Энциклопедия пожаробезопасности

Основанием конуса является. Конус. Основные понятия. Площадь поверхности конуса. Образующая в наклонном конусе






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Образовательная : ввести понятие конуса, его элементов; рассмотреть построение прямого конуса; рассмотреть нахождение полной поверхности конуса; формировать умения решать задачи на нахождение элементов конуса.
  • Развивающая : развивать грамотную математическую речь, логическое мышление.
  • Воспитательная : воспитывать познавательную активность, культуру общения, культуры диалога.

Форма урока: урок формирования новых знаний и умений.

Форма учебной деятельности: коллективная форма работы.

Методы, используемые на уроке: объяснительно-иллюстративный, продуктивный.

Дидактический материал: тетрадь, учебник, ручка, карандаш, линейка, доска, мел и цветные мелки, проектор и презентация «Конус. Основные понятия. Площадь поверхности конуса».

План урока:

  1. Организационный момент (1 мин).
  2. Подготовительный этап (мотивация) (5 мин).
  3. Изучение нового материала (15 мин).
  4. Решение задач на нахождение элементов конуса (15 мин).
  5. Подведение итогов урока (2 мин).
  6. Задание на дом (2 мин).

ХОД УРОКА

1. Организационный момент

Цель: подготовить к усвоению нового материала.

2. Подготовительный этап

Форма: устная работа.

Цель: знакомство с новым телом вращения.

Конус в переводе с греческого “konos” означает “сосновая шишка”.

Встречаются тела в форме конуса. Их можно рассмотреть в различных предметах, начиная с обычного мороженого и заканчивая техникой, так же в детских игрушках (пирамидка, хлопушка и др.), в природе (ель, горы, вулканы, смерчи).

(Используются Слайды 1-7)

Деятельность учителя Деятельность ученика

3. Объяснение нового материала

Цель: ввести новые понятия и свойства конуса.

1. Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов. (Слайд 8)
Теперь рассмотрим, как строится конус. Сначала изображаем окружность с центром O и прямую OP, перпендикулярную к плоскости этой окружности. Каждую точку окружности соединим отрезком с точкой P (учитель поэтапно строит конус). Поверхность, образованная этими отрезками, называется конической поверхностью , а сами отрезки – образующими конической поверхности .
В тетрадях строят конус.
(диктует определение) (Слайд 9) Тело, ограниченной конической поверхностью и кругом с границей L, называется конусом . Записывают определение.
Коническая поверхность называется боковой поверхностью конуса , а круг – основанием конуса . Прямая OP, проходящая через центр основания и вершину, называется осью конуса . Ось конуса перпендикулярна плоскости основания. Отрезок OP называется высотой конуса . Точка P называется вершиной конуса , а образующие конической поверхности – образующими конуса . На чертеже подписывают элементы конуса.
Назовите две образующие конуса и сравните их? PA и PB, они равны.
Почему образующие равны? Проекции наклонных равны как радиусы окружности, значит и сами образующие равны.
Запишите в тетради: свойства конуса: (Слайд 10)
1. Все образующие конуса равны.

Назовите углы наклона образующих к основанию? Сравните их.
Почему, докажите это?

Углы: PСО, PDO. Они равны.
Так как треугольник PAB – равнобедренный.

2. Углы наклона образующих к основанию равны.

Назовите углы между осью и образующими?
Что можно сказать об этих углах?

СРО и DPO
Они равны.

3. Углы между осью и образующими равны.

Назовите углы между осью и основанием?
Чему равны эти углы?

POC и POD.
90 о

4. Углы между осью и основанием прямые.

Мы будем рассматривать только прямой конус.

