Энциклопедия пожаробезопасности

Ядерное топливо: от руды до утилизации. Ракета на термоядерном топливе от MSNW Виды ядерных отходов

Исследователи из Массачусетского технологического института (MIT) совместно с коллегами из США и Брюсселя разработали новый тип термоядерного топлива. С его помощью можно получить в десять раз больше энергии, чем из всех существующих образцов. Новое топливо содержит три вида ионов — частиц, заряд которых изменяется в зависимости от потери или приобретения электрона. Для изучения топлива используется токамак — тороидальная камера для магнитного удержания плазмы, создающая условия для управляемого термоядерного синтеза . Эксперименты с новинкой проводятся на базе токамака Alcator C-Mod , принадлежащего MIT, который обеспечивает наивысшее напряжение магнитного поля и давление плазмы во время испытаний.

Секрет нового топлива

Alcator C-Mod последний раз был запущен еще в сентябре 2016 года, но данные, полученные в результате проведенных экспериментов, были расшифрованы лишь недавно. Именно благодаря им ученым и удалось разработать новый, уникальный тип термоядерного топлива, значительно увеличивающего энергию ионов в плазме. Результаты были настолько обнадеживающими, что исследователи, работающие на Объединенном европейском торе (JET , еще один современный токамак) в Оксфордшире, США, провели собственный эксперимент и достигли такого же увеличения выработки энергии. Исследование, в котором подробно изложены результаты работы, было недавно опубликовано в Nature Physics .

Ключом к повышению эффективности ядерного топлива было добавление незначительного количества гелия-3 — стабильного изотопа гелия, который вместо двух нейтронов обладает лишь одним. Ядерное топливо, используемое в Alcator C-Mod, ранее содержало только два типа ионов, ионы дейтерия и водорода. Дейтерий, стабильный изотоп водорода с одним нейтроном ядре (у обычного водорода нейтронов нет совсем), занимает порядка 95% от общего состава топлива.

Исследователи из Центра плазмы и синтеза MIT (PSFC) использовали радиочастотный нагрев для того, чтобы воспламенить топливо, удерживаемое в форме суспензии промышленными магнитами. Этот метод основан на использовании антенн вне токамака, которые воздействуют на топливо с помощью радиоволн определенных частот. Они калибруются так, чтобы поражать лишь материал, количество которого в суспензии меньше всех прочих (в данном случае это водород). Водород обладает лишь малой долей от общей плотности топлива, а потому фокусировка радиочастотного нагрева на его ионах позволяет достичь экстремально высоких температур. Возбужденные ионы водорода затем взаимодействуют с ионами дейтерия, и полученные в результате из взаимодействия частицы бомбардируют наружную оболочку реактора, выделяя огромное количество тепла и электроэнергии.

А что же гелий-3 ? В новом топливе его меньше 1%, но именно его ионы играют решающую роль. Сфокусировав радиочастотный нагрев на столь незначительном количестве вещества, исследователи подняли энергию эонов до уровня мегаэлектроноволь (МэВ). Электроновольт — это количество энергии, полученное\потерянное в результате перехода электрона от одной точки электрического потенциала на уровень в 1 вольт выше. До сих пор мегаэлектронвольты в экспериментах с термоядерным топливом были лишь пределом мечтаний ученых — это на порядок больше, чем энергия всех образцов, полученных до сих пор.

Токамак: исследование термоядерных реакций

Alcatre C-Mod и JET представляют собой экспериментальные камеры термоядерного синтеза с возможностью достижения тех же плазменных давлений и температур, которые потребуются в полномасштабном реакторе синтеза. Стоит отметить, впрочем, что они меньше по размерам и не дают того, что исследователи называют «активированным синтезом» — синтеза, энергия которого напрямую преобразуется в энергию, которую можно использовать для других нужд. Тонкая настройка состава топлива, частоты радиоволн, магнитных полей и других переменных в этих экспериментах позволяют исследователям тщательно выбрать наиболее эффективный процесс синтеза, который потом можно будет воспроизвести в промышленном масштабе.

Как уже было сказано, американским ученым, работающим на JET, удалось не просто достичь тех же результатов, но и сравнить их с работой западных коллег, в результате чего научное сообщество получило уникальные данные измерений различных свойств невероятно сложных реакций, происходящих в перегретой плазме. В MIT исследователи использовали метод получения изображений реакции с помощью фазово-контрастной микроскопии , благодаря которому фазы электромагнитных волн трансформируются в контраст интенсивности. В свою очередь, ученые JET обладали возможностью более точно измерять энергию полученных частиц, и в результате картина того, что происходит во время реакций синтеза, получилась наиболее полной.

