Энциклопедия пожаробезопасности

Кофермент а участвует в реакциях. Зачем нужны квазивитамины: коэнзим Q, коэнзим А, карнитин. Химическая формула Ацетил КоА - C21H36N7O16P3S

Общие Сокращения Ацетил-КоА Традиционные названия Ацетил коэнзим А Химическая формула C 23 H 38 N 7 O 17 P 3 S Физические свойства Молярная масса 809.57 g/mol г/моль Термические свойства Классификация Рег. номер CAS 72-89-9 Рег. номер PubChem 444493 SMILES O=C(SCCNC(=O)CCNC(=O)(O)C(C)(C)COP(=O)(O)OP(=O)(O)OC3O(n2cnc1c(ncnc12)N)(O)3OP(=O)(O)O)C

Ацетил-кофермент А, ацетил-коэнзим А, сокращённо ацетил-КоА - важное соединение в обмене веществ , используемое во многих биохимических реакциях. Его главная функция - доставлять атомы углерода с ацетил-группой в цикл трикарбоновых кислот , чтобы те были окислены с выделением энергии. По своей химической структуре ацетил-КоА - тиоэфир между коферментом А (тиолом) и уксусной кислотой (носителем ацильной группы). Ацетил-КоА образуется во время второго шага кислородного клеточного дыхания , декарбоксилирования пирувата, который происходит в матриксе митохондрии . Ацетил-КоА затем поступает в цикл трикарбоновых кислот.

Ацетил-КоА - важный компонент биологического синтеза нейротрансмиттера ацетилхолина . Холин , в соединении с ацетил-КоА, катализируется ферментом холинацетилтрансферазой, чтобы образовать ацетилхолин и коэнзим А .

Функции

Дегидрогеназ пирувата и реакции пируват формиат лиазы

Кислородное преобразование пирувата в ацетил-КоА называют реакцией дегидрогеназа пирувата. Она катализируется пируватдегидрогеназным комплексом . Другие преобразования между пируватом и ацетил-КоА возможны. Например, пируват формиат лиазы преобразуют пируват в ацетил-КоА и муравьиную кислоту .

Метаболизм жирных кислот

У животных ацетил-КоА является основой баланса между углеводным обменом и жировым обменом. Обычно ацетил-КоА из метаболизма жирных кислот поступает в цикл трикарбоновых кислот, содействуя энергетическому обеспечению клеток . В печени, когда уровень циркуляции жирных кислот высок, производство ацетил-КоА от разрыва жиров превышает энергетические потребности клетки. Чтобы использовать энергию, доступную из лишних ацетил-КоА, создаются кетоновые тела, которые затем могут циркулировать в крови. В некоторых обстоятельствах это может привести к высокому уровню кетоновых тел в крови, состоянию, называемому кетозом, которое отличается от кетоацидоза , опасного состояния, способного повлиять на диабетиков . У растений синтез новых жирных кислот происходит в пластидах . Многие семена запасают большие количества масел в семенах, чтобы поддерживать прорастание и ранний рост саженцов, пока они не перешли на питание от фотосинтеза. Жирные кислоты включены в липиды мембраны, главнейший компонент большинства мембран.

Другие реакции

  • Две молекулы ацетил-КоА могут быть соединены, чтобы создать ацетоацетил-КоА, что будет первым шагом в ГМГ-КоА/биосинтезе холестерина, предшествующем синтезу изопреноидов. У животных ГМГ-КоА - это жизненный предшественник синтеза холестерина и кетоновых тел.
  • Ацетил-КоА - также источник ацетил-группы, включённой в определённые лизиновые остатки гистоновых и негистоновых белков в посттрансляционной модификации ацетилирования, реакции, катализируемой ацетилтрансферазой.
  • У растений и животных цитозольный ацетил-КоА синтезируется АТФ цитратлиазой. Когда глюкоза изобилует в крови животных, она преобразуется посредством гликолиза в цитозоле в пируват, а затем в ацетил-КоА в митохондрии. Избыток ацетил-КоА вызывает производство избыточных цитратов, которые переносятся в цитозоль, чтобы дать начало цитозольному ацетли-КоА.
  • Ацетил-КоА может быть карбоксилирован в цитозоле в ацетил-КоА карбоксилазу, давая начало малонил-КоА, необходимого для синтеза флавоноидов и родственных поликетидов, для удлинения жирных кислот (образование восков), для образования кутикулы и масла в семенах у членов рода Капуста, а также для малонации протеинов и других фитохимических соединений.
  • У растений они включают в себя сесквитерпены, брассиностероиды (гормоны) и мембранные стиролы .

См. также

Литература

  • Т. Т. Берёзов, Б. Ф. Коровкин Биологическая химия. - М .: Медицина, 1998. - 704 с. - 15 000 экз. - ISBN 5-225-02709-1
  • Ю. Б. Филиппович Основы биохимии. - М .: Агар, 1999. - 512 с. - 5 000 экз. - ISBN 5-89218-046-8

Wikimedia Foundation . 2010 .