2. Рассмотрим сечение конуса различными плоскостями.
Что представляет собой секущая плоскость, проходящая через ось конуса?
Треугольник.
Какой это треугольник? Он равнобедренный.
Почему? Две его стороны являются образующими, а они равны.
Что представляет собой основание данного треугольника? Диаметр основания конуса.
Такое сечение называется осевым. (Слайд 11) Начертите в тетрадях и подпишите это сечение.
Что представляет собой секущая плоскость, перпендикулярная оси OP конуса?
Круг.
Где расположен центр этого круга? На оси конуса.
Это сечение называется круговым сечением.(Сдайл 12)
Начертите в тетрадях и подпишите это сечение.
Существуют и другие виды сечений конуса, которые не являются осевыми и не параллельны основанию конуса. Рассмотрим их на примерах. (Слайд 13)
Чертят в тетрадях.
3. Теперь выведем формулу полной поверхности конуса. (Слайд 14)
Для этого боковую поверхность конуса, как и боковую поверхность цилиндра, можно развернуть на плоскость, разрезав ее по одной из образующих.
Что является разверткой боковой поверхности конуса? (чертит на доске) Круговой сектор.
Что является радиусом этого сектора? Образующая конуса.
А длина дуги сектора? Длина окружности.
За площадь боковой поверхности конуса принимается площадь ее развертки. (Слайд 15) , где – градусная мера дуги.
Чему равна площадь кругового сектора?
Значит, чему равна площадь боковой поверхности конуса?

Выразим через и . (Слайд 16)
Чему равна длина дуги?

С другой стороны эта же дуга представляет собой длину окружности основания конуса. Чему она равна?
Подставляя в формулу боковой поверхности конуса получим, .
Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания. .
Запишите эти формулы.

Записывают: , .h

(Слайд 21)
L = 5

6. Домашнее задание. П.55, 56, № 548(б), 549(б). (Слайд 22)

Конической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной кривой и точку вне кривой (рис.32).

Данная кривая называется направляющей , прямые – образующими , точка – вершиной конической поверхности.

Прямой круговой конической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной окружности и точку на прямой, которая перпендикулярна плоскости окружности и проходит через ее центр. В дальнейшем эту поверхность будем кратко называть конической поверхностью (рис.33).

Конусом (прямым круговым конусом ) называется геометрическое тело, ограниченное конической поверхностью и плоскостью, которая параллельна плоскости направляющей окружности (рис.34).


Рис. 32 Рис. 33 Рис. 34

Конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг оси, содержащей один из катетов треугольника.

Круг, ограничивающий конус, называется его основанием . Вершина конической поверхности называется вершиной конуса. Отрезок, соединяющий вершину конуса с центром его основания, называется высотой конуса. Отрезки, образующие коническую поверхность, называются образующими конуса. Осью конуса называется прямая, проходящая через вершину конуса и центр его основания. Осевым сечением называется сечение, проходящее через ось конуса. Разверткой боковой поверхности конуса называется сектор, радиус которого равен длине образующей конуса, а длина дуги сектора равна длине окружности основания конуса.

Для конуса верны формулы:

где R – радиус основания;

H – высота;

l – длина образующей;

S осн – площадь основания;

S бок

S полн

V – объем конуса.

Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию конуса (рис.35).


Усеченный конус можно рассматривать как тело, полученное при вращении прямоугольной трапеции вокруг оси, содержащей боковую сторону трапеции, перпендикулярную основаниям.

Два круга, ограничивающие конус, называются его основаниями . Высотой усеченного конуса называется расстояние между его основаниями. Отрезки, образующие коническую поверхность усеченного конуса называются образующими . Прямая, проходящая через центры оснований, называется осью усеченного конуса. Осевым сечением называется сечение, проходящее через ось усеченного конуса.

Для усеченного конуса верны формулы:

(8)

где R – радиус нижнего основания;

r – радиус верхнего основания;

H – высота, l – длина образующей;

S бок – площадь боковой поверхности;

S полн – площадь полной поверхности;

V – объем усеченного конуса.