Ядерный синтез: революция в энергетике

Что это значит для нас с вами? Как минимум значительный прорыв в технологической сфере. Ядерный синтез, поставленный на нужды промышленности, может произвести революцию в производстве энергии. Его энергетический потенциал невероятно высок, а топливо состоит из самых распространенных элементов в Солнечной системе — водорода и гелия. К тому же, после сгорания термоядерного топлива не образуется опасных для экологии и человека отходов.

Как отмечает Nature , результаты этих экспериментов также помогут астрономам лучше понять роль гелия-3 в солнечной активности — ведь солнечные вспышки, несущие угрозу для земной энергетики и околоземных спутников, есть ни что иное, как результат протекания термоядерной реакции с колоссальным тепловым и электромагнитным излучением.

Пример.
D-T синтез начинается с атома дейтерия и трития и заканчивается атомом гелия-4 и нейтроном. Начальная масса 2.013553 + 3.015500 = 5.029053. Конечная масса 4.001506 + 1.008665 = 5.010171. Вычитая второе из первого, найдём, что дефект массы равен 0.018882. Умножив на 931.494028 найдём полученную энергию, равную 17.58847 МэВ.

На заметку, термоядерный синтез производит энергию по мере слияния всё больших и больших атомов, пока они не вырастут до такой степени, что станут атомами железа. После этого, слияние тяжёлых атомов начинает потреблять больше энергии, чем производить.
Частицы

В данной таблице даются символы для различных частиц, которые могут быть использованы в качестве термоядерного топлива. Массы частиц даны на случай, если вы захотите посчитать дефект масс для приведённых ниже реакций и удивиться полученному количеству энергии.

Период полураспада трития составляет всего лишь 12.32 года, что немного затрудняет его использование в космосе, так как после двенадцати лет он наполовину распадётся на гелий-3. Именно поэтому не существует естественных месторождений трития. Большинство проектов реакторов, использующих тритий, полагаются на генераторы трития. Они обычно представляют из себя баки с жидким литием, окружающие реактор. Литий поглощает нейтроны и трансмутирует в свежий тритий и гелий-4.

Знаменитый гелий-3, который часто называют экономическим мотивом для покорения космоса, к сожалению, не так хорош, как можно было бы предположить. Во-первых, он отсутствует на Земле, из-за чего его трудно добывать. Некоторые энтузиасты хотят добывать его на Луне, не уточняя, его концентрация там очень мала. Для получения всего лишь тонны гелия-3, необходимо переработать 100 миллионов тонн лунного реголита. Как вариант, его можно вырабатывать на фабриках, но для этого необходимо большое количество нейтронов. В общих чертах, нужно получить тритий и ждать, пока он распадётся. Огромные количества гелия-3 доступны в атмосфере Сатурна и Урана, но для его добычи оттуда необходима соответствующая инфраструктура. Концентрация гелия-3 в их атмосферах может достигать десяти частей на миллион, что гораздо лучше, чем на Луне. Юпитер тоже содержит гелий-3 в своей атмосфере, но, из-за огромной гравитации, его добыча может быть сильно осложнена.

Введение
В данной статье описывается, на первый взгляд, очередной способ использования термоядерной энергии для осуществления быстрых пилотируемых космических полётов. Предыдущие усилия на этой стезе были безрезультатны, по большей степени из-за следующих двух причин. Во-первых, они были основаны на дизайне термоядерных реакторов. Прямолинейное применение подходов, используемых в реакторах, ведёт к системам с колоссальной массой и проблемами с отводом энергии. При подробном анализе для наиболее компактного концепта ТОКМАКа, сферического тора, масса корабля выходила в районе 4000 тонн. Максимальная же масса для выведения на низкую опорную орбиту с помощью химических ракет не должна превышать 200 тонн.

Вторая причина в том, что, фактически, все предыдущие системы двигательных установок требовали сложных реакций, производящих, по большей части, заряженные частицы. Это было необходимо для уменьшения энергетических потерь через нейтроны. Наиболее перспективными были D- 3 He и P- 11 B. Но эти реакции требуют гораздо больших температур плазмы и были на порядки более труднодостижимы, чем D-T синтез, который гораздо более доступен и рассматривается в качестве единственного кандидата для применения на Земле. Являясь менее выгодными они, тем не менее, требуют огромного количества энергии для поддержания горения, делая их не немного лучше, чем альтернативные реакции деления.

Необходимо переосмыслить прошлые представления о том, как использовать термоядерную энергию в космических двигательных установках. Давайте посмотрим, что даёт химическим ракетным двигателям такие преимущества. Основная причина в том, что энергия, получаемая из химической реакции горения, может быть как большой, так и малой, по желанию. От 13 ГВт у тяжёлой ракеты-носителя Атлас, до 130 кВт у автомобиля. Стоит отметить, что при более низкой энергии, горение более эффективно, так как можно повышать температуру, не беспокоясь о необходимости интенсивного отвода тепла и термальных повреждениях, которые могут возникнуть при длительном непрерывном функционировании.