Смотреть что такое "Ацетил-КоА" в других словарях:

    См. Ацетилкоэнзим А … Большой медицинский словарь Википедия

    КОФЕРМÉНТ А, КоА, кофермент, состоящий из нуклеотида аденозин 3 ,5 дифосфата и ß меркаптоэтиламида пантотеновой к ты; участвует в переносе ацильных групп (кислотных остатков), связывающихся с сульфгидрильной группой КоА высокоэнергетич.… … Биологический энциклопедический словарь

    Ацетил КоА Ацетил КоА Кофермент А (КоА) кофермент ацетилирования; один из важнейших коферментов; принимает участие в реакциях переноса ацильных групп. Молекула КоА состоит из остатка адениловой кислоты, связанной пирофосфатной группой с о … Википедия

    Ацетил КоА Ацетил КоА Кофермент А (КоА) кофермент ацетилирования; один из важнейших коферментов; принимает участие в реакциях переноса ацильных групп. Молекула КоА состоит из остатка адениловой кислоты, связанной пирофосфатной группой с о … Википедия

    - (ацетил КоА: орго фосфат ацетилтрансфераза, фосфотрансацетилаза, фосфо ацилаза), фермент класса трансферам, катализирующий перенос ацетильной группы от ацетил кофермента А (аце тил КоА; см. Коферменты, Пантотеновая кислота)к остатку H3PO4:… … Химическая энциклопедия

НАД, NAD -- кофермент, присутствующий во всех живых клетках, входит в состав ферментов группы дегидрогеназ, катализирующих окислительно-восстановительные реакции; выполняет функцию переносчика электронов и водорода, которые принимает от окисляемых веществ. Восстановленная форма (NADH) способна переносить их на другие вещества.

Представляет собой динуклеотид, молекула которого построена из амида никотиновой кислоты и аденина, соединённых между собой цепочкой, состоящей из двух остатков D-рибозы и двух остатков фосфорной кислоты; применяется в клинической биохимии при определении активности ферментов крови.

Рис. 12.

НАДФ, NADP -- широко распространённый в природе кофермент некоторых дегидрогеназ -- ферментов, катализирующих окислительно-восстановительные реакции в живых клетках. NADP принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества. В хлоропластах растительных клеток NADP восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях. NADP, -- кофермент, отличающийся от NAD содержанием ещё одного остатка фосфорной кислоты, присоединённого к гидроксилу одного из остатков D-рибозы, обнаружен во всех типах клеток.

Рис. 13.

ФАД, FAD -- кофермент, принимающий участие во многих окислительно-восстановительных биохимических процессах. FAD существует в двух формах -- окисленной и восстановленной, его биохимическая функция, как правило, заключается в переходе между этими формами.

Рис. 14.

Кофермент А (коэнзим А, КоА, СоА, HSKoA) -- кофермент ацетилирования; один из важнейших коферментов, принимающий участие в реакциях переноса ацильных групп при синтезе и окислении жирных кислот и окислении пирувата в цикле лимонной кислоты.

Молекула КоА состоит из остатка адениловой кислоты (1), связанной пирофосфатной группой (2) с остатком пантотеновой кислоты (3), которая в свою очередь связанна пептидной связью с аминокислотой в-аланином (4) (эти две группы представляют собой остаток пантотеновой кислоты), соединённой пептидной связью с остатком в-меркаптоэтаноламина (5).


Коферменты - это такие соединения, которые необходимы, чтобы ферменты могли реализовывать все заложенные в них природой функции, в том числе каталитические. В природе коферменты витаминов переносят атомы, электроны, некоторые функциональные группы между субстратами.

Особенности терминологии

Ферменты - такие белки, которые катализируют химические реакции, свойственные клеткам любой живой ткани. Свойственная ферментам структура: коферменты, чья молекулярная масса совсем невелика, и апоферменты. Коферменты и функциональные группы, присутствующие в структуре остатков аминокислот (они появляются как следствие наличия апофермента), совместно создают ферментный активный центр, способный к связыванию субстрата. По результатам такой реакции с участием молекул небелковой природы активируется комплекс субстрата и фермента.

Коферменты не обладают каталитическими параметрами сами по себе, становятся активными только при формировании комплекса с участием апофермента. Аналогичное свойственно и апоферментам - эти соединения сами по себе не провоцируют никакие химические реакции и ничего активизировать не могут. Формирование комплексов, включающих в себя коферменты, апоферменты - заложенный природой метод корректировки ферментной активности внутренних систем живого организма.

Особенности химических процессов

Как удалось выявить в ходе многочисленных исследований, коэнзим Q10 исключительно важен для человека и человеческого здоровья, в то же время необходимо учитывать, что ферменты в живых тканях только тогда подвержены каталитическому влиянию, когда дополнительный эффект есть со стороны неорганических соединений. В частности, точно известно, что кроме коэнзима Q10 организм испытывает необходимость в положительно заряженных ионах калия, цинка и магния. Катионы металлов могут вступать в реакцию с апоферментом, что приводит к корректировке структуры фермента, в частности, активного центра.

