Энциклопедия пожаробезопасности

Принципы R,S-номенклатуры. Органическая химия учеб. пособие

ГЛАВА 7. СТЕРЕОХИМИЧЕСКИЕ ОСНОВЫ СТРОЕНИЯ МОЛЕКУЛ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ГЛАВА 7. СТЕРЕОХИМИЧЕСКИЕ ОСНОВЫ СТРОЕНИЯ МОЛЕКУЛ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Стереохимия (от греч. stereos - пространственный) - это «химия в трех измерениях». Большинство молекул трехмерны (threedimentional, сокращенно 3D). Структурные формулы отражают двумерное (2D) строение молекулы, включающее в себя число, тип и последовательность связывания атомов. Напомним, что соединения, имеющие одинаковый состав, но различное химическое строение, называются структурными изомерами (см. 1.1). Более широкое понятие структуры молекулы (иногда образно называемой молекулярной архитектурой) наряду с понятием химического строения включает стереохимические компоненты - конфигурацию и конформацию, отражающие пространственное строение, т. е. трехмерность молекулы. Молекулы, обладающие одинаковым химическим строением, могут различаться пространственным строением, т. е. существовать в виде пространственных изомеров - стереоизо- меров.

Пространственное строение молекул - это взаимное расположение атомов и атомных групп в трехмерном пространстве.

Стереоизомеры - соединения, в молекулах которых имеется одинаковая последовательность химических связей атомов, но раз- личное расположение этих атомов относительно друг друга в пространстве.

В свою очередь стереоизомеры могут быть конфигурационными и конформационными изомерами, т. е. различаться соответственно конфи- гурацией и конформацией.

7.1. Конфигурация

Конфигурация - это порядок расположения атомов в пространстве без учета различий, возникающих вследствие вращения вокруг одинарных связей.

Конфигурационные изомеры могут переходить друг в друга путем разрыва одних и образования других химических связей и могут существовать раздельно в виде индивидуальных соединений. Они подразделяются на два основных типа - энантиомеры и диастереомеры.

7.1.1. Энантиомерия

Энантиомеры - стереоизомеры, относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отображение.

В виде энантиомеров могут существовать только хиральные молекулы.

Хиральность - это свойство объекта быть несовместимым со своим зеркальным отражением. Хиральными (от греч. cheir - рука), или асимметричными, объектами являются левая и правая рука, а также перчатки, ботинки и др. Эти парные предметы представляют собой объект и его зеркальное отражение (рис. 7.1, а). Такие предметы не могут быть полностью совмещены друг с другом.

В то же время существует множество окружающих нас предметов, которые совместимы со своим зеркальным отражением, т. е. они являются ахиральными (симметричными), например тарелки, ложки, стаканы и т. д. Ахиральные предметы обладают по крайней мере одной плоскостью симметрии, которая делит объект на две зеркальноидентичные части (см. рис. 7.1, б ).

Подобные взаимоотношения наблюдаются также в мире молекул, т. е. молекулы делятся на хиральные и ахиральные. У ахиральных молекул есть плоскости симметрии, у хиральных их нет.

В хиральных молекулах имеется один или несколько центров хиральности. В органических соединениях в качестве центра хиральности чаще всего выступает асимметрический атом углерода.

Рис. 7.1. Отражение в зеркале хирального объекта (а) и плоскость симметрии, разрезающая ахиральный объект (б)

Асимметрическим является атом углерода, связанный с четырьмя различными атомами или группами.

При изображении стереохимической формулы молекулы символ «С» асимметрического атома углерода обычно опускается.

Чтобы определить, является молекула хиральной или ахиральной, нет необходимости изображать ее стереохимической формулой, достаточно внимательно рассмотреть все атомы углерода в ней. Если находится хотя бы один атом углерода с четырьмя разными заместителями, то этот атом углерода асимметричен и молекула за редкими исключениями (см. 7.1.3) хиральна. Так, из двух спиртов - пропано- ла-2 и бутанола-2 - первый ахирален (две группы СН 3 у атома С-2), а второй - хирален, так как в его молекуле у атома С-2 все четыре заместителя разные (Н, ОН, СН 3 и С 2 Н 5). Асимметрический атом углерода иногда помечают звездочкой (С*).

Следовательно, молекула бутанола-2 способна существовать в виде пары энантиомеров, которые не совмещаются в пространстве (рис. 7.2).

Рис. 7.2. Энантиомеры хиральных молекул бутанола-2 не совмещаются

Свойства энантиомеров. Энантиомеры обладают одинаковыми химическими и физическими свойствами (температуры плавления и кипения, плотность, растворимость и т. д.), но проявляют различную оптическую активность, т. е. способность отклонять плоскость поляризованного света*.

При прохождении такого света через раствор одного из энантиомеров происходит отклонение плоскости поляризации влево, другого - вправо на один тот же по величине угол α. Значение угла α, приведенное к стандартным условиям, является константой оптически активного вещества и называется удельным вращением [α]. Левое вращение обозначается знаком «минус» (-), правое - знаком «плюс» (+), а энантиомеры называют соответственно лево- и правовращающими.

С проявлением оптической активности связаны другие названия энантиомеров - оптические изомеры или оптические антиподы.

Каждое хиральное соединение может иметь и третью, оптически неактивную форму - рацемат. Для кристаллических веществ это обычно не просто механическая смесь кристаллов двух энантиомеров, а новая молекулярная структура, образованная энантиомерами. Рацематы оптически неактивны, так как левое вращение одного энантиомера компенсируется правым вращением равного количества другого. В этом случае перед названием соединения иногда ставят знак «плюс-минус» (?).

7.1.2. Относительная и абсолютная конфигурации

Проекционные формулы Фишера. Для изображения конфигурационных изомеров на плоскости можно пользоваться стереохимическими формулами. Однако удобнее применять более простые в написании проекционные формулы Фишера (проще - проекции Фишера). Рассмотрим их построение на примере молочной (2-гидроксипропа- новой) кислоты.

Тетраэдрическую модель одного из энантиомеров (рис. 7.3) располагают в пространстве так, чтобы цепь атомов углерода оказалась в вертикальном положении, а карбоксильная группа - сверху. Связи с неуглеродными заместителями (Н и ОН) у хирального центра долж-

* Подробнее см. учебник Ремизов А.Н., Максина А.Г., Потапенко А.Я. Медицинская и биологическая физика. 4-е изд., перераб. и дополн. - М.: Дрофа, 2003.- С. 365-375.

Рис. 7.3. Построение проекционной формулы Фишера (+)-молочной кислоты

ны быть направлены к наблюдателю. После этого модель проецируют на плоскость. Символ асимметрического атома при этом опускается, под ним понимают точку пересечения вертикальной и горизонтальной линий.

Тетраэдрическую модель хиральной молекулы перед проецированием можно располагать в пространстве по-разному, не только так, как показано на рис. 7.3. Необходимо только, чтобы связи, образующие на проекции горизонтальную линию, были направлены к наблюдателю, а вертикальные связи - за плоскость рисунка.

