Энциклопедия пожаробезопасности

Не плоская волна. Анализ свойств, звукоизоляции и звукопроницаемости материалов. Методы и свойства их измерения. Отрывок, характеризующий Плоская волна

Эта функция должна быть периодической как относительно времени, так и координат (волна – это распространяющееся колебание, следовательно периодически повторяющееся движение). Кроме того, точки, отстоящие друг от друга на расстоянии l, колеблются одинаковым образом.

Уравнение плоской волны

Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер.

Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x . Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t : . Пусть колебание точек, лежащих в плоскости , имеет вид (при начальной фазе )

(5.2.2)

Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x . Чтобы пройти путь x , необходимо время .

Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости , т.е.

, (5.2.3)

– это уравнение плоской волны.

Таким образом, x есть смещение любой из точек с координатой x в момент времени t . При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой.

Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z .

В общем виде уравнение плоской волны записывается так:

Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны .

Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x . Волна, распространяющаяся в противоположном направлении, имеет вид:

.

Уравнение волны можно записать и в другом виде.

Введем волновое число , или в векторной форме:

, (5.2.5)

где – волновой вектор, – нормаль к волновой поверхности.

Так как , то . Отсюда . Тогда уравнение плоской волны запишется так:

. (5.2.6)

Уравнение сферической волны

Плоская волна

Фронт плоской волны представляет собой плоскость. Согласно определению фронта волны звуковые лучи пересекают его под прямым углом, поэтому в плоской волне они параллельны между собой. Так как поток энергии при этом не расходится, интенсивность звука не должна была бы уменьшаться с удалением от источника звука. Тем не менее она уменьшается из-за молекулярного затухания, вязкости среды, запыленности ее, рассеяния и т. п. потерь. Однако эти потери так малы, что с ними можно не считаться при распространении волны на небольшие расстояния. Поэтому обычно полагают, что интенсивность звука в плоской волне не зависит от расстояния до источника звука.

Поскольку, то амплитуды звукового давления и скорости колебаний тоже не зависят от этого расстояния

Выведем основные уравнения для плоской волны. Уравнение (1.8) имеет вид, так как. Частное решение волнового уравнения для плоской волны, распространяющейся в положительном направлении, имеет вид

где - амплитуда звукового давления; - угловая частота колебаний; - волновое число.

Подставляя звуковое давление в уравнение движения (1.5) и интегрируя во времени, получим скорость колебаний

где - амплитуда скорости колебаний.

Из этих выражений находим удельное акустическое сопротивление (1.10) для плоской волны:

Для нормального атмосферного давления и температуры акустическое сопротивление

Акустическое сопротивление для плоской волны определяется только скоростью звука и плотностью среды и является активным, вследствие чего давление и скорость колебаний находятся в одинаковой фазе, т. е. , поэтому интенсивность звука

где и - действующие значения звукового давления и скорости колебаний. Подставляя в это выражение (1.17), получаем наиболее часто используемое выражение для определения интенсивности звука

Сферическая волна

Фронт такой волны представляет собой сферическую поверхность, а звуковые лучи согласно определению фронта волны совпадают с радиусами сферы. В результате расхождения волн интенсивность звука убывает с удалением от источника. Так как потери энергии в среде малы, как и в случае плоской волны то при распространении волны на небольшие расстояния с ними можно не считаться. Поэтому средний поток энергии через сферическую поверхность будет тот же самый, что и через любую другую сферическую поверхность с большим радиусом, если в промежутке между ними нет источника или поглотителя энергии.

Цилиндрическая волна

Для цилиндрической волны интенсивность звука можно определить при условии, что поток энергии не расходится вдоль образующей цилиндра. Для цилиндрической волны интенсивность звука обратно пропорциональна расстоянию от оси цилиндра.