Пример 1. Сечение конуса параллельное основанию делит высоту в отношении 1:3, считая от вершины. Найти площадь боковой поверхности усеченного конуса, если радиус основания и высота конуса равны 9 см и 12 см.

Решение. Сделаем рисунок (рис. 36).

Для вычисления площади боковой поверхности усеченного конуса используем формулу (8). Найдем радиусы оснований О 1 А и О 1 В и образующую АВ.

Рассмотрим подобные треугольники SO 2 B и SO 1 A , коэффициент подобия , тогда

Отсюда

Так как то

Площадь боковой поверхности усеченного конуса равна:

Ответ: .

Пример2. Четверть круга радиуса свернута в коническую поверхность. Найти радиус основания и высоту конуса.

Решение. Четверить круга является разверткой боковой поверхности конуса. Обозначим r – радиус его основания, H – высота. Площадь боковой поверхности вычислим по формуле: . Она равна площади четверти круга: . Получим уравнение с двумя неизвестными r и l (образующая конуса). В данном случае образующая равна радиусу четверти круга R , значит, получим следующее уравнение: , откуда Зная радиус основания и образующую, найдем высоту конуса:

Ответ: 2 см, .

Пример 3. Прямоугольная трапеция с острым углом 45 О, меньшим основанием 3см и наклонной боковой стороной равной , вращается вокруг боковой стороны перпендикулярной основаниям. Найти объем полученного тела вращения.

Решение. Сделаем рисунок (рис. 37).

В результате вращения получим усеченный конус, чтобы найти его объем вычислим радиус большего основания и высоту. В трапеции O 1 O 2 AB проведем AC^O 1 B . В имеем: значит, этот треугольник равнобедренный AC =BC =3 см.

Ответ:

Пример 4. Треугольник со сторонами 13 см, 37 см и 40 см вращается вокруг внешней оси, которая параллельна большей стороне и находится от нее на расстоянии 3 см (Ось расположена в плоскости треугольника). Найти площадь поверхности полученного тела вращения.

Решение . Сделаем рисунок (рис. 38).

Поверхность полученного тела вращения состоит из боковых поверхностей двух усеченных конусов и боковой поверхности цилиндра. Для того чтобы вычислить эти площади необходимо знать радиусы оснований конусов и цилиндра (BE и OC ), образующие конусов (BC и AC ) и высоту цилиндра (AB ). Неизвестной является только CO . это расстояние от стороны треугольника до оси вращения. Найдем DC . Площадь треугольника ABC с одной стороны равна произведению половины стороны AB на высоту, проведенную к ней DC , с другой стороны, зная все стороны треугольника, его площадь вычислим по формуле Герона.

Возьмем произвольный конус и проведем секущую плоскость, перпендикулярную к его оси (рис. 72). Эта плоскость пересекается с конусом по кругу и разбивает конус на две части. Одна из частей представляет собой конус, а другая называется усеченным конусом. Основание исходного конуса и круг, полученный в сечении этого конуса плоскостью, называются основаниями усеченного конуса , а отрезок, соединяющий их центры - высотой усеченного конуса .

Часть конической поверхности, ограничивающая усеченный конус, называется его боковой поверхностью , а отрезки образующих конической поверхности, заключенные между основаниями, называются образующими усеченного конуса. Все образующие усеченного конуса равны друг другу.


Усеченный конус может быть получен вращением прямоугольной трапеции вокруг ее боковой стороны, перпендикулярной к основаниям. На рисунке изображен усеченный конус, полученный вращением прямоугольной трапеции АВСO вокруг стороны СO, перпендикулярной к основаниям АO и ВС (рис. 73). При этом боковая поверхность образуется вращением боковой стороны АВ, а основания усеченного конуса - вращением оснований СВ и OА трапеции.

Рис. 73 Рис.74

Найдем формулу площади боковой поверхности усеченного конуса, зная радиусы r, r 1 оснований и образующую усеченного конуса l (рис. 74).