Полученные таким образом проекции можно с помощью несложных преобразований привести к стандартному виду, в котором углеродная цепь расположена вертикально, а старшая группа (в молочной кислоте это СООН) - сверху. Преобразования разрешают две операции:

В проекционной формуле разрешается менять местами два любых заместителя у одного и того же хирального центра четное число раз (двух перестановок бывает достаточно);

Проекционную формулу разрешается поворачивать в плоскости рисунка на 180? (что эквивалентно двум перестановкам), но не на 90?.

D.L-Система обозначения конфигурации. В начале ХХ в. была предложена система классификации энантиомеров для относительно простых (с позиций стереоизомерии) молекул, таких, как α-аминокислоты, α-гидроксикислоты и им подобные. За конфигурационный стандарт был принят глицериновый альдегид. Его левовращающему энантиомеру была произвольно приписана формула (I). Такая конфигурация атома углерода была обозначена буквой l (от лат. laevus - левый). Правовращающему энантиомеру соответственно была приписана формула (II), а конфигурация обозначена буквой d (от лат. dexter - правый).

Заметим, что в стандартной проекционной формуле l -глицеринового альдегида группа ОН находится слева, а у d -глицеринового альдегида - справа.

Отнесение к d- или l -ряду других родственных по структуре оптически активных соединений производится путем сравнения конфигурации их асимметрического атома с конфигурацией d- или l -глицеринового альдегида. Например, у одного из энантиомеров молочной кислоты (I) в проекционной формуле группа ОН находится слева, как у l -глицеринового альдегида, поэтому энантиомер (I) относят к l -ряду. Из тех же соображений энантиомер (II) относят к d -ряду. Так из срав- нения проекций Фишера определяют относительную конфигурацию.

Следует отметить, что l -глицериновый альдегид имеет левое вращение, а l -молочная кислота - правое (и это не единичный случай). Более того, одно и то же вещество может быть как лево-, так и правовращающим в зависимости от условий определения (разные растворители, температура).

Знак вращения плоскости поляризованного света не связан с принадлежностью к d- или l -стереохимическому ряду.

Практическое определение относительной конфигурации оптически активных соединений проводят с помощью химических реакций: либо исследуемое вещество превращают в глицериновый альдегид (или другое вещество с известной относительной конфигурацией), либо, наоборот, из d- или l -глицеринового альдегида получают исследуемое вещество. Разумеется, что в ходе всех этих реакций не должна изменяться конфигурация асимметрического атома углерода.

Произвольное приписание лево- и правовращающему глицериновому альдегиду условных конфигураций было вынужденным шагом. В то время абсолютная конфигурация не была известна ни для одного хирального соединения. Установление абсолютной конфигурации стало возможным только благодаря развитию физико-химических методов, особенно рентгеноструктурного анализа, с помощью которого в 1951 г. впервые была определена абсолютная конфигура,ция хиральной молекулы - это была соль (+)-винной кислоты. После этого стало ясно, что абсолютная конфигурация d- и l-глицериновых альдегидов действительно такая, какая им была первоначально приписана.

d,l-Система в настоящее время применяется для α-аминокислот, гидроксикислот и (с некоторыми дополнениями) для углеводов

(см. 11.1.1).

R,S-Система обозначения конфигурации. d,L-Система имеет весьма ограниченное применение, так как часто невозможно соотнести конфигурацию какого-либо соединения с глицериновым альдегидом. Универсальной системой обозначения конфигурации центров хиральности является R,S-система (от лат. rectus - прямой, sinister - левый). В ее основе лежит правило последовательности, основанное на старшинстве заместителей, связанных с центром хиральности.

Старшинство заместителей определяется атомным номером элемента, непосредственно связанного с центром хиральности, - чем он больше, тем старше заместитель.

Так, группа ОН старше NH 2 , которая, в свою очередь, старше любой алкильной группы и даже СООН, поскольку в последней с асимметрическим центром связан атом углерода. Если атомные номера оказываются одинаковыми, старшей считается группа, у которой следующий за углеродом атом имеет больший порядковый номер, причем, если этот атом (обычно кислород) связан двойной связью, он учитывается дважды. В результате следующие группы так располагаются в порядке падения старшинства: -СООН > -СН=О > -СН 2 ОН.

Для определения конфигурации тетраэдрическую модель соединения располагают в пространстве так, чтобы самый младший замес- титель (в большинстве случаев это атом водорода) был наиболее удален от наблюдателя. Если старшинство трех остальных заместителей убывает по часовой стрелке, то центру хиральности приписывают R-конфигурацию (рис. 7.4, а), если против часовой стрелки - S -конфигурацию (см. рис. 7.4, б), как это видно водителю, находящемуся за рулем (см. рис. 7.4, в).

Рис. 7.4. Определение конфигурации энантиомеров молочной кислоты по R,S- системе (объяснение в тексте)

Для обозначения конфигурации по RS-системе можно применить проекции Фишера. Для этого проекцию преобразуют так, чтобы младший заместитель разместился на одной из вертикальных связей, что соответствует его положению за плоскостью чертежа. Если после преобразования проекции старшинство остальных трех заместителей убывает по часовой стрелке, то асимметрический атом имеет R-конфигурацию, и наоборот. Применение такого способа показано на примере l-молочной кислоты (цифрами обозначено старшинство групп).

Существует более простой способ определения R- или S-конфигу- рации по проекции Фишера, в которой младший заместитель (обычно атом Н) расположен на одной из горизонтальных связей. В этом случае не проводят указанных выше перестановок, а сразу определяют старшинство заместителей. Однако, поскольку атом Н находится «не на месте» (что равносильно противоположной конфигурации), падение старшинства будет означать теперь не R-, а S-конфигурацию. Этот способ показан на примере l-яблочной кислоты.

Указанный способ особенно удобен для молекул, содержащих несколько хиральных центров, когда для определения конфигурации каждого из них потребовались бы перестановки.

Между d,l- и RS-системами отсутствует корреляция: это два разных подхода к обозначению конфигурации хиральных центров. Если в d,L-системе сходные по конфигурации соединения образуют стерео- химические ряды, то в RS-системе хиральные центры в соединениях, например, l-ряда, могут иметь как R-, так и S-конфигурацию.

7.1.3. Диастереомерия

Диастереомерами называют стереоизомеры, не относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отражение, т. е. не являющиеся энантиомерами.

Наиболее важными группами диастереомеров являются σ-диастереомеры и π-диастереомеры.

σ-Диастереомеры. Многие биологически важные вещества содержат в молекуле более одного центра хиральности. При этом возрастает число конфигурационных изомеров, которое определяется как 2 n , где n - число центров хиральности. Например, при наличии двух асимметрических атомов соединение может существовать в виде четырех стереоизомеров (2 2 = 4), составляющих две пары энантиомеров.

2-Амино-3-гидроксибутановая кислота имеет два центра хиральности (атомы С-2 и С-3) и, следовательно, должна существовать в виде четырех конфигурационных изомеров, один из которых является природной аминокислотой.

Структуры (I) и (II), соответствующие l- и d-треонину, а также (III) и (IV), соответствующие l- и d-аллотреонину (от греч. alios - другой), относятся друг к другу, как предмет и несовместимое с ним зеркальное отражение, т. е. они представляют собой пары энантиомеров. При сопоставлении структур (I) и (III), (I) и (IV), (II) и (III), (II) и (IV) видно, что в этих парах соединений у одного асимметрического центра конфигурация одинаковая, а у другого - противоположная. Такие пары стереоизомеров представляют собой диастереомеры. Подобные изомеры называют σ-диастереомерами, так как заместители в них связаны с центром хиральности σ-связями.