Сдвиг фаз появляется только в тех случаях, когда звуковые лучи расходятся или сходятся. В случае плоской волны звуковые лучи идут параллельно, поэтому каждый слой среды, заключенный между соседними фронтами волны, отстоящими на одинаковом расстоянии друг от друга, имеет одинаковую массу. Массы этих слоев можно представить в виде цепочки одинаковых шаров. Если толкнуть первый шар, то он дойдет до второго и сообщит ему поступательное движение, а сам остановится, затем также будет приведен в движение третий шар, а второй остановится и так далее, т. е. энергия, сообщенная первому шару, будет передаваться последовательно все дальше и дальше. Реактивная составляющая мощности звуковой волны отсутствует. Рассмотрим случай расходящейся волны, когда каждый последующий слой имеет большую массу. Масса шара будет увеличиваться с увеличением его номера, причем сначала быстро, а потом все медленнее и медленнее. Первый шар после столкновения отдает второму только часть энергии и двигается назад, второй приведет в движение третий, но затем тоже пойдет назад. Таким образом, часть энергии будет отражаться, т. е. появляется реактивная составляющая мощности, которая определяет реактивную составляющую акустического сопротивления и появление сдвига фаз между давлением и скоростью колебаний. Шары, удаленные от первого, будут передавать почти всю энергию шарам, находящимся впереди, так как их массы будут почти одинаковыми.

Если массу каждого шара взять равной массе воздуха, заключенной между фронтами волны, находящимися друг от друга на расстоянии полуволны, то чем больше длина волны, тем резче будет изменяться масса шаров по мере увеличения их номеров, тем большая часть энергии будет отражаться при столкновении шаров и тем больший будет сдвиг фаз.

Для малых длин волн массы соседних шаров отличаются незначительно, поэтому отражение энергии будет меньшим .

Основные свойства слуха

Ухо состоит из трех частей: наружного, среднего и внутреннего. Две первые части уха служат передаточным устройством для подведения звуковых колебаний к слуховому анализатору, находящемуся во внутреннем ухе - улитке. Это передаточное устройство служит рычажной системой, превращающей воздушные колебания с большой амплитудой скорости колебаний и небольшим давлением в механические колебания с малой амплитудой скорости и большим давлением. Коэффициент трансформации в среднем равен 50-60. Кроме того, передаточное устройство вносит коррекцию в частотную характеристику следующего звена восприятия - улитки.

Границы воспринимаемого слухом частотного диапазона довольно широки (20-20000 Гц). Вследствие ограниченного числа нервных окончаний, расположенных вдоль основной мембраны, человек запоминает во всем диапазоне частот не более 250 градаций частоты, причем число этих градаций резка уменьшается с уменьшением интенсивности звука и в среднем составляет около 150, т. е. соседние градации в среднем отличаются друг от друга по частоте не менее чем на 4%, что в среднем приближенно равно ширине критических полосок слуха. Введено понятие высоты звука, под которой подразумевают субъективную оценку восприятия звука по частотному диапазону. Так как ширина критической полоски слуха на средних и высоких частотах примерно пропорциональна частоте, то субъективный масштаб восприятия по частоте близок к логарифмическому закону. Поэтому за объективную единицу высоты звука, приближенно отражающей субъективное восприятие, принята октава: двукратное отношение частот (1; 2; 4; 8; 16 и т. д.). Октаву делят на части: полуоктавы и третьоктавы. Для последних стандартизован следующий ряд частот: 1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10, являющихся границами третьоктав. Если эти частоты расположить на равных расстояниях по оси частот, то получится логарифмический масштаб. Исходя из этого, для приближения к субъективному масштабу все частотные характеристики устройств передачи звука строят в логарифмическом масштабе. Для более точного соответствия слуховому восприятию звука по частоте для этих характеристик принят особый, субъективный масштаб - почти линейный до частоты 1000 Гц и логарифмический выше этой частоты. Введены единицы высоты звука под названием «мел» и «барк» (). В общем случае высота сложного звука не поддается точному расчету .

Плоская волна - это волна, фронт которой представляет собой плоскость. Напомним, что фронт - это эквифазная поверхность, т.е. поверхность равных фаз.

Принимаем, что в точке О (рис. 5.1) находится точечный источник, плоскость Р перпендикулярна оси Z, точки М j и М 2 лежат в плоскости Р. Принимаем также, что источник О так далеко от плоскости Р, что OMj | | ОМ 2 . Это означает, что все точки в плоскости Р, являющейся фронтом волны, равноправны, т.е. при перемещении в плоскости Р не происходит изменения состояния процесса:

Рис. 5.1.