Как показали испытания атомных и водородных бомб, горение ядерного горючего может производить энергию на много порядков большую, чем тот же Атлас. Проблема в том, как контролировать выделение ядерной энергии для получения характеристик, необходимых для космических полётов: факел на несколько мегаватт, низкая удельная масса α (~ 1 кг/кВт) при высоком удельном импульсе Isp (> 20000 м/c). Оказалось, что, по крайней мере для ядерного деления, не существует возможности масштабирования вниз до необходимого масштаба энергии, так как для начала самоподдерживающейся реакции требуется определённая критическая масса (критическая конфигурация). В итоге, проекты, использующие реакции ядерного деления, такие как Орион, обычно давали тягу в миллионы тонн, что подходит только для космических кораблей с массой от 10 7 кг и выше.

К счастью, масштабы термоядерных реакций могут быть гораздо меньше и такие методы, как Magneto Inertial Fusion (мангито-инерциальный термоядерный синтез, MIF), позволяют получать большие количества энергии из ядерного материала в системах, которые могут подойти для космических двигательных установок по их размерам, весу, мощности и стоимости.

Физика двигателя
Двигатель основан на принципе трёхмерной имплозии (обжатие взрывной волной) металлической фольги вокруг FRC плазмоида (Field-reversed configuration - поле с обращённой конфигурацией) с помощью магнитного поля. Это необходимо для достижения необходимых для начала синтеза условий, таких как высокая температура и давление. Данный подход к запуску реакции является разновидностью инерциального синтеза. Для того, чтобы примерно понять, как он работает, можно взглянуть на инерциальный управляемый термоядерный синтез (Inertial Confinement Fusion - ICF). ICF синтез достигается с помощью трёхмерной имплозии сферической капсулы с криогенным топливом миллиметрового размера. Имплозия происходит благодаря взрывному испарению корпуса капсулы, после её нагрева с помощью лучей лазера, электронов, или ионов. Нагретый внешний слой капсулы взрывается во внешнем направлении, что производит противодействующую силу, ускоряющую остаток материала капсулы вовнутрь, сжимая её. Также при этом появляются ударные волны, движущиеся во внутрь мишени. Достаточно мощным набором ударных волн может сжать и нагреть топливо в центре настолько, что начнётся термоядерная реакция. В этом методе предполагается, что инерции небольшой капсулы хватит для удержания плазмы достаточно долго для того, чтобы всё топливо прореагировало и произвело полезный выход G ~ 200 или больше (G = энергия синтеза / энергия плазмы). ICF подход уже на протяжении десятилетий преследуется National Nuclear Security Administration (NNSA), так как представляет собой что-то вроде термоядерной бомбы в миниатюре. В связи с малыми размерами и массой, нагрев капсулы до температуры синтеза должен производиться в течении наносекунд. Оказалось, что наиболее многообещающим решением данной проблемы является массив из мощных импульсных лазеров, сфокусированных на капсуле с D-T топливом.

Хочу отметить, что, когда дело доходит до космических полётов, основным показателем становится Δv - приращение скорости (м/с или км/с). Оно является мерой количества «усилий», которые необходимы для перехода от одной траектории на другую, при совершении орбитального маневра. Для космического корабля нет таких понятий, как запас топлива, максимальное расстояние, или максимальная скорость, есть только Δv. Максимальное Δv корабля может быть представлено, как то приращение скорости, которое он получит, израсходовав всё топливо. Важно знать, что «миссия» может быть охарактеризована, согласно тому, какое Δv требуется для её завершения. Для примера, подъём с Земли, гомановская траектория до Марса и посадка на него, требует бюджета Δv в 18 км/с. Если корабль имеет запас Δv больше, или равный Δv миссии, то он может выполнить эту миссию.

Для того, чтобы узнать Δv корабля, можно воспользоваться формулой Циолковского .

где:
V - конечная (после выработки всего топлива) скорость летательного аппарата (м/с);
I - удельный импульс ракетного двигателя (отношение тяги двигателя к секундному расходу массы топлива, скорость истечения рабочего тела из сопла, м/с);
M 1 - начальная масса летательного аппарата (полезная нагрузка + конструкция аппарата + топливо, кг);
M 2 - конечная масса летательного аппарата (полезная нагрузка + конструкция, кг).

Из этого следует очень важное заключение, которое может быть не очень очевидно на первый взгляд. Если Δv миссии меньше, или равно удельному импульсу, то относительная масса корабля велика и становится возможным транспортировка большего полезного груза. Однако, если Δv миссии больше удельного импульса, относительная масса начинает уменьшаться экспоненциально, делая из корабля огромный бак с топливом с крошечной полезной нагрузкой. Собственно, именно из-за этого межпланетные полёты при использовании обычных химических двигателей сильно затруднены.

План 210-дневного полёта на Марс и обратно.