При химической реакции с участием катиона металла происходит активация фермента, в то же время такие неорганические соединения не входят в активный ферментный центр. Впрочем, наука смогла обнаружить ряд ферментов, в которых функции коферментов совмещены с функциями входящих в состав соединения катионов металла. Хороший пример - карбоангидраза, в структуре которой обнаружен положительно заряженный цинк по основанию «два». Ион имеет неорганическую природу, он необходим для активации химической реакции и получил в науке наименование «кофактор».

Коферменты: специфика функциональности

Как удалось выяснить ученым, коферменты - это такие соединения, которым присущи два исключительно важных для поддержания жизнедеятельности организма функциональных участка. Эти элементы также известны в научном сообществе как реакционноспособные участки. С одной стороны, их задача - образование связи с апоферментами, одновременно с этим за счет такого участка формируется связь с субстратом. Коферменты - это огромное разнообразие органических соединений, имеющих относительно сходные функции. Для большинства обнаруженных веществ свойственно наличие сопряженных пи-связей, гетероатомов. Зачастую коферменты - это такие соединения, в которые входят витамины (в качестве элемента молекулы).

В зависимости от специфики взаимодействия с апоферментами принято говорить о простетических, растворимых ферментах. Рассматривая характерные примеры коферментов, можно, к примеру, вспомнить о рибофлавине. Это - классический пример категории растворимых соединений. Кофермент может стать частью ферментной молекулы в ходе течения химической реакции, при этом претерпевает преобразования, по итогам которых получает свободу. Та форма, в которой коэнзим (кофермент) стал частью химического взаимодействия, регенерируется в независимой реакции (она протекает второй). Субстрат также принимает участие во всех стадиях реакции, на основании чего некоторые ученые предлагают считать растворимые коферменты субстратами. Другая часть научного сообщества конфликтует с ними, аргументируя это следующим фактом: субстрат в этой реакции вступает в реакцию только при наличии определенного фермента, а растворимый кофермент способен на взаимодействие с многочисленными ферментами своего класса. На примерах все это можно наблюдать, если подробно рассмотреть химические особенности цепочки взаимодействий, характерных для кофермента витамина В2 рибофлавина.

А с другой стороны?

Простетическая группа включает в себя такие коферменты, которым свойственны очень прочные связи с апоферментами. Как правило, они сформированы по ковалентному типу. Когда происходит химическая реакция, а также после нее коферменты расположены в ферментном центре. Субстрат освобождается, запускается процесс регенерации, для чего необходимо взаимодействие с субстратом либо иным коферментом.

Если некоторый фермент провоцирует и усиливает окислительную, восстановительную реакцию, химическое взаимодействие, в котором переносятся восстановительные эквиваленты (их роль могут играть электроны, протоны), он нуждается в коферменте для полноценной работы. Аналогично не могут функционировать без применения коферментов ферменты, которые провоцируют активизацию реакции переноса. На основании этого факта была введена система классификации коферментов на группу переноса и окислительные, восстановительные.

Коферменты: некоторые особенности

Довольно внушительный процент известных науке коферментов - это производные витаминов. Если в живом организме наблюдаются проблемы с обменом веществ, затрагивающие молекулы витаминов, это зачастую связано с низкой ферментной активностью.

Это важно!

Как удалось выявить в ходе экспериментов, коферменты в своей основной массе имеют температурную стабильность, а вот особенности химических реакций, свойственные им, отличаются довольно сильно. коферментов также очень сильно разнятся. Особенное внимание ученых привлекает группа никотинамидадениндинуклеотидов. Специфика конкретной каталитической реакции определяет, в какой роли в ней выступает этот кофермент. В ряде случаев он действует словно типичный представитель простетиеской группы, но иногда покидает ферментный центр под влиянием протекающих химических процессов.

Ферменты и коферменты: одно без другого не существует

Биохимические реакции реализуются с участием многочисленных помощников, в противном случае сложный механизм химического взаимодействия живых тканей протекает с нарушениями. Фермент, по своей структуре сложный либо простой белок, нуждается в минералах, коферментах, витаминах. Коферменты - это коэнзим Q10, производные различных витаминов, а также фолиевой кислоты. Особенное внимание в медицине в настоящее время привлекают коферменты, продуцируемые витаминами группы В.

Кофермент необходим, чтобы клетка могла продуцировать энергию и выделять ее организму для обеспечения жизнедеятельности. Причем энергия расходуется не только лишь на физическую активность. Нельзя забывать, что внушительных объемов энергии требует умственная активность, работа разного рода желез, пищеварительной системы. Довольно затратны на энергию процессы всасывания полезных элементов, поступающих в организм через ЖКТ и другими способами. Сам процесс усвоения также расходует энергетические запасы организма, формируемые благодаря коферментам и их участию в реакциях с ферментами. Между прочим, даже кровоток, и тот обеспечен именно такими реакциями, без них наша кровь просто не могла бы течь по сосудам!