Площадь боковой поверхности усеченного конуса, это разность площадей большого конуса и маленького, образованного сечением.

Площадь полной поверхности усеченного конуса равна сумме площади боковой поверхности, площади нижнего основания и площади верхнего основания

) - тело в евклидовом пространстве , полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, имеющую ограниченный объём и полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Если основание конуса представляет собой многоугольник , такой конус является пирамидой .

Энциклопедичный YouTube

    1 / 4

    ✪ Как сделать конус из бумаги.

  • Субтитры

Связанные определения

  • Отрезок, соединяющий вершину и границу основания, называется образующей конуса .
  • Объединение образующих конуса называется образующей (или боковой ) поверхностью конуса . Образующая поверхность конуса является конической поверхностью .
  • Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса .
  • Угол раствора конуса - угол между двумя противоположными образующими (угол при вершине конуса, внутри конуса).
  • Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым . При этом прямая, соединяющая вершину и центр основания, называется осью конуса .
  • Косой (наклонный ) конус - конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.
  • Круговой конус - конус, основание которого является кругом.
  • Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой , содержащей катет (эта прямая представляет собой ось конуса).
  • Конус, опирающийся на эллипс , параболу или гиперболу , называют соответственно эллиптическим , параболическим и гиперболическим конусом (последние два имеют бесконечный объём).
  • Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом , или коническим слоем .

Свойства

  • Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания.
V = 1 3 S H , {\displaystyle V={1 \over 3}SH,}

где S - площадь основания, H - высота. Таким образом, все конусы, опирающиеся на данное основание (конечной площади) и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

  • Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания.
  • Телесный угол при вершине прямого кругового конуса равен
2 π (1 − cos ⁡ α 2) , {\displaystyle 2\pi \left(1-\cos {\alpha \over 2}\right),} где α - угол раствора конуса.
  • Площадь боковой поверхности такого конуса равна
S = π R l , {\displaystyle S=\pi Rl,}

а полная площадь поверхности (то есть сумма площадей боковой поверхности и основания)

S = π R (l + R) , {\displaystyle S=\pi R(l+R),} где R - радиус основания, l = R 2 + H 2 {\displaystyle l={\sqrt {R^{2}+H^{2}}}} - длина образующей.
  • Объём кругового (не обязательно прямого) конуса равен
V = 1 3 π R 2 H . {\displaystyle V={1 \over 3}\pi R^{2}H.}
  • Для усечённого конуса (не обязательно прямого и кругового) объём равен:
V = 1 3 (H S 2 − h S 1) , {\displaystyle V={1 \over 3}(HS_{2}-hS_{1}),}

где S 1 и S 2 - площади соответственно верхнего (ближнего к вершине) и нижнего оснований, h и H - расстояния от плоскости соответственно верхнего и нижнего основания до вершины.

  • Пересечение плоскости с прямым круговым конусом является одним из конических сечений (в невырожденных случаях - эллипсом , параболой или гиперболой , в зависимости от положения секущей плоскости).

Уравнение конуса

Уравнения, задающие боковую поверхность прямого кругового конуса с углом раствора 2Θ , вершиной в начале координат и осью, совпадающей с осью Oz :

  • В сферической системе координат с координатами (r , φ, θ) :
θ = Θ . {\displaystyle \theta =\Theta .}
  • В цилиндрической системе координат с координатами (r , φ, z ) :
z = r ⋅ ctg ⁡ Θ {\displaystyle z=r\cdot \operatorname {ctg} \Theta } или r = z ⋅ tg ⁡ Θ . {\displaystyle r=z\cdot \operatorname {tg} \Theta .}
  • В декартовой системе координат с координатами (x , y , z ) :
z = ± x 2 + y 2 ⋅ ctg ⁡ Θ . {\displaystyle z=\pm {\sqrt {x^{2}+y^{2}}}\cdot \operatorname {ctg} \Theta .} Это уравнение в каноническом виде записывается как