90-дневная миссия на Марс (ΔV = 13.5 км/с)
Цель: лучшее отношение полезной нагрузки к общей массе.
Преимущества:
  • Отсутствует необходимость в дополнительных транспортных миссиях
  • Упрощённая архитектура миссии
  • Возможность привести все запасы в ходе одной миссии
  • Низкая стоимость миссии
  • Возможность начать миссию уже после единственного запуска с Земли
30-дневная миссия на Марс (ΔV = 40.9 км/с)
Цель: наиболее быстрая миссия.
Преимущества:
  • Низкий риск
  • Минимальное радиационное облучение
  • Архитектура миссии типа Аполлон
  • Ключ к регулярному посещению Марса
  • Разработка технологий, необходимых для покорения глубокого космоса

В настоящее время NASA занимается разработкой системы космических запусков (Space Launch System, SLS) - сверхтяжёлой ракеты-носителя, способной выводить на низкую опорную орбиту от 70 до 130 тонн полезной нагрузки. Это делает возможной начала 90-дневной миссии к Марсу уже после одного запуска подобной ракеты-носителя.

Обе миссии имеют возможность непосредственной отмены и возврата на Землю.

Ключевые параметры миссии
Допущения, касающиеся топлива
Расходы на ионизацию материала вкладыша 75 МДж/кг
Эффективность передачи энергии вкладышу (оставшаяся энергия возвращается обратно в конденсаторы) 50%
Эффективность преобразования в тягу η t 90%
Масса вкладыша (соответствует коэффициенту усиления от 50 до 500) от 0,28 до 0,41 кг
Фактор воспламенения 5
Запас прочности (G F =G F(calc.) /2) 2
Допущения, касающиеся миссии
Масса марсианского модуля (по Design Reference Architecture 5.0) 61 т
Обитаемая зона 31 т
Возвращаемая капсула 16 т
Система спуска 14 т
Относительная масса конденсаторов (в неё также входит необходимая проводка) 1 Дж/г
Относительная масса солнечных батарей 200 Вт/кг
Структурный фактор (баки, структура, радиаторы и пр.) 10%
Полностью топливное торможение, аэродинамическое торможение не используется
Конструкция корабля
Структура (обтекатели, силовые структуры, каналы связи, АСУ, батареи) 6,6 т
Система удержания лития 0,1 т
Система создания и впрыска плазмы 0,2 т
Механизм подачи топлива 1,2 т
Батареи конденсаторов 1,8 т
Катушки обжатия вкладыша 0,3 т
Проводка и силовая электроника 1,8 т
Солнечные батареи (180 кВт при 200 Вт/кг) 1,5 т
Система терморегулирования 1,3 т
Магнитное сопло 0,2 т
Масса корабля 15 т
Масса марсианского модуля 61 т
Литиевое рабочее тело 57 т
Общая масса 133 т

Частота повторения импульсов, судя по плану исследований, будет выше 0.1 Гц. Если учесть, что удельный импульс 51400 м/с, а масса рабочего тела 0,37 кг на один импульс, то можно посчитать импульс p = mv = 19018 кг·м/с. По закону сохранения импульса, скорость корабля увеличится на p/M = 19018/133000 = 0.14 м/с. Если принять радиус сопла в 1 м, то расширяющиеся газы будут давить на него в районе t = r/v =1/51400 =0,00002 с. Следовательно ускорение будет в районе a = dv/dt = 0,14/0,00002 = 7000 м/с 2 . Очевидно, что либо будут использоваться амортизаторы, как в проекте Дедал , или какие-либо другие технические решения по сглаживанию импульса.

Теги: Добавить метки

Принцип работы и устройство ТЯРД

В настоящее время предложены 2 варианта конструкции ТЯРД:

ТЯРД на основе термоядерного реактора с магнитным удержанием плазмы

В первом случае принцип действия и устройство ТЯРД выглядят следующим образом: основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны, т. н. установку термоядерного синтеза схемы «открытая ловушка» (также именуемую «магнитная бутылка» или пробкотрон). «Камера» реактора вовсе не обязательно (и даже нежелательно) должна быть цельно-герметичной, скорее всего она будет представлять собой легкую размеростабильную ферму, несущую катушки магнитной системы. В настоящее время наиболее перспективной считается схема т. н. «амбиполярного удержания» или «магнитных зеркал» (англ. tandem mirrors ), хотя возможны и другие схемы удержания: газодинамические ловушки, центробежное удержание, обращенное магнитное поле (FRC). По современным оценкам, длина реакционной «камеры» составит от 100 до 300 м при диаметре 1-3 м. В камере реактора создаются условия, достаточные для начала термоядерного слияния компонентов выбранной топливной пары (температуры порядка сотен миллионов градусов, факторы критерия Лоусона). Термоядерное топливо - предварительно нагретая плазма из смеси топливных компонентов - подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей (магнитные катушки той или иной конструкции), окружающие активную зону, создают в камере реактора поля большой напряжённости и сложной конфигурации, которые удерживают высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Зона термоядерного «горения» (плазменный факел) формируется по продольной оси реактора. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопло, создавая реактивную тягу.