Секреты биологии

Коэнзим - это такое специфическое вещество, благодаря которому живой организм имеет энергию на реализацию внутренних процессов. Человеческий организм, как удалось подсчитать ученым, содержит порядка сотни триллионов клеток, каждая из которых генерирует энергию для поддержания нормальной жизнедеятельности. При этом клетка не расходует те вещества, которые человек получает вместе с питанием, чтоб восполнить энергетические запасы, но в первую очередь самостоятельно продуцирует энергию. Внешние источники являются запасным вариантом, к которому прибегают в случае недостаточности самостоятельной выработки энергии.

Биологические особенности клеток человеческого организма таковы, что у них есть все необходимое для продуцирования энергетически обогащённых сложных соединений. Ученые назвали их аденозинфосфатам. Для этого окисляются жиры, углеводы, белки. Именно такие провоцируют выделение тепла, с использованием которого ткани нормально функционируют. Молекулы АТФ - это еще и хранилище сгенерированной клетками энергии. Всякий внутренний клеточный процесс, расходующий энергию, может обратиться к этой молекуле за положенной «порцией».

На клеточном уровне

Каждая клетка - это сложная структура, в составе которой присутствуют митохондрии (внутриклеточные структуры). Именно митохондрии - наиболее активная клеточная часть, так как они ответственны за продуцирование энергии. Внутри митохондрии - сформированные из электронов цепи для выработки энергии. Процесс подразумевает многочисленные последовательные химические реакции, по итогам которых продуцируются молекулы аденозинфосфатов.

Составленные из электронов цепочки внутри митохондрий довольно активно взаимодействуют с витаминами группы С, В, Е. Особенное внимание ученых привлекает коэнзим Q10. Это соединение не имеет себе аналогов и заменителей, его недостаточность в организме провоцирует серьёзные проблемы метаболизма. Без этого коэнзима клетка не может продуцировать энергию, а значит, умирает.

Коэнзим Q10

Жиры могут растворять Q10, за счет чего коэнзим получает возможность двигаться внутри клеточной мембраны. Это накладывает на соединение особенно важные функции обеспечения переноса электронов в процессах генерации энергии. Q10 - это такое подвижное звено, через которое ферменты химической цепочки связываются друг с другом. Если предполагается соединение в цепь пары электронов, сперва они должны взаимодействовать с коферментом Q10.

Молекулы Q10 находятся в непрекращающемся движении внутри клетки - от фермента к ферменту. Это позволяет переносить электроны между ферментами. В некоторой степени клетку можно сравнить с крошечным мотором. Для переработки органического материала, из которого извлекается энергия, необходим коэнзим Q10, который сравним с запускающей деятельность обычного мотора искрой.

Специфика влияния на клетку Q10

Коэнзим Q10 принимает активное участие в генерации энергии, причем скорость передвижения этого соединения внутри клеточных тканей регулирует как количество производимых молекул АТФ, так и скорость перемещения внутри цепочки электронов. Важно, чтобы митохондрии располагали оптимальным количеством кофермента, чтобы реакция не была излишне сильной или слишком слабой.

Если в организме наблюдается недостаток коэнзима Q10, АТФ продуцируется заметно более низкой концентрации. Это приводит к сокращению энергетических запасов клеток. На повседневности это отражается следующим образом: человек быстро, сильно устает, сталкивается с неполадками в работе самых разных систем организма, вынужденных бороться с повышенным напряжением. Растёт вероятность развития серьезных патологий. При этом нужно помнить, что для разных органов характерно разное количество Q10.

Беречь здоровье!

Чтобы дольше не сталкиваться с серьезными нарушениями деятельности внутренних систем, необходимо обеспечивать своему организму источники энергии. Наибольший энергетический расход свойственен органам, продуцирующим энергию, - это сердце, почки, печень, поджелудочная. Количество кофермента Q10 определяет качество функционирования каждого из указанных органов на клеточном уровне. Через коэнзим обеспечивается и нехватка этого соединения сильно негативно влияет на биологические процессы. Современная медицина знает несколько путей поддержания уровня кофермента Q10 в организме человека в норме.

Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами:

Ковалентными связями;

Ионными связями;

Гидрофобными взаимодействиями и т.д.

Один кофермент может быть коферментом для нескольких ферментов. Многие коферменты являются полифункциональными (например, НАД, ПФ). В зависимости от апофермента зависит специфичность холофермента.

Все коферменты делят на две большие группы: витаминные и невитаминные.

Коферменты витаминной природы – производные витаминов или химические модификации витаминов.

1 группа: тиаминовые производные витамина В1 . Сюда относят:

Тиаминмонофосфат (ТМФ);

Тиаминдифосфат (ТДФ) или тиаминпирофосфат (ТПФ) или кокарбоксилаза;

Тиаминтрифосфат (ТТФ).

ТПФ имеет наибольшее биологическое значение. Входит в состав декарбоксилазы кетокислот: ПВК, a-кетоглутаровая кислота. Этот фермент катализирует отщепление СО 2 .