Аминокислоты и гидроксикислоты с двумя центрами хиральности относят к d- или l -ряду по конфигурации асимметрического атома с наименьшим номером.

Диастереомеры, в отличие от энантиомеров, различаются физическими и химическими свойствами. Например l-треонин, входящий в состав белков, и l-аллотреонин имеют разные значения удельного вращения (как показано выше).

Мезосоединения. Иногда в молекуле содержатся два асимметрических центра и более, но молекула в целом остается симметричной. Примером таких соединений может служить один из стереоизомеров винной (2,3-дигидроксибутандиовой) кислоты.

Теоретически эта кислота, в которой имеется два центра хиральности, могла бы существовать в виде четырех стереоизомеров (I)-(IV).

Структуры (I) и (II) соответствуют энантиомерам d- и l-ряда (отнесение проведено по «верхнему» центру хиральности). Может показаться, что структуры (III) и (IV) также соответствуют паре энантиомеров. В действительности это формулы одного и того же соединения - оптически неактивной мезовинной кислоты. В идентичности формул (III) и (IV) легко убедиться, повернув формулу (IV) на 180?, не выводя ее из плоскости. Несмотря на два центра хиральности, молекула мезовинной кислоты в целом является ахиральной, так как имеет плоскость симметрии, проходящую по середине связи С-2-С-3. По отношению к d- и l-винным кислотам мезовинная кислота является диастереомером.

Таким образом, существует три (а не четыре) стереоизомера винных кислот, не считая рацемической формы.

При использовании R,S-системы не возникает трудностей с описанием стереохимии соединений с несколькими хиральными центрами. Для этого определяют конфигурацию каждого центра по R,S-системе и указывают ее (в скобках с соответствующими локантами) перед полным названием. Так, d-винная кислота получит систематическое название (2R,3R)-2,3-дигидроксибутандиовая кислота, а мезовинная кислота будет иметь стереохимические символы (2R,3S)-.

Подобно мезовинной кислоте существует мезоформа α-аминокислоты цистин. При двух центрах хиральности число стереоизомеров цистина равно трем вследствие того, что молекула внутренне сим- метрична.

π-Диастереомеры. К ним относятся конфигурационные изомеры, содержащие π-связь. Этот вид изомерии характерен, в частности, для алкенов. Относительно плоскости π-связи одинаковые заместители у двух атомов углерода могут располагаться по одну (цис) или по разные (транс) стороны. В связи с этим существуют стереоизомеры, известные под названием цис- и транс -изомеров, как показано на примере цис- и транс-бутенов (см. 3.2.2). π-Диастереомерами являются простейшие ненасыщенные дикарбоновые кислоты - малеиновая и фумаровая.

Малеиновая кислота является термодинамически менее стабильным цис -изомером по сравнению с транс -изомером - фумаровой кислотой. Под действием некоторых веществ или ультрафиолетовых лучей между обеими кислотами устанавливается равновесие; при нагревании (~150 ?C) оно смещено в сторону более стабильного транс -изомера.

7.2. Конформации

Вокруг простой связи С-С возможно свободное вращение, в результате которого молекула может принимать различные формы в пространстве. Это видно на стереохимических формулах этана (I) и (II), где отмеченные цветом группы СН 3 расположены по-разному относительно другой группы СН 3.

Поворот одной группы СН 3 относительно другой происходит без нарушения конфигурации - изменяется лишь взаимное расположение в пространстве атомов водорода.

Геометрические формы молекулы, переходящие друг в друга путем вращения вокруг σ-связей, называют конформациями.

В соответствии с этим конформационными изомерами являются стереоизомеры, различие между которыми вызвано поворотом отдельных участков молекулы вокруг σ-связей.

Конформационные изомеры обычно нельзя выделить в индивидуальном состоянии. Переход различных конформаций молекулы друг в друга происходит без разрыва связей.

7.2.1. Конформации ациклических соединений

Простейшим соединением со связью С-С является этан; рассмотрим две из множества его конформаций. В одной из них (рис. 7.5, а) расстояние между атомами водорода двух групп СН 3 наименьшее, поэтому находящиеся друг против друга связи С-Н отталкиваются. Это приводит к увеличению энергии молекулы, а следовательно, к меньшей устойчивости этой конформации. При взгляде вдоль связи С-С видно, что три связи С-Н у каждого атома углерода попарно «заслоняют» друг друга. Такую конформацию называют заслоненной.

Рис. 7.5. Заслоненная (а, б) и заторможенная (в, г) конформации этана

В другой конформации этана, возникающей при повороте одной из групп СН 3 на 60? (см. рис. 7.5, в), атомы водорода двух метильных групп максимально удалены друг от друга. При этом отталкивание электронов связей С-Н будет минимальным, энергия такой конформации также будет минимальной. Эту более устойчивую конформацию называют заторможенной. Разница в энергии обеих конформаций невелика и составляет ~12 кДж/моль; она определяет так называемый энергетический барьер вращения.

Проекционные формулы Ньюмена. Эти формулы (проще - проекции Ньюмена) используют для изображения конформаций на плоскости. Для построения проекции молекулу рассматривают со стороны одного из атомов углерода вдоль его связи с соседним атомом углерода, вокруг которой происходит вращение. При проецировании три связи от ближнего к наблюдателю атома углерода к атомам водорода (или в общем случае - к другим заместителям) располагают в виде трехлучевой звезды с углами 120?. Удаленный от наблюдателя (невидимый) атом углерода изображают в виде круга, от которого также под углом 120? отходят три связи. Проекции Ньюмена также дают наглядное представление о заслоненной (см. рис. 7.5, б) и заторможенной (см. рис. 7.5, г) конформациях.

При обычных условиях конформации этана легко переходят друг в друга, и можно говорить о статистическом наборе различных конформаций, незначительно различающихся по энергии. Выделить в инди- видуальном виде даже более устойчивую конформацию невозможно.

В более сложных молекулах замена атомов водорода при соседних атомах углерода на иные атомы или группы приводит к их взаимному отталкиванию, что сказывается на увеличении потенциальной энергии. Так, в молекуле бутана наименее выгодной будет заслоненная конформация, а самой выгодной - заторможенная конформация с максимально удаленными группами СН 3 . Разница между энергиями этих конформаций составляет ~25 кДж/моль.

По мере удлинения углеродной цепи в алканах быстро возрастает число конформаций в результате расширения возможностей враще- ния вокруг каждой связи С-С, поэтому длинные углеродные цепи алканов могут принимать множество разнообразных форм, например зигзагообразную (I), нерегулярную (II) и клешневидную (III).

Предпочтительна зигзагообразная конформация, в которой все связи С-С в проекции Ньюмена образуют угол 180?, как в затормо- женной конформации бутана. Например, фрагменты длинноцепочечных пальмитиновой C 15 H 31 COOH и стеариновой C 17 H 35 COOH кислот в зигзагообразной конформации (рис. 7.6) входят в состав липидов клеточных мембран.