где константы a , с определяются пропорцией c / a = cos ⁡ Θ / sin ⁡ Θ . {\displaystyle c/a=\cos \Theta /\sin \Theta .} Отсюда видно, что боковая поверхность прямого кругового конуса представляет собой поверхность второго порядка (она носит название коническая поверхность ). В общем виде коническая поверхность второго порядка опирается на эллипс; в подходящей декартовой координатной системе (оси Ох и Оу параллельны осям эллипса, вершина конуса совпадает с началом координат, центр эллипса лежит на оси Oz ) её уравнение имеет вид

x 2 a 2 + y 2 b 2 − z 2 c 2 = 0 , {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-{\frac {z^{2}}{c^{2}}}=0,}

причём a/c и b/c равны полуосям эллипса. В наиболее общем случае, когда конус опирается на произвольную плоскую поверхность, можно показать, что уравнение боковой поверхности конуса (с вершиной в начале координат) задаётся уравнением f (x , y , z) = 0 , {\displaystyle f(x,y,z)=0,} где функция f (x , y , z) {\displaystyle f(x,y,z)} является однородной , то есть удовлетворяющей условию f (α x , α y , α z) = α n f (x , y , z) {\displaystyle f(\alpha x,\alpha y,\alpha z)=\alpha ^{n}f(x,y,z)} для любого действительного числа α .

Развёртка

Прямой круговой конус как тело вращения образован прямоугольным треугольником, вращающимся вокруг одного из катетов, где h - высота конуса от центра основания до вершины - является катетом прямоугольного треугольника, вокруг которого происходит вращение. Второй катет прямоугольного треугольника r - радиус в основании конуса. Гипотенузой прямоугольного треугольника является l - образующая конуса.

В создании развёртки конуса могут использоваться всего две величины r и l . Радиус основания r определяет в развертке круг основания конуса, а сектор боковой поверхности конуса определяет образующая боковой поверхности l , являющаяся радиусом сектора боковой поверхности. Угол сектора φ {\displaystyle \varphi } в развёртке боковой поверхности конуса определяется по формуле:

φ = 360°·(r /l ) .

Рис. 1. Предметы из жизни, имеющие форму усеченного конуса

Как вы думаете, откуда в геометрии берутся новые фигуры? Все очень просто: человек в жизни сталкивается с похожими объектами и придумывает, как бы их назвать. Рассмотрим тумбу, на которой сидят львы в цирке, кусок морковки, который получается, когда мы нарезали только часть ее, действующий вулкан и, например, свет от фонарика (см. рис. 1).

Рис. 2. Геометрические фигуры

Мы видим, что все эти фигуры похожей формы - и снизу, и сверху они ограничены кругами, но они сужаются кверху (см. рис. 2).

Рис. 3. Отсечение верхней части конуса

Это похоже на конус. Только не хватает верхушки. Мысленно представим, что мы берем конус и отсекаем от него верхнюю часть одним взмахом острого меча (см. рис. 3).

Рис. 4. Усеченный конус

Получается как раз наша фигура, называется она усеченный конус (см. рис. 4).

Рис. 5. Сечение, параллельное основанию конуса

Пусть дан конус. Проведем плоскость, параллельную плоскости основания этого конуса и пересекающую конус (см. рис. 5).

Она разобьет конус на два тела: одно из них - конус меньшего размера, а второе и называется усеченным конусом (см. рис. 6).

Рис. 6. Полученные тела при параллельном сечении

Таким образом, усеченный конус - это часть конуса, заключенная между его основанием и параллельной основанию плоскостью. Как и в случае с конусом, усеченный конус может иметь в основании круг - в этом случае его называют круговым. Если исходный конус был прямым, то и усеченный конус называют прямым. Как и в случае с конусами, мы будем рассматривать исключительно прямые круговые усеченные конусы, если специально не указано, что речь идет о непрямом усеченном конусе или в его основаниях не круги.