Разрешим уравнения Гельмгольца

относительно векторов поля и исследуем полученные решения.

В этом случае из шести уравнений остаются только два уравнения:

Плоские волны в вакууме

Решение дифференциальных уравнений (5.1) имеет вид

где корни характеристического уравнения

Переходя от комплексных векторов к их мгновенным значениям, получим

Первое слагаемое представляет собой прямую волну, а второе - обратную волну. Рассмотрим первое слагаемое уравнения (5.2). На рис. 5.2 в соответствии с этим уравнением показано распределение напряженности электрического поля в момент времени t и At. Точки 1 и 2 соответствуют максимумам напряженности электрического поля. Положение максимума сместилось за время At на расстояние Az:

Равенство значений функций обеспечивается равенством аргументов: ooAt = kAz. При этом получаем уравнение для фазовой скорости

Puc. 5.2. График изменения напряженности электрического поля

Для вакуума Уф =-, С ° = -j2= = 3 10 8 м/с.

W 8 оМ-о V E oMo

Это означает, что в вакууме скорость распространения электромагнитной волны равна скорости света. Рассмотрим второе слагаемое уравнения (5.2):

Оно дает Уф =-. Это соответствует волне, распространяющейся к источнику.

Определим расстояние X между точками поля с фазами, отличающимися на 360°. Это расстояние называется длиной волны. Поскольку

где к - волновое число (постоянная распространения), то

Длина волны в вакууме Х 0 = с / /, где с - скорость света.

Фазовая скорость и длина волны в остальных средах соответственно

Как следует из формулы для фазовой скорости, она не зависит от частоты электромагнитного поля, а значит, среда без потерь недисперсионная.

Установим связь между направлениями векторов электрического и магнитного полей. Начнем с уравнений Максвелла:

Заменяем векторные уравнения скалярными, т.е. приравниваем проекции векторов в последних уравнениях:


Учтем, что в системе (5.3)

тогда получим


Из условия (5.4) очевидно, что у плоских волн нет продольных составляющих, так как E z = О, Н 2 = 0. Составим скалярное произведение (Е, Я), выразив Е х и Е у из выражений (5.4):

Поскольку скалярное произведение векторов равно нулю, векторы Ё и Я в плоской волне перпендикулярны друг другу. Из-за того, что у них нет продольных составляющих, ? и Я перпендикулярны направлению распространения. Определим отношение амплитуд векторов электрического и магнитного полей.

Принимаем, что вектор? направлен вдоль оси х, соответственно Е у - 0,Н Х - 0.

Из уравнения (5.4) Е х =-Я Я у ~-Е х. Отсюда =-=,/- -Z, сое сор Н у сое V е

где Z - волновое сопротивление среды с макроскопическими параметрами е и р;

Z 0 - волновое сопротивление вакуума. С большой степенью точности эту величину можно считать волновым сопротивлением сухого воздуха.

Запишем выражения для мгновенных значений Я и? падающей волны, используя уравнение (5.2). В результате получим

аналогично

По мере продвижения падающей волны вдоль оси z амплитуды? и Я остаются неизменными, т.е. затухания волны не происходит, так как в диэлектрике нет токов проводимости и выделения энергии в виде теплоты.

На рис. 5.3, а изображены пространственные кривые, представляющие собой графики мгновенных значений Я и?. Эти графики построены по полученным уравнениям для момента времени cot = 0. Для более позднего момента времени, например для cot + |/ п = п/2, аналогичные кривые изображены на рис. 5.3, б.


Рис. 5.3.

а - при a)t= 0; б - при u>t= п/2

Как видно на рис. 5.3, а и б, вектор Е при движении волны остается направленным вдоль оси х, а вектор Я - вдоль оси у, сдвига по фазе между Я и? нет.

Вектор Пойнтинга падающей волны направлен вдоль оси z. Его модуль изменяется по закону П = C 2 Z sin 2 ^cot + --zj. Поскольку

sin 2a = (1 - cos2a)/2, to 1-cosf 2cot+--z ] , т.е. вектор

2 L V v)_

Пойнтинга имеет постоянную составляющую C 2 Z /2 и переменную, изменяющуюся во времени с двойной угловой частотой.