Рис. 7.6. Скелетная формула (а) и молекулярная модель (б) стеариновой кислоты

В клешневидной конформации (III) сближаются атомы углерода, удаленные друг от друга в иных конформациях. Если на достаточно близком расстоянии оказываются функциональные группы, например Х и Y, способные реагировать друг с другом, то в результате внутримолекулярной реакции это приведет к образованию циклического продукта. Такие реакции распространены довольно широко, что связано с выгодностью образования термодинамически устойчивых пяти- и шестичленных циклов.

7.2.2. Конформации шестичленных циклов

Молекула циклогексана не является плоским шестиугольником, так как при плоском строении валентные углы между атомами углерода составляли бы 120?, т. е. существенно отклонялись от величины нормального валентного угла 109,5?, и все атомы водорода находились в невыгодном заслоненном положении. Это привело бы к неустойчивости цикла. В действительности шестичленный цикл наиболее устойчив из всех циклов.

Различные конформации циклогексана возникают в результате частичного вращения вокруг σ-связей между атомами углерода. Из нескольких неплоских конформаций наиболее энергетически выгодна конформация кресла (рис. 7.7), так как в ней все валентные углы между связями С-С равны ~110?, а атомы водорода при соседних атомах углерода не заслоняют друг друга.

В неплоской молекуле можно только условно говорить о расположении атомов водорода «над и под плоскостью». Вместо этого используют другие термины: связи, направленные вдоль вертикальной оси симметрии цикла (на рис. 7.7, а показаны цветом), называют аксиаль- ными (а), а связи, ориентированные от цикла (как бы по экватору, по аналогии с земным шаром), называют экваториальными (е).

При наличии в кольце заместителя более выгодна конформация с экваториальным положением заместителя, как, например, конформация (I) метилциклогексана (рис. 7.8).

Причина меньшей устойчивости конформации (II) с аксиальным расположением метильной группы заключается в 1,3-диаксиальном отталкивании группы СН 3 и атомов Н в положениях 3 и 5. В таком

Рис. 7.7. Циклогексан в конформации кресла:

а - скелетная формула; б - шаростержневая модель

Рис. 7.8. Инверсия цикла молекулы метилциклогексана (показаны не все атомы водорода)

случае цикл подвергается так называемой инверсии, принимая более устойчивую конформацию. Особенно велико отталкивание в про- изводных циклогексана, имеющих положениях 1 и 3 объемные группы.

В природе встречается множество производных циклогексанового ряда, среди которых важную роль играют шестиатомные спирты - инозиты. В связи с наличием в их молекулах асимметрических центров инозиты существуют в виде нескольких стереоизомеров, из которых наиболее распространен миоинозит. Молекула миоинозита имеет стабильную конформацию кресла, в которой пять из шести групп ОН находятся в экваториальных положениях.

Система Фишера в свое время позволила создать логичную и непротиворечивую стереохимическую систематику большого числа природных соединений, ведущих свое происхождение от аминокислот и сахаров. Относительная конфигурация энантиомеров в этой системе определялась путем химической корреляции, т.е. путем перехода от данной молекулы к D- или L-глицериновому альдегиду через последовательность химических реакций, не затрагивающих асимметрический атом углерода (подробнее см.раздел 8.5). Вместе с тем, если молекула, конфигурацию которой требовалось установить, по своей структуре очень сильно отличалась от глицеринового альдегида, скоррелировать ее конфигурацию с конфигурацией глицеринового альдегида химическим путем было бы очень обременительно. Кроме того, отнесение конфигурации к D - или L - ряду не всегда было однозначно. Например, D-глицериновый альдегид, в принципе, можно превратить в глицериновую кислоту, затем действием диазометана - в метиловый эфир, и далее селективным окислением первичной спиртовой функции и этерификацией диазоэтаном в метиловоэтиловый эфир гидроксималоновой кислоты (XXV). Все эти реакции не затрагивают хиральный центр и поэтому можно сказать, что диэфир XXV относится к D - ряду.

Если же первую этерификацию проводить диазоэтаном, а вторую диазометаном, то получится диэфир XXVI, который по той же причине также следует отнести к D-ряду. На самом же деле соединения XXV и XXVI представляют собой энантиомеры; т.е. одни относятся к D- а другие к L- ряду. Таким образом, отнесение зависит от того, какую из сложноэфирных групп, CO 2 Et или CO 2 Me, признать "главной".

Указанные ограничения фишеровской системы, а также тот факт, что в 1951 г. появился рентгеноструктурный метод определения истинного расположения групп вокруг хирального центра, привели к соэданию в 1966 году новой, более строгой и непротиворечивой системы описания стереоизомеров, известной под названием R,S-номенклатуры Кана-Ингольда-Прелога (КИП) или правил последовательного старшинства. Эта система в настоящее время практически вытеснила D,L- систему Фишера (последняя, однако, все еще употребляется для углеводов и аминокислот). В системе КИП к обычному химическому названию прибавляются специальные дескрипторы R- или S-, строго и однозначно определяющие абсолютную конфигурацию.

Возьмем соединение типа Xabcd, содержащее один асимметрический центр Х. Чтобы установить его конфигурацию, четыре заместителя у атома Х следует пронумеровать и расположить в ряд в порядке уменьшения старшинства (см. ниже), т.е. 1>2>3>4. Заместители рассматриваются наблюдателем со стороны наиболее удаленной от самого младшего заместителя (обозначенного номером 4). Если при этом направление убывания старшинства 1  2  3 совпадает с движением по часовой стрелке, то конфигурацию данного асимметрического центра обозначают символом R (от латинского rectus - правый) а если против часовой стрелки - символом S (sinister - левый).

Приведем несколько правил последовательного старшинства, достаточных для рассмотрения подавляющего большинства хиральных соединений.

1) Предпочтение по старшинству отдается атомам с более высокими атомными номерами. Если номера одинаковы (в случае изотопов), то более старшим считается атом с наибольшей атомной массой. Самый младший "заместитель" - неподеленная электронная пара. Таким образом, старшинство возрастает в ряду: неподеленная пара < H < D < T < Li < B < C < N < O < F < Si < P

2) Если с асимметрическим атомом непосредственно связано два, три или все четыре одинаковых атома, порядок устанавливается по атомам второго пояса, которые связаны уже не с хиральным центром, а с теми атомами, которые имели одинаковое старшинство. Например, в молекуле XXVII по первому атому групп СН 2 ОН и (СН 3) 2 СН установить старшинство не удается, однако предпочтение отдается СН 2 ОН, так как атомный номер кислорода больше, чем углерода. Группа СН 2 ОН старше, несмотря на то, что в ней с атомом углерода связан лишь один атом кислорода, а в группе СН(СН 3) 2 - два атома углерода. Если и вторые атомы в группе одинаковы, порядок определяется по атомам третьего пояса и т.д.

Если и такая процедура не привела к построению однозначной иерархии, ее продолжают на все более возрастающих расстояниях от центрального атома, пока, наконец, не встретится различия и все четыре заместителя все-таки получат свое старшинство. При этом любое предпочтение, приобретаемое тем или иным заместителем на одной из стадий согласования старшинства считается окончательным и на последующих стадиях переоценке не подлежит. Если в молекуле встречаются точки разветвления, процедуру установления старшинства следует продолжать вдоль молекулярной цепи наибольшего старшинства. При установлении старшинства того или иного центрального атома решающее значение имеет число связанных с ним других атомов высшего старшинства. Например, CCl 3 > CHCl 2 > CH 2 Cl.