Рис. 7. Вращение прямоугольной трапеции

Наша глобальная тема - тела вращения. Усеченный конус - не исключение! Вспомним, что для получения конуса мы рассматривали прямоугольный треугольник и вращали его вокруг катета? Если полученный конус пересечь плоскостью, параллельной основанию, то от треугольника останется прямоугольная трапеция. Ее вращение вокруг меньшей боковой стороны и даст нам усеченный конус. Заметим снова, что речь, разумеется, идет только о прямом круговом конусе (см. рис. 7).

Рис. 8. Основания усеченного конуса

Сделаем несколько замечаний. Основание полного конуса и круг, получающийся в сечении конуса плоскостью, называют основаниями усеченного конуса (нижним и верхним) (см. рис. 8).

Рис. 9. Образующие усеченного конуса

Отрезки образующих полного конуса, заключенные между основаниями усеченного конуса, называют образующими усеченного конуса. Так как все образующие исходного конуса равны и все образующие отсеченного конуса равны, то и образующие усеченного конуса равны (не путать отсеченный и усеченный!). Отсюда и следует равнобедренность трапеции осевого сечения (см. рис. 9).

Отрезок оси вращения, заключенный внутри усеченного конуса, называют осью усеченного конуса. Этот отрезок, разумеется, соединяет центры его оснований (см. рис. 10).

Рис. 10. Ось усеченного конуса

Высота усеченного конуса - это перпендикуляр, проведенный из точки одного из оснований к другому основанию. Чаще всего, в качестве высоты усеченного конуса рассматривают его ось.

Рис. 11. Осевое сечение усеченного конуса

Осевое сечение усеченного конуса - это сечение, проходящее через его ось. Оно имеет вид трапеции, чуть позже мы докажем ее равнобедренность (см. рис. 11).

Рис. 12. Конус с введенными обозначениями

Найдем площадь боковой поверхности усеченного конуса. Пусть основания усеченного конуса имеют радиусы и , а образующая равна (см. рис. 12).

Рис. 13. Обозначение образующей отсеченного конуса

Найдем площадь боковой поверхности усеченного конуса как разность площадей боковых поверхностей исходного конуса и отсеченного. Для этого обозначим через образующую отсеченного конуса (см. рис. 13).

Тогда искомая .

Рис. 14. Подобные треугольники

Осталось выразить .

Заметим, что из подобия треугольников , откуда (см. рис. 14).

Можно было бы выразить , разделив на разность радиусов, но нам это не нужно, ведь в искомом выражении как раз фигурирует произведение . Подставив вместо него , окончательно имеем: .

Несложно теперь получить и формулу для площади полной поверхности. Для этого достаточно добавить площади двух кругов оснований: .

Рис. 15. Иллюстрация к задаче

Пусть усеченный конус получен вращением прямоугольной трапеции вокруг ее высоты . Средняя линия трапеции равна , а большая боковая стороны - (см. рис. 15). Найти площадь боковой поверхности полученного усеченного конуса.

Решение

По формуле мы знаем, что .

Образующей конуса будет являться большая сторона исходной трапеции, то есть Радиусы конуса - это основания трапеции. Найти их мы не можем. Но нам и не надо: нужна лишь их сумма, а сумма оснований трапеции вдвое больше ее средней линии, то есть она равна . Тогда .

Обратите внимание, что, когда мы говорили о конусе, мы проводили параллели между ним и пирамидой - формулы были аналогичными. Так же и здесь, ведь усеченный конус очень похож на усеченную пирамиду, так что формулы для площадей боковой и полной поверхностей усеченного конуса и пирамиды (а скоро будут и формулы для объема) аналогичны.

Рис. 1. Иллюстрация к задаче

Радиусы оснований усеченного конуса равны и , а образующая равна . Найти высоту усеченного конуса и площадь его осевого сечения (см. рис. 1).

Похожие публикации