Кокарбоксилаза участвует в транскетолазной реакции из пентозофосфатного цикла.

2 группа: флавиновые коферменты, производные витамина В2 . Сюда относят:

- флавинмононуклеотид (ФМН) ;

- флавинадениндинуклеотид (ФАД) .

Ребитол и изоалоксазин образуют витамин В2. Витамин В2 и остаток фосфорной к-ты образуют ФМН. ФМН в соединении с АМФ образуют ФАД.

[рис. изоалоксазиновое кольцо соединено с ребитолом, ребитол с фосфорной к-той, а фосфорная к-та – с АМФ]

ФАД и ФМН являются коферментами дегидрогеназ. Эти ферменты катализируют отщепление от субстрата водорода, т.е. участвуют в реакциях окисления–восстановления. Например СДГ – сукцинатдегидрогеназа – катализирует превращение янтарной к-ты в фумаровую. Это ФАД-зависимый фермент. [рис. COOH-CH 2 -CH 2 -COOH® (над стрелкой – СДГ, под – ФАД и ФАДН 2) COOH-CH=CH-COOH]. Флавиновые ферменты (флавинзависимые ДГ) содержат ФАД, который в них является первоисточником протонов и электронов. В процессе хим. реакций ФАД превращается в ФАДН 2 . Рабочей частью ФАД является 2 кольцо изоалоксазина; в процессе хим. реакции идет присоединение двух атомов водорода к азотам и перегруппировка двойных связей в кольцах.

3 группа: пантотеновые коферменты, производные витамина В3 – пантотеновой кислоты. Входят в состав кофермента А, НS-КоА. Этот кофермент А является коферментом ацилтрансфераз, вместе с которой переносит различные группировки с одной молекулы на другую.

4 группа: никотинамидные, производные витамина РР - никотинамида :

Представители:

Никотинамидадениндинуклеотид (НАД);

Никотинамидадениндинуклеотидфосфат (НАДФ).

Коферменты НАД и НАДФ являются коферментами дегидрогеназ (НАДФ-зависимых ферментов), например малатДГ, изоцитратДГ, лактатДГ. Участвуют в процессах дегидрирования и в окислительно-восстановительных реакциях. При этом НАД присоединяет два протона и два электрона, и образуется НАДН2.


Рис. рабочей группы НАД и НАДФ: рисунок витамина РР, к которому присоединяется один атом Н и в результате происходит перегруппировка двойных связей. Рисуется новая конфигурация витамина РР + Н + ]

5 группа: пиридоксиновые, производные витамина В6 . [рис. пиридоксаля. Пиридоксаль+ фосфорная к-та= пиридоксальфосфат]

- пиридоксин ;

- пиридоксаль ;

- пиридоксамин .

Эти формы взаимопревращаются в процессе реакций. При взаимодействии пиридоксаля с фосфорной кислотой получается пиридоксальфосфат (ПФ).

ПФ является коферментом аминотрансфераз, осуществляет перенос аминогруппы от АК на кетокислоту – реакция переаминирования . Также производные витамина В6 входят как коферменты в состав декарбоксилаз АК.

Коферменты невитаминной природы – вещества, которые образуются в процессе метаболизма.

1) Нуклеотиды – УТФ, УДФ, ТТФ и т.д. УДФ-глюкоза вступает в синтез гликогена. УДФ-гиалуроновая к-та используется для обезвреживания различных веществ в трансверных реакциях (глюкоуронил трансфераза).

2) Производные порфирина (гем): каталаза, пероксидаза, цитохромы и т.д.

3) Пептиды . Глутатион – это трипептид (ГЛУ-ЦИС-ГЛИ), он участвует в о-в реакциях, является коферментом оксидоредуктаз (глутатионпероксидаза, глутатионредуктаза). 2GSH«(над стрелкой 2Н) G-S-S-G. GSH является восстановленной формой глутатиона, а G-S-S-G – окисленной.

4) Ионы металлов , например Zn 2+ входит в состав фермента АлДГ (алкогольдегидрогеназы), Cu 2+ - амилазы, Mg 2+ - АТФ-азы (например, миозиновой АТФ-азы).

Могут участвовать в:

Присоединении субстратного комплекса фермента;

В катализе;

Стабилизация оптимальной конформации активного центра фермента;

Стабилизация четвертичной структуры.

КОФЕРМЕНТЫ (син. коэнзимы ) - низкомолекулярные органические соединения биологического происхождения, необходимые в качестве дополнительных специфических компонентов (кофакторов) для осуществления каталитического действия ряда ферментов. Многие К. представляют собой производные витаминов. Биол, эффект значительной группы витаминов (группы В) определяется их превращением в К. и ферменты в клетках организма. Были сделаны попытки (и небезуспешные) прямого использования некоторых К. с леч. целями. Трудности, которые при этом возникают, состоят в том, что не всегда производятся количественные определения содержания К. в крови и органах и еще реже определяется активность ферментов, синтезирующих или разрушающих исследуемые К., в норме и патологии. Обнаруженный при каком-либо заболевании недостаток того или иного К. обычно пытаются устранить, вводя в организм соответствующий витамин. Но если нарушены системы синтеза недостающего К., что нередко имеет место, то введение такого витамина теряет смысл: терапевтический эффект можно получить только введением недостающего кофермента. С леч. целями применяют кокарбоксилазу (см. Тиамин), ФАД, коферментные формы витамина В 12 (см. Цианокобаламин) и некоторые другие К. В леч. целях К. вводят парентерально, но и при этом условии не всегда имеется уверенность, что они могут без расщепления проникнуть к месту своего действия (во внутриклеточную среду).