3) Формально принимается, что валентность всех атомов, кроме водорода, равна 4. Если истинная валентность атома меньше (например, у кислорода, азота, серы), то считается, что у этого атома имеется 4-n (где n - настоящая валентность) так называемых фантом-заместителей , которым приписывается нулевой порядковый номер и отводится последнее место в перечне заместителей. В соответствии с этим группы с двойными и тройными связями представляются так, как если бы они были расщеплены на две или три простые связи. Например, при представлении двойной связи С=С каждый атом рассматривается как связанный с двумя атомами углерода, причем считается, что второй из этих атомов углерода имеет три фантом-заместителя. В качестве примера рассмотрим представления групп -СН=СН 2 , -СНО, -СООН, -ССН и -С 6 Н 5 . Эти представления выглядят следующим образом.

Первые атомы во всех этих группах связаны соответственно с (Н,С,С), (Н,О,О), (О,О,О), (С,С,С) и (С,С,С). Этой информации достаточно, чтобы группу СООН поставить на первом месте (самая старшая), группу СНО на втором, а группу -СН=СН 2 - на последнем (пятом) месте, поскольку наличие хотя бы одного атома кислорода предподчтительнее наличия даже трех атомов углерода. Чтобы сделать вывод об относительном старшинстве групп ССН и -С 6 Н 5 нужно пойти дальше по цепи. Группа С 6 Н 5 имеет два атома углерода типа (С,С,С), связанные с (С,С,Н), а третий атом относится к типу (О,О,О). Группа ССН имеет только одну группировку (С,С,Н), но две группировки (О,О,О). Следовательно, С 6 Н 5 старше, чем ССН, т.е. по порядку старшинства пять указанных групп займут ряд: СООН> СНО> С 6 Н 5 > ССН> СН=СН 2 .

Старшинство наиболее часто встречающихся заместителей можно определить по табл. 8-2, в которой условный номер означает большее старшинство.

Таблица 8.2.

Старшинство некоторых групп по Кану-Ингольду-Прелогу

Условный номер

Условный номер

Аллил, СНСН=СН 2

Меркапто, SH

Амино, NH 2

Метил,  H 3

Аммонио, NH 3 +

Метиламино, NHCH 3

Ацетил, COCH 3

Метилсульфинил, SOCH 3

Ацетиламино, NHCOCH 3

Метилсульфинилокси,OSOCH 3

Ацетокси, OCOCH 3

Метилсульфонил, SO 2 CH 3

Бензил, CH 2 C 6 H 5

Метилсульфонилокси,OSO 2 CH 3

Бензилокси, OCH 2 C 6 H 5

Метилтио,SCH 3

Бензоил,  COC 6 H 5

Метокси,OCH 3

Бензоиламино, NHCOC 6 H 5

Метилкарбонил, COOCH 3

Бензоилокси, OCOC 6 H 5

Неопентил, CH 2 C(CH 3) 3

Бензоилоксикарбонил-амино, NHCOOCH 2 C 6 H 5

Нитро, NO 2

Бром, Br

Нитрозо, NO

втор-Бутил, CH(CH 3)CH 3 CH 3

м-нитрофенил,

н-Бутил, CH 2 CH 2 CH 2 CH 3

о-нитрофенил,

трет-Бутил, C(CH 3) 3

п-нитрофенил,

трет-Бутоксикарбонил, COOC(CH 3) 3

Пентил, C 5 H 11

Винил, CH 2 = CH 2

Пропенил, CH=CHCH 3

Водород, H

Пропил, CH 2 CH 2 CH 3

н-Гексил, C 6 H 13

Пропинил, CCCH 3

Гидрокси, OH

Пропаргил, CH 2 CCH

Гликозилокси

Сульфо, SO 3 H

Диметиламино, N(CH 3) 2

м-Толил,

2,4-Динитрофенил,

о-Толил,

3,5-Динитрофенил,

п-Толил,

Диэтиламино, N(C 2 H 5) 2

Триметиламмонио,

Изобутил, CH 2 CH(CH 3) 2

Тритил, C(C 6 H 5) 3

Изопентил, CH 2 CH 2 CH(CH 3) 2

Фенил, C 6 H 5

Изопропенил, CH(CH 3)=CH 2

Фенилазо, N=NCC 6 H 5

Изопропил, CH(CH 3) 2

Фениламино, NHC 6 H 5

Фенокси, OC 6 H 5

Карбоксил, COOH

Формил, CHO

2,6-Ксилил,

Формилокси, OCHO

3,5-Ксилил,

Хлор, Cl

Циклогексил, C 6 H 11

Этил, CH 2 CH 3

Этиламино, NHC 2 H 5

Этинил, CCH

Этокси, OC 2 H 5

Этоксикарбонил, COOC 2 H 5

Правила последовательного старшинства были специально задуманы так, чтобы оказаться в максимально близком соответствии с ранней систематикой Фишера, так как по счастливой случайности оказалось, что D-глицериновый альдегид имеет действительно такую конфигурацию, которая ему произвольно была приписана вначале. В результате большинство D-центров и, что очень важно, сам глицериновый альдегид, имеют (R)-конфигурацию, а L-стереоизомеры обычно принадлежат к (S)-ряду.

Одним из исключений является L-цистеин, который принадлежит к (R)-ряду, так сера по правилам старшинства предпочтительнее кислорода. В ситеме КИП генетическое родство между молекулами во внимание не принимается. Эта система может применяться только к соединениям с известной абсолютной конфигурацией. Если конфигурация неизвестна, то соединение приходится обязательно характеризовать знаком его вращения.

Правила последовательного старшинства применимы также и к описанию геометрических изомеров непредельных соединений. Заместители у каждого конца кратной связи при установлении старшинства должны рассматриваться отдельно. Если заместители, имеющие более высокое старшинство, расположены с одной и той же стороны двойной связи, соединению присваивают префикс Z - (от немецкого zusammen - вместе), а если по разные стороны, то префикс Е (entgegen - напротив). (Z, Е) - Номенклатура алкенов рассмтривалась в гл.5. Ниже приведены примеры отнесения структур с использованием (Z, Е) - обозначений.

Последний пример показывает, что преимущественное право включения в главную цепь имеет звено с Z - конфигурацией. (R,S) - Обозначения могут быть применены и для соединений с аксиальной хиральностью. Для отнесения конфигурации изображают проекцию Ньюмена на плоскость, перпендикулярную хиральной оси, и далее применяют дополнительное правило, согласно которому заместители на конце оси, ближайшей к наблюдателю, рассматриваются как имеющие более высокое старшинство, чем заместители на дальнем конце оси. Тогда конфигурацию молекулы определяют направлением обхода заместителей по или против часовой стрелки в обычном порядке убывания старшинства от первого ко второму и затем третьему лиганду. Ниже это проиллюстрировано для 1,3 - аллендикарбоновой и 2,2 - иодиддифенил-6,6-дикарбоновой кислот.