Следует отметить возможность «многорежимной» работы ТЯРД. Путем впрыска в струю плазменного факела относительно холодного вещества можно резко повысить общую тягу двигателя (за счет снижения удельного импульса), что позволит кораблю с ТЯРД эффективно маневрировать в гравитационных полях массивных небесных тел, например больших планет, где зачастую требуется большая общая тяга двигателя. По общим оценкам, ТЯРД такой схемы может развивать тягу от нескольких килограммов вплоть до десятков тонн при удельном импульсе от 10 000сек до 4 млн.сек. Для сравнения, показатель удельного импульса наиболее совершенных химических ракетных двигателей - порядка 450 сек.

ТЯРД на основе систем инерционного синтеза (импульсный термоядерный реактор)

Двигатель второго типа - инерциальный импульсный термоядерный двигатель. В таком реакторе управляемая термоядерная реакция проходит в импульсном режиме (доли мкс с частотой 1-10Гц), при периодическом обжатии и разогреве микромишеней, содержащих термоядерное топливо. Первоначально предполагалось использовать лазерно-термоядерный двигатель (ЛТЯРД). Такой ЛТЯРД предлагался, в частности, для межзвёздного автоматического зонда в проекте «Дедал» . Главной его частью является реактор, работающий в импульсном режиме. В сферическую камеру реактора подаётся термоядерное топливо (например, дейтерий и тритий) в виде мишеней - сложной конструкции сфер из смеси замороженных топливных компонентов в оболочке диаметром несколько миллиметров. На внешней части камеры находятся мощные - порядка сотен тераватт - лазеры , наносекундный импульс излучения которых через оптически прозрачные окна в стенах камеры попадает на мишень. При этом на поверхности мишени мгновенно создается температура более 100 млн градусов при давлении порядка миллиона атмосфер - условия, достаточные для начала термоядерной реакции. Происходит термоядерный микровзрыв мощностью в несколько сотен килограммов в тротиловом эквиваленте. Частота таких взрывов в камере в проекте «Дедал» - порядка 250 в секунду, что требовало подачи топливных мишеней со скоростью более 10 км/с при помощи ЭМ-пушки. Расширяющаяся плазма вытекает из открытой части камеры реактора через сопло соответствующей конструкции, создавая реактивную тягу. В настоящее время уже теоретически и практически доказано, что лазерный метод обжатия/разогрева микромишеней является тупиковым - в том числе практически невозможно построить лазеры такой мощности с достаточным ресурсом. Поэтому в настоящее время для инерциального синтеза рассматривается вариант с ионно-пучковым обжатием/нагревом микромишеней, как более эффективный, компактный и с гораздо большим ресурсом.

И тем не менее, есть мнение, что ТЯРД на инерциально-импульсном принципе слишком громоздок из-за очень больших циркулирующих в нём мощностей, при худшем, чем у ТЯРД с магнитным удержанием, удельном импульсе и тяге, что вызвано импульсно-периодическим типом его действия. Идеологически к ТЯРД на инерциально-импульсном принципе примыкают взрыволеты на термоядерных зарядах типа проекта «Орион» .

Типы реакций и термоядерное топливо

ТЯРД может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива. В частности, на настоящее время принципиально осуществимы следующие типы реакций:

Реакция дейтерий + тритий (Топливо D-T)

2 H + 3 H = 4 He + n при энергетическом выходе 17,6 МэВ

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты относительно дёшевы. Недостаток её - весьма большой выход нежелательной (и бесполезной для прямого создания тяги) нейтронной радиации, уносящей большую часть мощности реакции и резко снижающей КПД двигателя. Тритий радиоактивен, период его полураспада - около 12 лет, то есть его долговременное хранение невозможно. В то же время, возможно окружить дейтериево-тритиевый реактор оболочкой, содержащий литий: последний, облучаясь нейтронным потоком, превращается в тритий, что в известной степени замыкает топливный цикл, поскольку реактор работает в режиме размножителя (бридера). Таким образом, топливом для D-T- реактора фактически служат дейтерий и литий.

Реакция дейтерий + гелий-3

2 H + 3 He = 4 He + p. при энергетическом выходе 18,3 МэВ

Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах на настоящее время не производится. Хотя энергетический выход реакции D-T выше, реакция D- 3 He имеет следующие преимущества:

Сниженный нейтронный поток, реакцию можно отнести к «безнейтронным»,

Меньшая масса радиационной защиты,

Меньшая масса магнитных катушек реактора.

При реакции D- 3 He в форме нейтронов выделяется всего около 5 % мощности (против 80 % для реакции D-T).Около 20 % выделяется в форме рентгеновского излучения. Вся остальная энергия может быть непосредственно использована для создания реактивной тяги. Таким образом, реакция D-3He намного более перспективна для применения в реакторе ТЯРД.

