линий - и - веток полосы, получаем:

Вследствие этого линии - и - веток искривляются и наблюдаются не равноудалённые линии, а - ветки, которые расходятся и - ветки, которые сближаются с образованием канта полосы. Таким образом, квантовая теория молекулярных спектров оказалась способной при расшифровке спектральных полос в ближней инфракрасной области, трактуя их как результат одновременного изменения вращательной и колебательной энергии. Необходимо отметить, что молекулярные спектры являются ценным источником сведений о строении молекул. Изучая молекулярные спектры, можно непосредственно определить различные дискретные энергетические состояния молекул и на основании полученных данных сделать надёжные и точные выводы относительно движения электронов, колебания и вращения ядер в молекуле, а также получить точные сведения относительно сил действующих между атомами в молекулах, межъядерных расстояниях и геометрическом расположении ядер в молекулах, энергии диссоциации самой молекулы и др.

Представляют моделью двух взаимодействующих точечных масс m 1 и m 2 с равновесным расстоянием r е между ними (длина связи), а колебат. движение ядер считается гармоническим и описывается единств, координатой q=r-r e , где r - текущее межъядерное расстояние. Зависимость потенциальной энергии колебат. движения V от q определяют в приближении гармонич. осциллятора [колеблющаяся материальная точка с приведенной массой m =m 1 m 2 /(m 1 +m 2)] как ф-цию V= l / 2 (K e q 2), где К е =(d 2 V/dq 2) q=0 - гармонич. силовая постоянная

Рис. 1. Зависимость потенциальной энергии V гармонического осциллятора (пунктирная кривая) и реальной двухатомной молекулы (сплошная кривая) от межъядерного расстояния r (r с равновесное значение r); горизонтальными прямыми линиями показаны колебат. уровни (0, 1, 2, ... значения колебат. квантового числа), вертикальными стрелками - нек-рые колебат. переходы; D 0 - энергия диссоциации молекулы ; заштрихованная область отвечает сплошному спектру. молекулы (пунктирная кривая на рис. 1). Согласно классич. механике, частота гармонич. колебаний Квантовомех. рассмотрение такой системы дает дискретную последовательность равноотстоящих уровней энергии E(v)=hv e (v+ 1 / 2), где v = 0, 1, 2, 3, ... - колебательное квантовое число, v e - гармонич. колебательная постоянная молекулы (h - постоянная Планка). При переходе между соседними уровнями, согласно правилу отбора D v=1, поглощается фотон с энергией hv= D E=E(v+1)-E(v)=hv e (v+1+ 1 / 2)-hv e (v+ 1 / 2)=hv e , т. е. частота перехода между двумя любыми соседними уровнями всегда одна и та же, причем совпадает с классич. частотой гармонич. колебаний. Поэтому v e наз. также гармонич. частотой. Для реальных молекул кривая потенциальной энергии не является указанной квадратичной ф-циeй q, т. е. параболой. Колебат. уровни все более сближаются по мере приближения к пределу диссоциации молекулы и для модели ангармонич. осциллятора описываются ур-нием: E(v)=, где X 1 - первая постоянная ангармоничности. Частота перехода между соседними уровнями не остается постоянной, и, кроме того, возможны переходы, отвечающие правилам отбора D v=2, 3, .... Частота перехода с уровня v=0 на уровень v=1 наз. основной, или фундаментальной, частотой, переходы с уровня v=0 на уровни v>1 дают обертонные частоты, а переходы с уровней v>0 - т. наз. горячие частоты. В ИК спектре поглощения двухатомных молекул колебат. частоты наблюдаются только у гетероядерных молекул (НСl, NO, CO и т.п.), причем правила отбора определяются изменением их электрич. дипольного момента при колебаниях. В спектрах КР колебат. частоты наблюдаются для любых двухатомных молекул , как гомоядерных, так и гетероядерных (N 2 , O 2 , CN и т.п.), т.к. для таких спектров правила отбора определяются изменением поляризуемости молекул при колебаниях. Определяемые из колебательных спектров гармонич. постоянные К е и v e , постоянные ангармоничности, а также энергия диссоциации D 0 - важные характеристики молекулы , необходимые, в частности, для термохим. расчетов. Изучение колебательно-вращат. спектров газов и паров позволяет определять вращат. постоянные В v (см. Вращательные спектры), моменты инерции и межъядерные расстояния двухатомных молекул . Многоатомные молекулы рассматривают как системы связанных точечных масс. Колебат. движение ядер относительно равновесных положений при неподвижном центре масс в отсутствие вращения молекулы как целого описывают обычно с использованием т. наз. внутр. естеств. координат q i , выбираемых как изменения длин связей, валентных и двугранных углов пространств, модели молекулы . У молекулы , состоящей из N атомов , имеется n=3N - 6 (у линейной молекулы 3N - 5) колебат. степеней свободы. В пространстве естеств. координат q i сложное колебат. движение ядер можно представить п отдельными колебаниями, каждое с определенной частотой v k (k принимает значения от 1 до n), с к-рой меняются все естеств. координаты q i при определенных для данного колебания амплитудах q 0 i и фазах. Такие колебания наз. нормальными. Напр., трехатомная линейная молекула АХ 2 имеет три нормальных колебания:


Колебание v 1 наз. симметричным валентным колебанием (растяжения связей), v 2 - дeфopмaциoнным колебанием (изменение валентного угла), v 3 антисимметричным валентным колебанием. В более сложных молекулах встречаются и др. нормальные колебания (изменения двугранных углов, крутильные колебания, пульсации циклов и т.п.). Квантование колебат. энергии многоатомной молекулы в приближении многомерного гармонич. осциллятора приводит к след, системе колебат. уровней энергии:
где v ek - гармонич. колебат. постоянные, v k - колебат. квантовые числа, d k - степень вырождения уровня энергии по k-му колебат. квантовому числу. Осн. частоты в колебательных спектрах обусловлены переходами с нулевого уровня [все v k =0, колебат. энергия на уровни, характеризуемые

такими наборами квантовых чисел v k , в к-рых только одно из них равно 1, а все остальные равны 0. Как и в случае двухатомных молекул , в ангармонич. приближении возможны также обертонные и "горячие" переходы и, кроме того, т. наз. комбинированные, или
составные, переходы с участием уровней, для к-рых отличны от нуля два или более из квантовых чисел v k (рис. 2).

Рис. 2. Система колебательных термов E/hc (см"; с - скорость света) молекулы Н 2 О и нeк-рые переходы; v 1 , v 2 . v 3 - колебат. квантовые числа.

Интерпретация и применение. Колебательные спектры многоатомных молекул отличаются высокой специфичностью и представляют сложную картину, хотя общее число экспериментально наблюдаемых полос м. б. существенно меньше возможного их числа, теоретически отвечающего предсказываемому набору уровней. Обычно осн. частотам соответствуют более интенсивные полосы в колебательных спектрах. Правила отбора и вероятность переходов в ИК и КР спектрах различны, т.к. связаны соотв. с изменениями электрич. дипольного момента и поляризуемости молекулы при каждом нормальном колебании. Поэтому появление и интенсивность полос в ИК и КР спектрах по-разному зависит от типа симметрии колебаний (отношения конфигураций молекулы , возникающих в результате колебаний ядер, к операциям симметрии , характеризующим ее равновесную конфигурацию). Нек-рые из полос колебательных спектров могут наблюдаться только в ИК или только в КР спектре, другие - с разной интенсивностью в обоих спектрах, а нек-рые вообще экспериментально не наблюдаются. Так, для молекул , не обладающих симметрией или имеющих низкую симметрию без центра инверсии , все осн. частоты наблюдаются с разной интенсивностью в обоих спектрах, у молекул с центром инверсии ни одна из наблюдаемых частот не повторяется в ИК и КР спектрах (правило альтернативного запрета); нек-рые из частот могут отсутствовать в обоих спектрах. Поэтому важнейшее из применений колебательных спектров - определение симметрии молекулы из сопоставления ИК и КР спектров, наряду с использованием др. эксперим. данных. Задаваясь моделями молекулы с разной симметрией , можно заранее теоретически рассчитать для каждой из моделей, сколько частот в ИК и КР спектрах должно наблюдаться, и на основании сопоставления с эксперим. данными сделать соответствующий выбор модели. Хотя каждое нормальное колебание, по определению, является колебат. движением всей молекулы , нек-рые из них, особенно у больших молекул , могут более всего затрагивать лишь к.-л. фрагмент молекулы . Амплитуды смещения ядер, не входящих в этот фрагмент, при таком нормальном колебании очень малы. Па этом основана широко используемая в структурно-аналит. исследованиях концепция т. наз. групповых, или характеристических, частот: определенные функц. группы или фрагменты, повторяющиеся в молекулах разл. соед., характеризуются примерно одними и теми же частотами в колебательных спектрах, по к-рым м.б. установлено их присутствие в молекуле данного в-ва (правда, не всегда с одинаково высокой степенью достоверности). Напр., для карбонильной группы характерна очень интенсивная полоса в ИК спектре поглощения в области ~1700(b 50) см -1 , относящаяся к валентному колебанию . Отсутствие полос поглощения в данной области спектра доказывает, что в молекуле исследуемого в-ва группы нет. В то же время наличие к.-л. полос в указанной области еще не является однозначным доказательством присутствия в молекуле карбонильной группы, т.к. в этой области могут случайно оказаться частоты других колебаний молекулы . Поэтому структурный анализ и определение конформаций по колебат. частотам функц. групп должны опираться на неск. характеристич. частот, а предполагаемая структура молекулы должна подтверждаться данными др. методов (см. Структурная химия). Существуют справочники, содержащие многочисл. структурно-спектральные корреляции; имеются также банки данных и соответствующие программы для информационно-поисковых систем и структурно-аналит. исследований с использованием ЭВМ. Правильной интерпретации колебательных спектров помогает изотопич. замещение атомов , приводящее к изменению колебат. частот. Так, замена