Правило последовательного старшинства разработаны также для планарно и спирально хиральных молекул.

При изображении соединений с помощью фишеровских проекций можно легко определить конфигурацию без построения пространственных моделей. Формулу надо записать так, чтобы младший заместитель находился внизу; если при этом остальные заместители в порядке уменьшения старшинства располагаются по часовой стрелке, соединение относят к (R) - ряду, а если против часовой - то к (S) -ряду, например:

Если младшая группа не находится внизу, то следует поменять ее местами с нижней группой, но следует помнить, что при этом происходит обращение конфигурации.

Основные этапы процедуры наименования абсолютной конфигурации рассмотрим на примере энантиомеров бромфторхлорметана (12) и (13).
Первым этапом является определение порядка старшинства заместителей при асимметрическом атоме.

Старшинство изотопов данного элемента возрастает с увеличением их массового числа.
В соответствии с этим, имеем следующий порядок старшинства заместителей в молекулах бромфторхлорметанов:

Br > CI> F> Н

Самый старший заместитель обозначим буквой а, следующий по старшинству - буквой b и т.д. (то есть, при переходе а b c d старшинство убывает):

Второй этап . Располагаем молекулу таким образом, чтобы самый младший заместитель был удален от наблюдателя (при этом он будет заслонен атомом углерода) и рассматриваем молекулу вдоль оси связи углерода с младшим заместителем:

Третий этап . Определяем, в каком направлении ПАДАЕТ старшинство заместителей, находящихся в нашем поле зрения. Если падение старшинства происходит по часовой стрелке, обозначаем буквой R (от латинского "rectus"правый). Если старшинство падает против часовой стрелки, то конфигурацию обозначаембуквой S(от латинского "sinister"-левый).

Существует также мнемоническое правило, в соответствии с которым падение старшинства заместителей в R-изомере происходит в том же направлении, в котором пишется верхняя часть буквы R, а в S-изомере - в том же направлении, в котором пишется верхняя часть буквы S:

Теперь мы можем написать полные названия энантиомеров, которые однозначно говорят об их абсолютной конфигурации:

Следует подчеркнуть, что обозначение конфигурации стерзоизомера как R или S зависит от порядка старшинства всех четырех заместителей при асимметрическом атоме. Так, в изображенных ниже молекулах пространственное расположение атомов F, CI и Вг относительно группы X одинаково:



Однако, обозначение абсолютной конфигурации этих молекул может оказаться одинаковым или разным. Это определяется природой конкретной группы X.

В ряде химических реакция пространственное расположение заместителей у асимметричеекого атома углерода может измениться, например:

В молекулах (16) и (17) пространственное расположение атомов Н, D (дейтерий) и F относительно заместителей X и Z зеркально противоположно:

Поэтому говорят, что в данной реакции произошло обращение конфигурации .

Обозначение абсолютной конфигурации, определенное по системе Кана-Ингольда-Прелога, при переходе от (16) к (17) может измениться или остаться прежним. Это зависит от конкретных групп X и Z, влияющих на порядок старшинства заместителей при асимметрическом атоме, например:

В приведенных примерах нельзя говорить об обращении абсолютной конфигурации , поскольку исходное соединение и продукт реакции не являются изомерами (см. выше, стр.20). В то же время, превращение одного энантиомера в другой - это обращение абсолютной конфигурации:

VI.Молекулы с двумя асимметрическими атомами.
Диастереомеры.

Если в молекуле есть несколько асимметрических атомов, появляются особенности в построении проекций Фишера, а также новый тип взаимоотношений между стереоизомерами, которого нет в случае молекул с одним
асимметрическим атомом.

Рассмотрим принцип построения проекций Фишера для одного из стереоизомеров 2-бром-З-хлорбутана.

Запись в скобках (2S,3S) означает, что атом углерода с номером 2 имеет S-конфигурацию. То же относится к атому углерода с номером 3. Нумерация атсмов в молекуле производится в соответствии с правилами ИЮПАК для наименования органических соединений.
Асимметрическими атомами в этой молекуле являются атомы углерода С(2) и С(3). Поскольку данная молекула может существовать в различных конформациях относительно центральной связи С-С, необходимо условиться, для какой конформации мы будем строить проекциюФишера. Следует запомнить, что проекция Фишера строится только для заслоненной конформации , причем такой, в которой атомы С, составляющие углеродную цепочку молекулы, располагаются в одной плоскости.
Переведем изображенную выше молекулу в заслоненную конформацию и развернем ее таким образом, чтобы углеродная цепочка была расположена вертикально. Полученная при этом клиновидная проекция соответствует такому расположению молекулы, при котором все связи С-С находятся в плоскости чертежа:

Повернем всю молекулу на 90°относительно центральной связи С-С, не изменяя ее конформацию так, чтобы CН 3 -группы ушли под плоскость чертежа. При этом атомы Br, CI и связанные с С(2) и С(3) атомы водорода окажутся над плоскостью чертежа. Спроектируем ориентированную таким образом молекулу на плоскость чертежа (атомы, находящиеся под плоскостью проектируем вверх; атомы, расположенные над плоскостью - вниз) аналогично тому, как мы делали это в случае молекулы с одним асимметрическим атомом:

В полученной таким образом проекции подразумевается, что лишь центральная связь С-С лежит в плоскости чертежа. Связи С(2)-CН 3 и C(3)-CН 3 направлены от нас. Связи атомов С(2) и С(3) с атомами Н, Вr и CI направлены к нам. Атомы С(2) и С(3) подразумеваются в точках пересечения вертикальной и горизонтальных линий. Естественно, что при пользовании полученной проекцией необходимо соблюдать изложенные выше правила (см.правила).
Для молекул о несколькими асимметрическими атомами число стереоизомеров равно в общэм случае 2 n , где n - число асимметрических атомов. Следовательно, для 2-бром-З-хлорбутана должны существовать 2 2 - 4 стереоизомера. Изобразим их с помощью проекций Фишера.

Эти стереоизомеры можно подразделить на две группы: А и Б. Изомеры А (I и П) связаны операцией отражения в зеркальной плоскости - это энантиомеры (антиподы). То же самое относится к изомерам группы Б: Ш и IV - также энантиомеры.

Если же мы сравним любой из стереоизомеров группы А с любым стереоизомером группы Б, то обнаружим, что они не являются зеркальными антиподами.

Таким образом, I и Ш - диастереомеры. Аналогично, диастереомерами являются по отношению друг к другу I и IV, II и III, II и IV.

Могут реализоваться случаи, когда число изомеров меньше предсказываемого формулой 2 n . Такие случаи встречаются, когда окружение центров хиральности создается одним и тем же набором атомов (или групп атомов), например, в молекулах 2,3-дибромбутанов:

(*Молекулы V и VI хиральны, поскольку в них отсутствуют элементы симметрии группы S n . Однако, и в V и в VI есть простая поворотная ось симметрии С 2 , проходящая через середину центральной связи С -С, перпендикулярная плоскости чертежа. На этом примере видно, что хиральные молекулы не обязательно асимметричны).