Обладая небольшим мол. весом, К., в отличие от биокатализаторов белковой природы (ферментов), характеризуются термостабильностью и доступностью диализу. Дыхательные хромогены растений (полифенолы), глутаминовую к-ту, орнитин, бисфосфаты (дифосфаты) глюкозы и глицериновой к-ты и другие метаболиты, действующие при определенных обстоятельствах как кофакторы ферментативных процессов переноса, нередко обозначают как К. соответствующих процессов. Правильнее применять термин «кофермент» только к соединениям, биол, функция которых сводится целиком или преимущественно к их специфическому участию в действии ферментов (см.).

Термин «кофермент» был предложен Г. Бертраном в 1897 г. для обозначения функции солей марганца, которые он считал специфическим кофактором фенол азы (лакказы); однако теперь неорганические компоненты ферментных систем не принято относить к числу К. Существование истинного (органического) К. впервые установили англ. биохимики Харден (A. Harden) и Янг (W. Young) в 1904 г., показавшие, что из ферментных экстрактов дрожжевых клеток при диализе удаляется термостабильное органическое вещество, необходимое для действия ферментного комплекса, катализирующего спиртовое брожение (см.). Этот вспомогательный катализатор брожения Харден и Янг назвали козимазой; его строение было установлено в 1936 г. в лабораториях X. Эйлер- Xeльпина и О. Варбурга почти одновременно.

Механизм действия К. неодинаков. Во многих случаях они действуют в качестве промежуточных акцепторов (переносчиков) определенных хим. группировок (фосфатных, ацильных, аминных и др.), атомов водорода или электронов. В других случаях К. участвуют в активировании молекул субстратов ферментативных реакций, образуя с этими молекулами реакционно-способные промежуточные соединения. В виде таких соединений субстраты подвергаются определенным ферментативным превращениям; таковы функции глутатиона (см.) как кофермента глиоксалазы и дегидрогеназы формальдегида, КоА - при ряде превращении жирных кислот (см.) и других органических к-т и т. д.

Типичные К. образуют непрочные сильно диссоциированные соединения со специфическими белками (апоферментами) растворимых ферментов, от которых они легко могут быть отделены путем диализа (см.) или гель-фильтрация (см.). При многих реакциях переноса групп, протекающих при сопряженном действии двух ферментных белков, происходит поочередное обратимое присоединение к молекулам этих белков частиц К. в двух формах - акцепторной и донорной (напр., окисленной и восстановленной, фосфорилированной и нефосфорилированной). В приведенной ниже схеме показан (в несколько упрощенной форме) механизм обратимого переноса водорода между молекулой донора водорода (АН2) и молекулой акцептора (Б) при действии двух дегидрогеназ (Фа и Фб) и кофермента (Ко):

Суммарная реакция:

В полном цикле окислительно-восстановительного процесса (реакции 1-6) кофермент кодегидрогеназа не изменяется и не входит в баланс продуктов реакции, т. е. служит катализатором. Если же рассматриваются последовательные фазы цикла, протекающие каждая с участием одного фермента (реакции 1-3 и 4-6), то Ко и КоН2 выступают наравне с молекулами АН2, А, Б, БН2 в качестве второго субстрата. В этом же смысле относительным является различие между субстратами и диссоциирующими К., участвующими в сопряженных реакциях переноса фосфатных, ацильных, гликозильных и других групп.

У многих двухкомпонентных ферментов, построенных по типу протеидов, апофермент образует с небелковым термостабильным компонентом прочное, труднодиссоциирующее соединение. Небелковые компоненты ферментов-протеидов, обычно называемые простетическими группами (напр., флавиновые нуклеотиды, пиридоксальфосфат, металлопорфирины), взаимодействуют с субстратом, оставаясь на всем протяжении ферментативной реакции в составе нерасщепленной молекулы одного протеида. Термин «кофермент» обычно распространяют и на химически взаимодействующие с молекулами субстратов, прочно связанные органические простетические группы ферментов, которые трудно отграничить от легко диссоциирующих К., т. к. между обоими типами кофакторов существуют постепенные переходы.