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ , мол. спектры, обусловленные квантовыми переходами между колебательное уровнями энергии молекул. Экспериментально наблюдаются как ИК спектры поглощения и спектры комбинац. рассеяния (КР); диапазон волновых чисел ~10-4000 см -1 (частоты колебательное переходов 3 . 10 11 -10 14 Гц). Колебат. уровни энергии определяются квантованием колебательное движения атомных ядер. Двухатомные молекулы. В простейшем случае двухатомную молекулу представляют моделью двух взаимодействующих точечных масс m 1 и m 2 с равновесным расстоянием r е между ними (длина связи), а колебательное движение ядер считается гармоническим и описывается единств, координатой q=r-r e , где r - текущее межъядерное расстояние. Зависимость потенциальной энергии колебательное движения V от q определяют в приближении гармонич. осциллятора [колеблющаяся материальная точка с приведенной массой m =m 1 m 2 /(m 1 +m 2)] как функцию V= l / 2 (K e q 2), где К е =(d 2 V/dq 2) q=0 - гармонич. силовая постоянная

Рис. 1. Зависимость потенциальной энергии V гармонич. осциллятора (пунктирная кривая) и реальной двухатомной молекулы (сплошная кривая) от межъядерного расстояния r (r с равновесное значение r); горизонтальными прямыми линиями показаны колебательное уровни (0, 1, 2, ... значения колебательное квантового числа), вертикальными стрелками - некоторые колебательное переходы; D 0 - энергия диссоциации молекулы; заштрихованная область отвечает сплошному спектру. молекулы (пунктирная кривая на рис. 1).