Нетрудно видеть, что проекции VII и VII " изображают одно и то же соединение: эти проекции полностью совмещаются друг с другом при повороте на 180° в плоскости чертежа. В молекуле VII легко обнаруживается плоскость симметрии, перпендикулярная центральной С-С-связи и проходящая через ее середину. В данном случае в молекуле есть асимметричекие атомы, но в целом молекула ахиральна. Соединения, состоящие из таких молекул, называются мезо-формами . Мезо-форма не способна вращать плоскость поляризации света, то есть она оптически неактивна.

Согласно определению, любой из энантиомеров (V) и (VI) и мезо-форма являются по отношению друг и другу диастереомерами.

Как известно, физические свойства энантиомеров идентичны (за исключением отношения к плоскополяризованному свету). Иначе обстоит делос диастереомерами, поскольку они не являются зеркальными антиподами. Их физические свойства отличаются так же, как свойства структурных изомеров. Ниже это показано на примере винных кислот.

VII Относительная конфигурация. Эритро-трео-обозначения .

В отличие от понятия "абсолютная конфигурация", термин "относительная конфигурация" используется, по крайней мере, в двух аспектах. Так, под относительной конфигурацией понимается структура соединения, определенная по отношению к некоторой "ключевой" модели путем химических переходов. Таким путем в свое время была определена конфигурация асимметрических атомов в молекулах углеводов по отношению к глицериновому альдегиду. При этом рассуждали примерно так: "Если (+)-глицериновый альдегид имеет изображенную ниже конфигурацию, то связанный с ним химическими превращениями углевод имеет такую-то конфигурацию асимметрических атомов".

Позже, когда был разработан рентгенографический метод определения абсолютной конфигурации, было показано, что в данном случае догадка о том, что (+)-глцериновый альдегид имеет изображенную конфигурацию, верна. Следовательно, верно и отнесение конфигураций асимметрических атомов в углеводах.

Термин "относительная конфигурация" имеет и другое значение. Его используют при сравнении диастереомеров по различиям во взаимном расположении выбранных групп внутри каждого диастереомера. Именно в этом плане об относительной конфигурации говорится в номенклатурных правилах ИЮПАК по химии. Рассмотрим два способа обозначения относительной конфигурации (взаимного расположения групп внутри молекулы) диастереомеров с асимметрическими атомами [существуют диастереомеры без асимметрических атомов, например, цис-и транс-алкены (см. ниже, стр. 52)] на примере стереоизомеров 2-бром-3-хлорбутана (1)-(1V).

В первом варианте используются конфигурационные дескрипторы эритро- и трео-. При этом сравнивают расположение одинаковых заместителей при двух асимметрических атомах в проекции Фишера. Стереоизомеры, в которых одинаковые заместители при асимметрических атомах углерода расположены по одну сторону от вертикальной линии, называют эритро-изомерами . Если такие группы находятся по разнне стороны от вертикальной линии, то говорят о трео-изомерах . В соединениях (I) -(IV) такими реперными -группами являются атомы водорода, и эти соединения получают следующие названия:

Отсюда видно, что обозначение относительной конфигурации у энантиомеров совпадает, а у диастереомеров - различается. Это важно, поскольку и в настоящее время установление абсолютной конфигурации энантиомеров - задача непростая. В то же время, различить диастереомеры достаточно легко, например, с помощью спектров ЯМР. При этом фраза "Из спектра следует, что в результате реакции получается эритро-2-бром-3-хлорбутан" означает, что речь идет об одном из энантиомеров: (I) или (II) [либо о рацемате, состояшем из (I)и (П)] (о каком именно - неизвестно), но не о соединениях (Ш) или (IV). Аналогично, фраза "Мы имеем дело с трео-2-бром-3-хлорбутаном" означает, что имеются в виду соединения (Ш) и (IV), но не (I) или (П).
Запомнить эти обозначения можно, например, так. В эритро-изомере одинаковые заместители "смотрят" в одну сторону, как и элементы буквы "а".
Приставки эритро- и трео- происходят от названий углеводов: треозы и эритрозы. В случае соединений с болтшим числом асимметрических атомов применяют другие стереохимические дескрипторы, такжне происходящие от названий углеводов (рибо-, ликсо-, глюко- и т.п.).

В другой варианте обозначения относительной конфигурации испольмуют символы R* и S* При этом асимметрический атом, имеющий наименьший номер (в соответствии с правилами номенклатуры ИЮПАК), независимо от его абсолютной конфигурации, получает дескриптор R*. В случае соединений (I) - (IV) - это атом углерода, связанный с бромом. Второму асимметрическому атому в данной молекуле также придается дескриптор R*, если обозначения абсолютной конфигурации обоих асимметрических атомов совпадают (оба R или оба S).Так следует поступить в случае молекул (Ш) и (IV). Если же абсолютная конфигурация асиммотрических атомов в молекуле имеет разное обозначение (молекулы I и II), то второй асимметрический атом получает дескриптор S*

Эта система обоэначения относительной конфигурации, по существу, эквивалентна в эритро-трео-системе обозначений: у энантиомеров обозначения совпадают, а у диастереомеров - различаются. Разумеется, если у асимметрических атомов нет одинаковых заместителей, то относительную конфигурацию можно обозначить только с помощью дескрипторов R* и S*

VIII Методы Разделения энантиомеров .

Природные вещества, молекулы которых хиральны, являются индивидуальнымиэнантиомерами. Если же хиральный центр возникает в процессе химическойреакции, проводимой в колбе или промышленном реакторе,получается рацемат, содержащий равные количества двух энантиомеров. При этом возникает проблема разделения энантиомеров с целью получения каждого из них в индивидуальном состоянии. Для этого используют специальные приемы, называемые методами расщепления рацематов .

Метод Пастера.

Л.Пастер в 1848 г. обнаружил, что из водных растворов натриево-аммониевой соли виноградной кислоты (рацемат (+)- и (-)-винных кислот) при определенных условиях выпадают кристаллы двух типов, отличающиеся друг от друга как предмет и его зеркальное отображение. Пастер разделил эти кристаллы с помощью микроскопа и пинцета и получил в чистом виде соли (+)-винной кислоты и (-)-винной кислоты. Такой метод расщепления рацематов, основанный на самопроизвольной кристаллизации энантиомеров в двух различных кристаллических модификациях, получил название "метод Пастера". Однако, этот метод удается применить далеко не всегда. В настоящее время известно около 300 пар энантиомеров, способных к такой "самопроизвольной кристаллизации" в виде кристаллов разной формы. Поэтому были разработаны другие методы, позволяющие разделять энантиомеры.

НОМЕНКЛАТУРА СТЕРЕОХИМИЧЕСКАЯ (от лат. по-menclatura - перечень, список), предназначена для обозначения пространств. строения хим. соединений. Общий принцип номенклатуры стереохимической (правила ИЮПАК , раздел Е) состоит в том, что пространств. строение соед. обозначают префиксами, добавляемыми к назв., не изменяя этих назв. и нумерации в них (хотя иногда стереохим. особенности могут определять выбор между возможными альтернативными способами нумерации и выбор главной цепи).