Точно также нельзя провести резкой грани между К. и нек-рыми промежуточными продуктами обмена веществ (метаболитами), которые в ферментативных процессах выступают то как обычные субстраты, подвергающиеся в данном процессе в основном необратимому изменению, то как необходимые вспомогательные катализаторы при сопряженных ферментативных превращениях, из которых эти метаболиты выходят неизмененными. Метаболиты такого рода могут служить промежуточными акцепторами тех или иных групп в процессах ферментативного переноса, протекающих аналогично процессу, схематично изображенному выше (напр., роль полифенолов как переносчиков водорода в дыхании растительных клеток, роль глутаминовой к-ты в переносе аминных групп путем реакций трансаминирования и т. п.), или в более сложных циклических превращениях с участием нескольких ферментов (примером может служить функция орнитина в цикле образования мочевины). Несколько иной характер носит коферментоподобное действие 1,6-бисфосфоглюкозы, к-рая служит необходимым кофактором и в то же время промежуточной ступенью в процессе межмолекулярного переноса фосфатных остатков при взаимопревращении 1-фосфоглюкозы и 6-фосфоглюкозы под действием фосфоглюкомутазы, когда молекула кофактора переходит в молекулу конечного продукта, отдавая один фосфатный остаток исходному продукту, из к-рого при этом образуется новая молекула кофактора. Точно такую же функцию выполняет 2,3-бисфосфоглицериновая к-та при катализируемом другой фосфомутазой взаимопревращении 2-фосфоглицериновой и 3-фосфоглицериновой к-т.

К. весьма разнообразны по хим. строению. Однако чаще всего среди них встречаются соединения двух типов: а) нуклеотиды и некоторые другие органические производные фосфорной к-ты; б) пептиды и их производные (напр., фолиевая к-та, КоА, глутатион). У животных и у многих микроорганизмов для построения молекул ряда К. необходимы соединения, которые этими организмами не синтезируются и должны доставляться с пищей, т. е. витамины (см.). Водорастворимые витамины группы В в большинстве своем входят в состав К., строение и функции которых известны (это относится к тиамину, рибофлавину, пиридоксалю, никотинамиду, пантотеновой к-те), или же могут сами действовать как активные молекулы К. (витамин В 12 , фолиевая к-та). То же, вероятно, относится и к другим водо- и жирорастворимым витаминам, роль которых в процессах биол, катализа еще полностью не выяснена.

Ниже перечислены важнейшие К. с указанием типа их строения и основных видов ферментативных превращений, в которых они участвуют. В статьях об отдельных К. приведены более детальные сведения об их структуре и механизме действия.

Коферменты нуклеотидной природы . Адениловые рибонуклеотиды (аденозин-5"-моно-, ди- и трифосфорные к-ты) участвуют в многочисленных реакциях активирования и переноса орто- и пирофосфатных остатков, остатков аминокислот (аминоацилов), угольной и серной к-т, а также в ряде других ферментативных превращений. Аналогичные функции в определенных случаях выполняют производные инозин-5"-фосфорной и гуанозин-5"-фосфорной к-т.

Гуаниловые рибоиуклеотиды (гуанозин-5"-моно-, ди- и трифосфорные к-ты) играют роль К. при реакциях переноса остатка янтарной к-ты (сукцинила), биосинтезе рибонуклеопротеидов в микросомах, биосинтезе адениловой к-ты из инозиновой и, возможно, при переносе остатков маннозы.

Цитидиловые рибонуклеотиды (цитидин-5"-фосфорные к-ты) при биосинтезе фосфатидов играют роль К. переноса остатков О-фосфоэтанол холина, О-фосфоэтаноламина и т. д.

Уридиловые рибонуклеотиды (уридин-5"-фосфорные к-ты) выполняют функции К. в процессах трансгликозилирования, т. е. переноса остатков моноз (глюкозы, галактозы и др.) и их производных (остатков гексозаминов, глюкуроновой к-ты и т. п.) при биосинтезе ди- и полисахаридов, глюкуронозидов, гексозаминидов (мукополисахаридов), а также при активировании остатков сахаров и их производных в некоторых других ферментативных процессах (напр., взаимопревращении глюкозы и галактозы и др.).

Никотинамидадениндинуклеотид (НАД) участвует в важнейших для клеточного обмена реакциях переноса водорода в качестве специфического К. многочисленных дегидрогеназ (см.).

Никотинамидадениндинуклеотидфосфат (НАДФ) участвует в важнейших для клеточного обмена реакциях переноса водорода в качестве специфического К. некоторых дегидрогеназ.

Флавинмононуклеотид (ФМН) участвует в биол, переносе водорода как К. (простетическая группа) некоторых флавиновых («желтых») окислительных ферментов.

Флавинадениндинуклеотид (ФАД) участвует в биол, переносе водорода как К. (простетическая группа) большинства флавиновых («желтых») окислительных ферментов.

Кофермент А (КоА, восстановленная форма - KoA-SH, кофермент ацилирования; соединение аденозин-З" ,5"-бисфосфорной к-ты с пантотенил-аминоэтантиолом или пантетеином) образует с остатками уксусной и других органических к-т тиоэфиры типа R-СО-S-КоА, где R - остаток органической к-ты, и играет роль К. в переносе и активировании кислотных остатков как при реакциях ацилирования (синтез ацетилхолина, гиппуровой к-ты, парных желчных к-т и т. п.), так и при многих других ферментативных превращениях кислотных остатков (реакции конденсации, оксидоредукции или обратимой гидратации ненасыщенных к-т). При участии КоА протекает ряд промежуточных реакций клеточного дыхания, биосинтеза и окисления жирных к-т, синтеза стероидов, терпенов, каучука и т. п.