Другие виды реакций

Реакция между ядрами дейтерия (D-D, монотопливо) D + D -> 3 He + n при энергетическом выходе 3,3 МэВ, и

D + D -> T + p+ при энергетическом выходе 4 МэВ. Нейтронный выход в этой реакции весьма значителен.

Возможны и некоторые другие типы реакций:

P + 6 Li → 4 He (1.7 MeV) + 3 He (2.3 MeV) 3 He + 6 Li → 2 4 He + p + 16.9 MeV p + 11 B → 3 4 He + 8.7 MeV

Нейтронный выход в указанных выше реакциях отсутствует.

Выбор топлива зависит от многих факторов - его доступность и дешевизна, энергетический выход, лёгкость достижения потребных для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и проч. Наиболее перспективны для осуществления ТЯРД т. н. «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и не может быть использован для создания тяги. Кроме того, нейтронная радиация порождает наведенную радиоактивность в конструкции реактора и корабля, создавая опасность для экипажа. Реакция дейтерий- гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода. В настоящее время предложена ещё одна концепция ТЯРД - с использованием малых количеств антиматерии в качестве катализатора термоядерной реакции.

История, современное состояние и перспективы разработок ТЯРД

Идея создания ТЯРД появилась практически сразу после осуществления первых термоядерных реакций (испытаний термоядерных зарядов). Одной из первых публикаций по теме разработки ТЯРД явилась изданная в 1958 году статья Дж. Росса. В настоящее время ведутся теоретические разработки таких видов двигателей (в частности, на основе лазерного термоядерного синтеза) и в целом - широкие практические исследования в области управляемого термоядерного синтеза. Существуют твёрдые теоретические и инженерные предпосылки для осуществления такого типа двигателя в обозримом будущем. Исходя из расчетных характеристик ТЯРД, такие двигатели смогут обеспечить создание скоростного и эффективного межпланетного транспорта для освоения Солнечной системы. Однако реальные образцы ТЯРД на настоящий момент (2012) ещё не созданы.

См. также

Ссылки

  • Космонавтика XXI века: термоядерные двигатели // газета «За науку», 2003
  • New Scientist Space (23.01.2003): Nuclear fusion could power NASA spacecraft (англ.)
  • Физическая энциклопедия, т.4, статья «термоядерные реакции», на стр. 102, Москва, «Большая Российская энциклопедия», 1994 г, 704 c.
Паровая машина Двигатель Стирлинга Пневматический двигатель
По виду рабочего тела
Газовые Газотурбинная установка Газотурбинная электростанция Газотурбинные двигатели‎
Паровые Парогазовая установка Конденсационная турбина
Гидравлические турбины‎ Пропеллерная турбина Гидротрансформатор
По конструктивным особенностям Осевая (аксиальная) турбина Центробежная турбина (радиальная,

Жизненный цикл ядерного топлива на основе урана или плутония начинается на добывающих предприятиях, химических комбинатах, в газовых центрифугах, и не заканчивается в момент выгрузки тепловыделяющей сборки из реактора, поскольку каждой ТВС предстоит пройти долгий путь утилизации, а затем и переработки.

Добыча сырья для ядерного топлива

Уран - самый тяжёлый металл на земле. Около 99,4% земного урана приходится на уран-238, и всего 0,6% - на уран-235. В докладе Международного агентства по атомной энергии под названием «Красная книга» содержатся данные о росте объёмов добычи и спроса на уран, несмотря на аварию на АЭС «Фукусима-1», которая заставила многих задуматься о перспективах ядерной энергетики. Только за последние несколько лет разведанные запасы урана выросли на 7%, что связано с открытием новых месторождений. Самыми крупными производителями остаются Казахстан, Канада и Австралия, они добывают до 63% мирового урана. Кроме этого запасы металла имеются в Австралии, Бразилии, Китае, Малави, России, Нигере, США, Украине, КНР и других странах. Ранее Пронедра писали, что за 2016 год в РФ было добыто 7,9 тысячи тонн урана.

В наши дни уран добывают тремя разными способами. Не теряет своей актуальности открытый метод. Он используется в тех случаях, когда залежи находятся близко к поверхности земли. При открытом способе бульдозеры создают карьер, затем руда с примесями грузится в самосвалы для транспортировки на перерабатывающие комплексы.

Часто рудное тело залегает на большой глубине, в таком случае используется подземный способ добычи. Вырывается шахта глубиной до двух километров, породу, путём сверления, добывают в горизонтальных штреках, перевозят наверх в грузовых лифтах.