В основе большинства стереохим. обозначений лежит правило последовательности, к-рое однозначно устанавливает старшинство заместителей. Старшими считаются те из них, у к-рых с рассматриваемым хиральным (см. Хираль-ность)элементом (напр., асимметрич. атомом , двойной связью , циклом) непосредственно связан атом с большим атомным номером (см. табл.). Если эти атомы одинаковы по старшинству, то рассматривают "второй слой", в к-рый входят атомы , связанные с атомами "первого слоя", и т.д., до появления первого различия; номера атомов , связанных двойной связью , при определении старшинства удваивают. Наиб. общий подход к обозначению конфигурации энан-тиомеров - использование R,S-системы. Обозначение R (от лат. rectus-правый) получает тот из энантиомеров , в к-ром при рассмотрении модели со стороны, противоположной младшему заместителю, старшинство остальных заместителей падает по часовой стрелке. Падение старшинства против часовой стрелки соответствует S-обозначению (от лат. sinister-левый) (рис. 1).

Возрастание старшинства заместителей при хиральном центре:


Рис. 1. Схема для определения старшинства заместителей в органических соединениях .


Для углеводов , a-гидроксикислот, a-аминокислот широко используют также D,L-систему, основанную на сравнении конфигурации рассматриваемого асимметрич. центра с конфигурацией соответствующего энантиомера глицеринового альдегида . При рассмотрении проекционных Фишера фор мул расположение групп ОН или NH 2 слева обозначается символом L (от лат. laevus- левый), справа-символом D (от лат. dexter-правый):



s-Диастереомеры (классич. диастереомеры) в простейших случаях обозначают как мезо- и рацемические формы либо эритро- и трео-формы:



Для сложных структур, когда все шесть заместителей двух асимметрич. центров различны, предложены др. системы. Напр., преф, парф (pref, раrf)-обозначения основаны на рассмотрении порядка падения старшинства (по правилу последовательности) в Ньюмена формулах : при одинаковом направлении падения -преф (англ. priority reflective), при противоположном -парф (англ. priority antireflective). Напр.:



Для описания пространств. строения соед. со связью С=С, а также циклических в случаях, исключающих разночтения, употребляют обозначения цис и транс (одинаковые или родственные заместители расположены соотв. по одну и по разные стороны плоскости двойной связи или цикла), напр. циc-2-бутен (ф-ла I), транс-циклобутан-1,2-дикарбоновая к-та (II).

Такие обозначения становятся неоднозначными для алкенов типа abC=Cde,оксимов , азометинов. В этих случаях применяют Z,E -номенклатуру [старшие заместители при двойной связи расположены соотв. по одну (Z, от нем. zusammen - вместе) и по разные (Е, от нем. entgegen-напротив) стороны плоскости двойной связи ], напр. (Z)-2-хлор-2-бутеновая к-та (III), (E,E)-бензилдиоксим (IV).


При наличии трех и более заместителей в молекуле алициклич. или насыщ. гетероциклич. соединения используют r,с,t-номенклатуру. Один из заместителей выбирают за "опорный"-r (референтный, от англ. reference). Для заместителей, лежащих по одну сторону плоскости цикла с опорным атомом , используют обозначение с (от cis-цuc), для заместителей по др. сторону плоскости цикла-t (от trans-трaнc), напр. t-2-с-4-дихлор-циклопентан-М-карбо новая к-та (V).

В ряду стероидов обозначение пространств. расположения заместителей делается на основе условной плоской ф-лы.

Заместители, удаленные от наблюдателя, обозначают a, приближенные к наблюдателю - b. Напр., 11b,17a,21- тригидрокси-4-прегнен-3,20-дион (

НОМЕНКЛАТУРА СТЕРЕОХИМИЧЕСКАЯ

(от лат. по-menclatura - перечень, список), предназначена для обозначения пространств. строения хим. соединений. Общий принцип Н. с. (правила , раздел Е) состоит в том, что пространств. строение соед. обозначают префиксами, добавляемыми к назв., не изменяя этих назв. и нумерации в них (хотя иногда стереохим. особенности могут определять выбор между возможными альтернативными способами нумерации и выбор главной цепи).

В основе большинства стереохим. обозначений лежит правило последовательности, к-рое однозначно устанавливает старшинство заместителей. Старшими считаются те из них, у к-рых с рассматриваемым хиральным (см. Хираль-ность )элементом (напр., асимметрич. атомом, двойной связью, циклом) непосредственно связан с большим атомным номером (см. табл.). Если эти атомы одинаковы по старшинству, то рассматривают "второй слой", в к-рый входят атомы, связанные с атомами "первого слоя", и т. д., до появления первого различия; номера атомов, связанных двойной связью, при определении старшинства удваивают. Наиб. общий подход к обозначению конфигурации энан-тиомеров - использование R,S -системы. Обозначение R(от лат. rectus-правый) получает тот из энантиомеров, в к-ром при рассмотрении модели со стороны, противоположной младшему заместителю, старшинство остальных заместителей падает по часовой стрелке. Падение старшинства против часовой стрелки соответствует S-обозначению (от лат. sinister-левый) (рис. 1).

Возрастание старшинства заместителей при хиральном центре:


Рис. 1. Схема для определения старшинства заместителей в органических соединениях.


Для углеводов, a-гидроксикислот, a-аминокислот широко используют также D,L-систему, основанную на сравнении конфигурации рассматриваемого асимметрич. центра с конфигурацией соответствующего энантиомера глицеринового альдегида. При рассмотрении проекционных Фишера фор мул расположение групп ОН или NH 2 слева обозначается символом L (от лат. laevus- левый), справа-символом D (от лат. dexter-правый):



Рис.2. Диэдральный угол.


Для обозначения конформаций молекулы указывают величину диэдрального (двугранного) угла j между двумя старшими заместителями при связи СЧС (рис. 2), к-рый отсчитывают по часовой стрелке и выражают в условных единицах (одна единица равна 60°), либо используют словесные обозначения расположения старших заместителей в ф-лах Ньюмена (рис. 3).



Рис. 3. Обозначения конформеров бутана (звездочкой отмечены рекомендуемые правилами ИЮПАК).

Лит.: Номенклатурные правила ИЮПАК по химии, т.3, полутом 2, М., 1983, с. 5-118; Ногради М., Стереохимия. Основные понятия и приложение, пер. с англ., М., 1984. В. М. Потапов, М. А. Федоровская.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "НОМЕНКЛАТУРА СТЕРЕОХИМИЧЕСКАЯ" в других словарях:

    Раздел стереохимии, изучающий конформации молекул, их взаимопревращения и зависимость физ. и хим. св в от конформац. характеристик. Конформации молекулы разл. пространств. формы молекулы, возникающие при изменении относит. ориентации отдельных ее … Химическая энциклопедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    - (греч. anti приставка, означающая противоположность; греч. syn приставка, означающая совместность), приставки, обозначающие: 1) гео метрич. изомеры с двойной связью =NЧ и ЧN=NЧ. Напр., в изомерах бензальдоксима син указывает на сближенность… … Химическая энциклопедия

    - (от изо... и греч. meros доля, часть), существование соединений (гл. обр. органических), одинаковых по составу и мол. массе, но различных по физ. и хим. св вам. Такие соед. наз. изомерами. В итоге полемики Ю. Либиха и Ф. Вёлера было установлено… … Химическая энциклопедия

Похожие публикации