Согласно классич. механике, частота гармонич. колебаний Квантовомеханические рассмотрение такой системы дает дискретную последовательность равноотстоящих уровней энергии E(v)=hv e (v+ 1 / 2), где v = 0, 1, 2, 3, ... - колебательное квантовое число, v e - гармонич. колебательная постоянная молекулы (h - постоянная Планка). При переходе между соседними уровнями, согласно правилу отбора D v=1, поглощается фотон с энергией hv= D E=E(v+1)-E(v)=hv e (v+1+ 1 / 2)-hv e (v+ 1 / 2)=hv e , т. е. частота перехода между двумя любыми соседними уровнями всегда одна и та же, причем совпадает с классич. частотой гармонич. колебаний. Поэтому v e называют также гармонич. частотой. Для реальных молекул кривая потенциальной энергии не является указанной квадратичной функциeй q, т. е. параболой. Колебат. уровни все более сближаются по мере приближения к пределу диссоциации молекулы и для модели ангармонич. осциллятора описываются уравением: E(v)=, где X 1 - первая постоянная ангармоничности. Частота перехода между соседними уровнями не остается постоянной, и, кроме того, возможны переходы, отвечающие правилам отбора D v=2, 3, .... Частота перехода с уровня v=0 на уровень v=1 называют основной, или фундаментальной, частотой, переходы с уровня v=0 на уровни v>1 дают обертонные частоты, а переходы с уровней v>0 - так называемой горячие частоты. В ИК спектре поглощения двухатомных молекул колебательное частоты наблюдаются только у гетероядерных молекул (НСl, NO, CO и т.п.), причем правила отбора определяются изменением их электрич. дипольного момента при колебаниях. В спектрах КР колебательное частоты наблюдаются для любых двухатомных молекул, как гомоядерных, так и гетероядерных (N 2 , O 2 , CN и т.п.), так как для таких спектров правила отбора определяются изменением поляризуемости молекул при колебаниях. Определяемые из КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. гармонич. постоянные К е и v e , постоянные ангармоничности, а также энергия диссоциации D 0 - важные характеристики молекулы, необходимые, в частности, для термохимический расчетов. Изучение колебательно-вращательное спектров газов и паров позволяет определять вращательное постоянные В v (см. Вращательные спектры), моменты инерции и межъядерные расстояния двухатомных молекул. Многоатомные молекулы рассматривают как системы связанных точечных масс. Колебат. движение ядер относительно равновесных положений при неподвижном центре масс в отсутствие вращения молекулы как целого описывают обычно с использованием так называемой внутр. естеств. координат q i , выбираемых как изменения длин связей, валентных и двугранных углов пространств, модели молекулы. У молекулы, состоящей из N атомов, имеется n=3N - 6 (у линейной молекулы 3N - 5) колебательное степеней свободы. В пространстве естеств. координат q i сложное колебательное движение ядер можно представить п отдельными колебаниями, каждое с определенной частотой v k (k принимает значения от 1 до n), с которой меняются все естеств. координаты q i при определенных для данного колебания амплитудах q 0 i и фазах. Такие колебания называют нормальными. Например, трехатомная линейная молекула АХ 2 имеет три нормальных колебания:


Колебание v 1 называют симметричным валентным колебанием (растяжения связей), v 2 - дeфopмaциoнным колебанием (изменение валентного угла), v 3 антисимметричным валентным колебанием. В более сложных молекулах встречаются и др. нормальные колебания (изменения двугранных углов, крутильные колебания, пульсации циклов и т.п.). Квантование колебательное энергии многоатомной молекулы в приближении многомерного гармонич. осциллятора приводит к след, системе колебательное уровней энергии:

где v ek - гармонич. колебательное постоянные, v k - колебательное квантовые числа, d k - степень вырождения уровня энергии по k-му колебательное квантовому числу. Осн. частоты в КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. обусловлены переходами с нулевого уровня [все v k =0, колебательное энергия на уровни, характеризуемые

такими наборами квантовых чисел v k , в которых только одно из них равно 1, а все остальные равны 0. Как и в случае двухатомных молекул, в ангармонич. приближении возможны также обертонные и "горячие" переходы и, кроме того, так называемой комбинированные, или составные, переходы с участием уровней, для которых отличны от нуля два или более из квантовых чисел v k (рис. 2).

Рис. 2. Система колебательное термов E/hc (см»; с - скорость света) молекулы Н 2 О и нeкоторые переходы; v 1 , v 2 . v 3 - колебательное квантовые числа.