На основе анализа решения волновых уравнений можно сделать следующие выводы.

  • 1. В вакууме плоские волны распространяются со скоростью света, в остальных средах скорость меньше в ^/e,.p r раз.
  • 2. Векторы электрического и магнитного полей не имеют продольных составляющих и перпендикулярны друг другу.
  • 3. Отношение амплитуд электрического и магнитного полей равно волновому сопротивлению среды, в которой происходит распространение электромагнитных волн.

Волны, зависящие от одной пространственной координаты

Анимация

Описание

В плоской волне всем точкам среды, лежащим в любой плоскости, перпендикулярной направлению распространения волны, в каждый момент времени соответствуют одинаковые смещения и скорости частиц среды. Таким образом, все величины, характеризующие плоскую волну, являются функциями времени и только одной координаты, например, х , если ось Ох совпадает с направлением распространения волны.

Волновое уравнение для продольной плоской волны имеет вид:

д 2 j /дx 2 = (1/c 2 )д 2 j /дt 2 . (1)

Его общее решение выражается следующим образом:

j = f 1 (ct - x)+f 2 (ct + x) , (2)

где j - потенциал или другая величина, характеризующая волновое движение среды (смещение, скорость смещения и т.д.);

с - скорость распространения волны;

f 1 и f 2 - произвольные функции, причем первое слагаемое (2) описывает плоскую волну, распространяющуюся в положительном направлении оси Ох , а второе - в противоположном направлении.

Волновые поверхности или геометрические места точек среды, где в данный момент времени фаза волны имеет одно и то же значение, для ПВ представляют собой систему параллельных плоскостей (рис. 1).

Волновые поверхности плоской волны

Рис. 1

В однородной изотропной среде волновые поверхности плоской волны перпендикулярны к направлению распространения волны (направлению переноса энергии), называемому лучом.

Временные характеристики

Время инициации (log to от -10 до 1);

Время существования (log tc от -10 до 3);

Время деградации (log td от -10 до 1);

Время оптимального проявления (log tk от -3 до 1).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Строго говоря, ни одна реальная волна не является плоской волной, т.к. распространяющаяся вдоль оси x плоская волна должна охватывать всю область пространства по координатам y и z от -Ґ до +Ґ . Однако во многих случаях можно указать ограниченный по y, z участок волны, на котором она практически совпадает с плоской волной. Прежде всего это возможно в однородной изотропной среде на достаточно больших расстояниях R от источника. Так, для гармонической плоской волны фаза во всех точках плоскости, перпендикулярной направлению ее распространения, одна и та же. Можно показать, что всякую гармоническую волну можно считать плоской волной на участке шириной r << (2R l )1/2 .

Применение эффекта

Некоторые волновые технологии являются наиболее эффективными именно в приближении плоских волн. В частности, показано, что при сейсмоакустических воздействиях (с целью повышения нефте- газоотдачи) на нефтяные и газовые пласты, представленные слоистыми геологическими структурами, взаимодействие прямых и переотраженных от границ слоев плоских волновых фронтов приводит возникновению стоячих волн, инициирующих постепенные перемещение и концентрацию углеводородных флюидов в пучностях стоячей волны (см. описание ФЭ «Стоячие волны»).

Плоской волной называется волна с плоским фронтом. При этом лучи параллельные.

Плоская волна возбуждается поблизости от колеблющейся плоскости или если рассматривается небольшой участок волнового фронта точечного излучателя. Площадь этого участка может быть тем больше, чем дальше он находится от излучателя.

Лучи, охватывающие участок плоскости рассматриваемого волнового фронта, образуют «трубу». Амплитуда звукового давления в плоской волне не уменьшается при удалении от источника, так как не происходит растекание энергии за пределы стенок этой трубы. На практике это соответствует остронаправленному излучению, например, излучению электростатических панелей большой площади, рупорных излучателей.