Смесь, которая таким образом вывозится наверх, имеет множество составляющих. Породу необходимо измельчить, разбавить водой и удалить лишнее. Далее в смесь добавляют серную кислоту для проведения процесса выщелачивания. В ходе этой реакции химики получают осадок солей урана жёлтого цвета. Наконец, уран с примесями очищается на аффинажном производстве. Только после этого получается закись-окись урана, которой и торгуют на бирже.

Есть гораздо более безопасный, экологически чистый и экономически выгодный способ, который называют скважинным подземным выщелачиванием (СПВ).

При этом методе разработки месторождений территория остаётся безопасной для персонала, а радиационный фон соответствует фону в крупных городах. Чтобы добыть уран с помощью выщелачивания, необходимо пробурить 6 скважин по углам шестиугольника. Через эти скважины в залежи урана закачивают серную кислоту, она смешивается с его солями. Этот раствор добывают, а именно выкачивают через скважину в центре шестиугольника. Чтобы добиться нужной концентрации солей урана, смесь по нескольку раз пропускают через сорбционные колонны.

Производство ядерного топлива

Производство ядерного топлива невозможно представить без газовых центрифуг, которые используются для получения обогащённого урана. После достижения необходимой концентрации из диоксида урана прессуют так называемые таблетки. Их создают при помощи смазочных материалов, которые удаляются во время обжига в печах. Температура обжига достигает 1000 градусов. После этого таблетки проверяются на соответствие заявленным требованиям. Имеют значение качество поверхности, содержание влаги, соотношение кислорода и урана.

В это же время в другом цехе готовят трубчатые оболочки для тепловыделяющих элементов. Вышеназванные процессы, включая последующие дозировку и упаковку таблеток в оболочечные трубки, герметизацию, дезактивацию, называются фабрикацией топлива. В России созданием тепловыделяющих сборок (ТВС) занимаются предприятия «Машиностроительный завод» в Московской области, «Новосибирский завод химконцентратов» в Новосибирске, «Московский завод полиметаллов» и другие.

Каждая партия топливных сборок создаётся под реактор конкретного типа. Европейские ТВС делаются в форме квадрата, а российские - с шестиугольным сечением. В РФ широко распространены реакторы типа ВВЭР-440 и ВВЭР-1000. Первые ТВЭЛы для ВВЭР-440 начали разрабатываться с 1963 года, а для ВВЭР-1000 - с 1978 года. Несмотря на то что в России активно внедряются новые реакторы с постфукусимскими технологиями безопасности, по стране и за её пределами функционирует много ядерных установок старого образца, поэтому одинаково актуальными остаются топливные сборки для разных типов реакторов.

Например, для обеспечения тепловыделяющими сборками одной активной зоны реактора РБМК-1000 необходимо свыше 200 тысяч комплектующих деталей из циркониевых сплавов, а также 14 млн спечённых таблеток из диоксида урана. Иногда стоимость изготовления топливной сборки может превосходить стоимость содержащегося в элементах топлива, поэтому так важно обеспечить высокую энергоотдачу с каждого килограмма урана.

Затраты на производственные процессы в %

Отдельно стоит сказать о топливных сборках для исследовательских реакторов. Они конструируются таким образом, чтобы сделать наблюдение и изучение процесса генерации нейтронов максимально комфортным. Такие ТВЭЛы для экспериментов в сферах ядерной физики, наработки изотопов, радиационной медицины в России производит «Новосибирский завод химических концентратов». ТВС создаются на основе бесшовных элементов с ураном и алюминием.

Производством ядерного топлива в РФ занимается топливная компания ТВЭЛ (подразделение «Росатома»). Предприятие работает над обогащением сырья, сборкой тепловыделяющих элементов, а также предоставляет услуги по лицензированию топлива. «Ковровский механический завод» во Владимирской области и «Уральский завод газовых центрифуг» в Свердловской области создают оборудование для российских ТВС.

Особенности транспортировки ТВЭЛов

Природный уран характеризуются низким уровнем радиоактивности, однако перед производством ТВС металл проходит процедуру обогащения. Содержание урана-235 в природной руде не превышает 0,7%, а радиоактивность составляет 25 беккерелей на 1 миллиграмм урана.

В урановых таблетках, которые помещаются в ТВС, находится уран с концентрацией урана-235 5%. Готовые ТВС с ядерным топливом перевозятся в специальных металлических контейнерах высокой прочности. Для транспортировки используется железнодорожный, автомобильный, морской и даже воздушный транспорт. В каждом контейнере размещают по две сборки. Перевозка не облучённого (свежего) топлива не представляет радиационной опасности, поскольку излучение не выходит за пределы циркониевых трубок, в которые помещаются прессованные таблетки из урана.

Для партии топлива разрабатывается специальный маршрут, груз перевозится в сопровождении охранного персонала производителя или заказчика (чаще), что связано прежде всего с дороговизной оборудования. За всю историю производства ядерного топлива не было зафиксировано ни одной транспортной аварии с участием ТВС, которая бы повлияла на радиационный фон окружающей среды или привела к жертвам.