Интерпретация и применение. КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. многоатомных молекул отличаются высокой специфичностью и представляют сложную картину, хотя общее число экспериментально наблюдаемых полос может быть существенно меньше возможного их числа, теоретически отвечающего предсказываемому набору уровней. Обычно основные частотам соответствуют более интенсивные полосы в КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. Правила отбора и вероятность переходов в ИК и КР спектрах различны, так как связаны соответственно с изменениями электрич. дипольного момента и поляризуемости молекулы при каждом нормальном колебании. Поэтому появление и интенсивность полос в ИК и КР спектрах по-разному зависит от типа симметрии колебаний (отношения конфигураций молекулы, возникающих в результате колебаний ядер, к операциям симметрии, характеризующим ее равновесную конфигурацию). Некоторые из полос КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. могут наблюдаться только в ИК или только в КР спектре, другие - с разной интенсивностью в обоих спектрах, а некоторые вообще экспериментально не наблюдаются. Так, для молекул, не обладающих симметрией или имеющих низкую симметрию без центра инверсии, все основные частоты наблюдаются с разной интенсивностью в обоих спектрах, у молекул с центром инверсии ни одна из наблюдаемых частот не повторяется в ИК и КР спектрах (правило альтернативного запрета); некоторые из частот могут отсутствовать в обоих спектрах. Поэтому важнейшее из применений КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. - определение симметрии молекулы из сопоставления ИК и КР спектров, наряду с использованием др. эксперим. данных. Задаваясь моделями молекулы с разной симметрией, можно заранее теоретически рассчитать для каждой из моделей, сколько частот в ИК и КР спектрах должно наблюдаться, и на основании сопоставления с эксперим. данными сделать соответствующий выбор модели. Хотя каждое нормальное колебание, по определению, является колебательное движением всей молекулы, некоторые из них, особенно у больших молекул, могут более всего затрагивать лишь к.-л. фрагмент молекулы. Амплитуды смещения ядер, не входящих в этот фрагмент, при таком нормальном колебании очень малы. Па этом основана широко используемая в структурно-аналит. исследованиях концепция так называемой групповых, или характеристических, частот: определенные функциональных группы или фрагменты, повторяющиеся в молекулах различные соединение, характеризуются примерно одними и теми же частотами в КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с., по к-рым может быть установлено их присутствие в молекуле данного вещества (правда, не всегда с одинаково высокой степенью достоверности). Например, для карбонильной группы характерна очень интенсивная полоса в ИК спектре поглощения в области ~1700(b 50) см -1 , относящаяся к валентному колебанию . Отсутствие полос поглощения в данной области спектра доказывает, что в молекуле исследуемого вещества группы нет. В то же время наличие к.-л. полос в указанной области еще не является однозначным доказательством присутствия в молекуле карбонильной группы, так как в этой области могут случайно оказаться частоты других колебаний молекулы. Поэтому структурный анализ и определение конформаций по колебательное частотам функц. групп должны опираться на несколько характеристич. частот, а предполагаемая структура молекулы должна подтверждаться данными др. методов (см. Структурная химия). Существуют справочники, содержащие многочисленные структурно-спектральные корреляции; имеются также банки данных и соответствующие программы для информационно-поисковых систем и структурно-аналит. исследований с использованием ЭВМ. Правильной интерпретации КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. помогает изотопич. замещение атомов, приводящее к изменению колебательное частот. Так, замена водорода на дейтерий приводит к уменьшению частоты валентного колебания X-Н примерно в 1,4 раза. При изотопич. замещении силовые постоянные молекулы К е сохраняются. Существует ряд изотопич. правил, позволяющих относить наблюдаемые колебательное частоты к тому или иному типу симметрии колебаний, функциональных группам и т.д. Модельные расчеты КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. (частот и интенсивностей полос) при заданных силовых постоянных, которые используют для определения структуры молекул, составляют прямую задачу колебательное спектроскопии. Необходимые для этого силовые постоянные и так называемой электрооптический параметры (дипольные моменты связей, компоненты тензора поляризуемости и др.) переносят из исследований близких по структуре молекул или получают решением обратной задачи, заключающейся в определении наборов силовых постоянных и электрооптический параметров многоатомных молекул по наблюдаемым колебательное частотам, интенсивностям и др. эксперим. данным. Определение наборов фундаментальных частот КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. необходимо для вычисления колебательное вкладов в термодинамическое функции веществ. Эти данные используются в расчетах химический равновесий и для моделирования технол. процессов. КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. позволяют изучать не только внутримол. динамику, но и межмолекулярные взаимодействия. Из них получают данные о поверхностях потенциальной энергии, внутр. вращении молекул, движениях атомов с большими амплитудами. По КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. исследуют ассоциацию молекул и структуру комплексов различные природы. КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. зависят от агрегатного состояния вещества, что позволяет получать информацию о структуре различные конденсир. фаз. Частоты колебательное переходов четко регистрируются для мол. форм с очень малым временем жизни (до 10 -11 с), например для конформеров при высоте потенциального барьера в несколько кДж/моль. Поэтому КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. применяют для исследования конформационные изомерии и быстро устанавливающихся равновесий. Об использовании КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ с. для количественное анализа и др. целей, а также о современной технике колебательное спектроскопии см. в ст. Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия.

Похожие публикации