Сигналы в различных точках луча плоской волны отличаются фазой колебаний. Если звуковое давление на некотором участке плоского волнового фронта синусоидальное, то его можно представить в экспоненциальном виде р зв = р тзв - exp(icot). На расстоянии г по лучу оно будет запаздывать от источника колебаний:

где г/с зв - время, за которое проходит волна от источника до точки на расстоянии г вдоль луча к = (о/ с зъ = 2ж/Д - волновое число, которое определяет фазовый сдвиг между сигналами во фронтах плоской волны, находящихся на расстоянии г.

Реальные звуковые волны более сложные, чем синусоидальные, однако выкладки, проводимые для синусоидальных волн, справедливы и для несинусоидальных сигналов, если не рассматривать частоту как константу, т.е. рассматривать сложный сигнал в частотной области. Это возможно до тех пор, пока процессы распространения волн остаются линейными.

Волна, фронт которой представляет собой сферу, называется сферической. Лучи при этом совпадают с радиусами сферы. Сферическая волна формируется в двух случаях.

  • 1. Размеры источника много меньше длины волны, и расстояние до источника позволяет считать его точкой. Такой источник называется точечным.
  • 2. Источник представляет собой пульсирующую сферу.

В обоих случаях предполагается, что переотражения волны отсутствуют, т.е. рассматривается только прямая волна. Чисто сферических волн в сфере интересов электроакустики не бывает, это такая же абстракция, как и плоская волна. В области средневысоких частот конфигурация и размеры источников не позволяют считать их ни точкой, ни сферой. А в области низких частот непосредственное влияние начинает оказывать, как минимум, пол. Единственная близкая к сферической волна формируется в заглушенной камере при малых габаритах излучателя. Но рассмотрение этой абстракции позволяет уяснить некоторые важные моменты распространения звуковых волн.

На больших расстояниях от излучателя сферическая волна вырождается в плоскую волну.

На расстоянии г от излучателя звуковое давление может быть

представлено в виде р зв = -^-ехр (/ (со? t - к? г)), где p-Jr - амплитуда

звукового давления на расстоянии 1 м от центра сферы. Уменьшение звукового давления с удалением от центра сферы связано с растеканием мощности на все большую площадь - 4пг 2 . Суммарная мощность, перетекающая через всю площадь волнового фронта, не меняется, поэтому мощность, приходящаяся на единицу площади, уменьшается пропорционально квадрату расстояния. А давление пропорционально корню квадратному из мощности, поэтому оно уменьшается пропорционально собственно расстоянию. Необходимость нормирования к давлению на некотором фиксированном расстоянии (1 мв данном случае) связана с тем же фактом зависимости давления от расстояния, только в обратную сторону - при неограниченном приближении к точечному излучателю звуковое давление (а также колебательная скорость и смещение молекул) неограниченно увеличивается.

Колебательную скорость молекул в сферической волне можно определить из уравнения движения среды:

Итого, колебательная скорость v m = ^ зв ^ + к г? фазовый

/V е зв кг

сдвиг относительно звукового давления ф = -arctgf ---] (рис. 9.1).

Упрощенно говоря, наличие фазового сдвига между звуковым давлением и колебательной скоростью связано с тем, что в ближней зоне с удалением от центра звуковое давление гораздо быстрее убывает, чем запаздывает.


Рис. 9.1. Зависимость фазового сдвига ф между звуковым давлением р и колебательной скоростью v от г/к (расстояние вдоль луча к длине волны)

На рис. 9.1 можно видеть две характерные зоны:

  • 1) ближнюю г/Х« 1.
  • 2) дальнюю г/Х» 1.

Сопротивление излучения сферы радиуса г


Это значит, что не вся мощность расходуется на излучение, часть запасается в некоем реактивном элементе и затем возвращается излучателю. Физически этому элементу можно сопоставить присоединенную массу среды, колеблющуюся с излучателем:

Легко видеть, что присоединенная масса среды уменьшается с ростом частоты.

На рис. 9.2 представлена частотная зависимость безразмерных коэффициентов вещественной и мнимой составляющих сопротивления излучения. Излучение эффективно, если Re(z(r)) > Im(z(r)). Для пульсирующей сферы это условие выполняется при кг > 1.


Похожие публикации