Топливо в активной зоне реактора

Единица ядерного топлива - ТВЭЛ - способна выделять на протяжении долгого времени огромное количество энергии. С такими объёмами не сравнится ни уголь, ни газ. Жизненный цикл топлива на любой АЭС начинается с выгрузки, выемки и хранения на складе ТВС свежего топлива. Когда предыдущая партия топлива в реакторе выгорает, персонал комплектует ТВС для загрузки в активную зону (рабочую зону реактора, где происходит реакция распада). Как правило, топливо перезагружается частично.

Полностью топливо закладывается в активную зону только в момент первого запуска реактора. Это связано с тем, что ТВЭЛы в реакторе выгорают неравномерно, поскольку нейтронный поток различается по интенсивности в разных зонах реактора. Благодаря учётным приборам, персонал станции имеет возможность в режиме реального времени следить за степенью выгорания каждой единицы топлива и производить замену. Иногда вместо загрузки новых ТВС, сборки перемещаются между собой. В центре активной зоны выгорание происходит интенсивнее всего.

ТВС после атомной станции

Уран, который отработал в ядерном реакторе, называется облучённым или выгоревшим. А такие ТВС - отработавшим ядерным топливом. ОЯТ позиционируется отдельно от радиоактивных отходов, поскольку имеет как минимум 2 полезных компонента - это невыгоревший уран (глубина выгорания металла никогда не достигает 100%) и трансурановые радионуклиды.

В последнее время физики стали использовать в промышленности и медицине радиоактивные изотопы, накапливающиеся в ОЯТ. После того как топливо отработает свою кампанию (время нахождения сборки в активной зоне реактора в условиях работы на номинальной мощности), его отправляют в бассейн выдержки, затем в хранилище непосредственно в реакторном отделении, а после этого - на переработку или захоронение. Бассейн выдержки предназначен для отвода тепла и защиты от ионизирующего излучения, поскольку ТВС после извлечения из реактора остаётся опасной.

В США, Канаде или Швеции ОЯТ не отправляют на повторную переработку. Другие страны, среди них и Россия, работают над замкнутым топливным циклом. Он позволяет существенно сократить расходы на производство ядерного топлива, поскольку повторно используется часть ОЯТ.

Топливные стержни растворяются в кислоте, после чего исследователи выделяют из отходов плутоний и неиспользованный уран. Около 3% сырья эксплуатировать повторно невозможно, это высокоактивные отходы, которые проходят процедуры битумирования или остекловывания.

Из отработавшего ядерного топлива можно получить 1% плутония. Этот металл не требуется обогащать, Россия использует его в процессе производства инновационного MOX-топлива. Замкнутый топливный цикл позволяет сделать одну ТВС дешевле приблизительно на 3%, однако такая технология требует больших инвестиций на строительство промышленных узлов, поэтому пока не получила широкого распространения в мире. Тем не менее, топливная компания «Росатома» не прекращает исследования в этом направлении. Недавно Пронедра писали, что в Российской Федерации работают над топливом, способным в активной зоне реактора утилизировать изотопы америция, кюрия и нептуния, которые входят в те самые 3% высокорадиоактивных отходов.

Производители ядерного топлива: рейтинг

  1. Французская компания Areva до недавнего времени обеспечивала 31% мирового рынка тепловыделяющих сборок. Фирма занимается производством ядерного топлива и сборкой комплектующих для АЭС. В 2017 году Areva пережила качественное обновление, в компанию пришли новые инвесторы, а колоссальный убыток 2015 года удалось сократить в 3 раза.
  2. Westinghouse - американское подразделение японской компании Toshiba. Активно развивает рынок в восточной Европе, поставляет тепловыделяющие сборки на украинские АЭС. Вместе с Toshiba обеспечивает 26% мирового рынка производства ядерного топлива.
  3. Топливная компания ТВЭЛ госкорпорации «Росатом» (Россия) расположилась на третьем месте. ТВЭЛ обеспечивает 17% мирового рынка, имеет десятилетний портфель контрактов на 30 млрд долларов и поставляет топливо на более чем 70 реакторов. ТВЭЛ разрабатывает ТВС для реакторов ВВЭР, а также выходит на рынок ядерных установок западного дизайна.
  4. Japan Nuclear Fuel Limited , по последним данным, обеспечивает 16% мирового рынка, поставляет ТВС на большую часть ядерных реакторов в самой Японии.
  5. Mitsubishi Heavy Industries - японский гигант, который производит турбины, танкеры, кондиционеры, а с недавних пор и ядерное топливо для реакторов западного образца. Mitsubishi Heavy Industries (подразделение головной компании) занимается строительством ядерных реакторов APWR, исследовательской деятельностью вместе с Areva. Именно эта компания выбрана японским правительством для разработки новых реакторов.

Похожие публикации