Кофермент B 12 . Возможно, что разнообразные биол, функции витамина В 12 , хим. механизм которых еще не ясен, напр, в процессе кроветворения, при биосинтезе метильных групп, превращениях сульфгидрильных групп (SH-групп) и т. д., обусловлены его ролью как К. в процессе биосинтеза белков-ферментов.

Другие коферменты, содержащие фосфатные остатки. Дифосфотиамин служит К. при декарбоксилировании (простом и окислительном) пировиноградной, альфа-кетоглутаровой и других альфа-кетокислот, а также при реакциях расщепления углеродной цепи фосфорилированных кетосахаров под действием особой группы ферментов (кетолазы, транскетолазы, фосфокетолазы).

Пиридоксальфосфат конденсируется с аминокислотами (и аминами) в активные промежуточные соединения типа оснований Шиффа (см. Шиффа основания); является К. (простетической группой) ферментов, катализирующих реакции трансаминирования и декарбоксилирования, а также многих других ферментов, которые осуществляют разнообразные превращения аминокислот (реакции расщепления, замещения, конденсации), играющие важную роль в клеточном обмене.

Коферменты пептидной природы . Кофермент формилирования. Восстановленная фолиевая к-та и ее производные, содержащие три или семь остатков глутаминовой к-ты, соединенных гамма-пептидными связями, играют роль К. в промежуточном обмене так наз. одноуглеродных, или «C1», остатков (формила, оксиметила и метила), участвуя как в реакциях переноса этих остатков, так и в их окислительно-восстановительных взаимопревращениях. Формильные и оксиметильные производные Н4-фолиевой к-ты являются «активными формами» муравьиной к-ты и формальдегида в процессах биосинтеза и окисления метильных групп, в обмене серина, глицина, гистидина, метионина, пуриновых оснований и т. д.

Глутатион. Восстановленный глутатион (Г-SH) действует по типу К. при превращении метилглиоксаля в молочную к-ту под влиянием глиоксалазы, при ферментативной дегидрогенизации формальдегида, в определенных стадиях биол, окисления тирозина и т. д. Кроме того, глутатион (см.) играет большую роль в защите различных тиоловых (сульфгидрильных) ферментов от инактивирования в результате окисления SH-групп или связывания их тяжелыми металлами и другими SH-ядами.

Прочие коферменты . Липоевая кислота является вторым К. дегидрогеназ пировиноградной и альфа-кетоглутаровой к-т (наряду с дифосфотиамином); при действии этих ферментов остаток липоевой к-ты, связанный амидной связью (СО - NH) со специфическими ферментными белками, выполняет функции промежуточного акцептора (переносчика) водорода и ацильных остатков (ацетила, сукцинила). Другие предполагаемые функции этого К. недостаточно изучены.

Витамин E (токоферол), витамин К (филлохинон) и продукты их окислительно-восстановительиых превращений или близкородственные производные n-бензохинона (убихинон, кофермент Q) рассматриваются как К. (переносчики водорода), участвующие в определенных промежуточных реакциях дыхательной окислительной цепи и в сопряженном с ними дыхательном фосфорилировании (см.). Установлено, что филлохинон (витамин К) играет роль К. в биосинтезе остатков альфа-карбоксиглутаминовой к-ты, входящих в состав молекул белковых компонентов системы свертывания крови.

Биотин - водорастворимый витамин, выполняющий роль К. или простетической группы в составе ряда ферментов, катализирующих реакции карбоксилирования - декарбоксилирования некоторых органических к-т (пировиноградной, пропионовой и др.). Эти ферменты имеют строение биотинил-протеидов, в которых соответствующий биотину ацильный остаток (биотинил) присоединен амидной связью к N6-аминогруппе одного из остатков лизина молекулы белка.

Аскорбиновая кислота служит активатором ферментной системы окисления тирозина в животных тканях и некоторых других ферментных систем (гидроксилаз), при действии которых в ядро ароматических и гетероциклических соединений, в т. ч. пептидно-связанных остатков пролина при биосинтезе коллагена, Токоферолы , Филлохиноны , Флавопротеиды .

Библиография: Болдуин Э. Основы динамической биохимии, пер. с англ., с. 55 и др., М., 1949; Витамины, под ред. М. И. Смирнова, М., 1974; Диксон М. и Уэбб Э. Ферменты, пер. с англ., М., 1966; Коферменты, под ред. В. А. Яковлева, М., 1973; Кочетов Г. А. Тиаминовые ферменты, М., 1978, библиогр.; Ферменты, под ред. А. Е. Браунштейна, с. 147, М., 1964, библиогр.

А. Е. Браунштейн.

Похожие публикации