Энциклопедия пожаробезопасности

Простые электрические схемы для начинающих электриков. Техника чтения электрических схем. Виды электрических схем и назначение каждой

Как научиться читать принципиальные схемы

Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.

Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО . Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика . Вот так динамик обозначается на схеме.

Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора .

Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.

Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n . Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните...

Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.

На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт» .

Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT , BA , C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.

Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.

Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.

Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.

Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.

Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1 ; постоянные резисторы R1 , R2 , R3 , R4 ; выключатель питания SA1 , электролитические конденсаторы С1 , С2 ; конденсатор постоянной ёмкости С3 ; высокоомный динамик BA1 ; биполярные транзисторы VT1 , VT2 структуры n-p-n . Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.

Что мы можем узнать, взглянув на эту схему?

Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.

Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.

Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор , то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.

На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 - R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.

Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой * . Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.

Напомним, что для замера тока, амперметр включается в разрыв цепи.

Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2* . При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 - 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.

Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5* ), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.

Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.

Этим обозначением показывают так называемый общий провод . В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому "-" выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.

Зачем "общий провод" или "корпус" указывается на схеме?

Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.

Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.

Стоит понимать, что общий провод это не то же самое, что и "земля". "Земля " - это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.

В отдельных случаях общий провод устройства подключают к заземлению.

Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.

Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.

Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.

В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите "Далее "...

Астана-2005

МИНИСТЕРСТВО Сельского хозяйства Республики КАЗАХСТАН

КАЗАХСКИЙ ГОСУДАРСТВЕННЫЙ АГРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИМ. С. СЕЙФУЛЛИНА

Сорокин В.Г., Ногай А.С., Ансабекова Г.Н.,

УЧЕБНОЕ ПОСОБИЕ

«Техника построения и чтения электрических схем »

для энергетических специальностей: 2102, 2104, 2105.

Астана - 2005

Рассмотрено и одобрено «Утверждаю»

К изданию на заседании учебно- Председатель УМС Казахского методического совета Казахского государственного агротехнического

государственного агротехнического университета им. С.Сейфуллина

университета им. С. Сейфуллина __________ _______________

Протокол № __от______________ (Подпись) (Ф. И. О.)

“___” ____________ 2005 г.

Сорокин В.Г. – доцент, зав. кафедрой электроэнергетики и управления Каз АТК

Ногай А.С. профессор кафедры электроснабжения.

Ансабекова Г.Н.- ст. преподаватель кафедры электроснабжения

Учебное пособие составлено в соответствии с требованиями учебного плана и временной типовой учебной программы дисциплины «Электротехнические чертежи» и включают все необходимые сведения для освоения данного курса.

Учебное пособие предназначено для студентов по специальностям 2102, 2104, 2105 на русском языке.

Рецензенты:: Пястолова И.А., к.т.н., доцент кафедры эксплуатации электрообрудования Казахского Государственного Агротехнического Университета им. С. Сейфуллина

Нурахметов Т.Н.., профессор кафеды радиоэлектроники Евразийского Национального университета им. Л.Гумилева

Рассмотрено и одобрено на заседании кафедры Электроснабжения.

Протокол № _2_ __ от “_30_ _ “__09_ _______2005 г.

Рассмотрено и одобрено методической комиссией энергетического факультета.

Протокол № _3___ от “_16 __ “__10_ _____2005 г.

© Казахский Государственный Агротехнический Университет им. С. Сейфуллина

Введение

В современных условиях насыщенности всех отраслей народного хозяйства и быта (независимо от форм собственности) электротехническими изделиями, установками, приборами, средствами связи, ЭВМ и даже электрическими игрушками значительно повысились требования к правилам их четкого, унифицированного начертания и чтения всех видов электротехнических чертежей. Надо сказать, что современные электроустановки настолько сложны, что ни изготовить, ни эксплуатировать, ни ремонтировать их «на память» без чертежа практически невозможно. Такими чертежами и являются электротехнические схемы.



Если чертеж, называемый языком техники, является международным средством передачи технической информации, то условно-графические и буквенные обозначения, утвержденные межгосударственным стандартом, являются международным алфавитом языка чертежей.

Конструкторские (проектные) документы подразделяются на графические (чертежи и схемы) и текстовые (пояснительные записки, расчеты, технические условия спецификации и т.д.)

Разумеется, что разработкой такой документации занимаются опытные специалисты электротехнического профиля.

В процессе обучения, по данной дисциплине, на первом курсе и курсового, дипломного проектирования на последующих курсах, студент приобретает практические навыки, накопит справочный материал по элементам, узлам и блокам электротехнических изделий, научится свободно читать электрические схемы и схемы автоматизации, а также использовать это в практической деятельности.

Основы этих знаний необходимы для всех технических специальностей и специализаций инженерных факультетов.

Целью данного учебного пособия является возможность систематизировать основы знаний по электротехническим дисциплинам, научить правилам электротехнического черчения, приобрести первоначальный справочный информационный материал, а также освоить основы техники чтения электрических схем и схем автоматизации.

Общие сведения

При научных, конструкторских разработках и проектных работах, а также при наладке, монтаже, эксплуатации и ремонте электротехнических установок и проектов электрификации основным унифицированным нормативным документом являются электрические схемы, которые регламентируются международными и государственными стандартами, чаще всего входящими в «Единую систему конструкторской документации» (ЕСКД) ГОСТ 2721-74, 2752-74, 2755-87. Так, например ГОСТ 2702-75, Правила выполнения электрических схем.

В соответствии с государственными и международными стандартами основные виды и типы схем, применяемые в проектах электрификации и электротехнических изделий согласно ГОСТ 2701-84, нумеруются соответствующими шифрами, состоящими из букв и цифр (см. таблицу 1), которые проставляются в штампе чертежа.

Таблица 1. Основные виды и типы схем, применяемые в проектах электрификации

Например, в штампах чертежей курсового, дипломного проекта «Схема принципиальная электрическая, шифруется АБВГ.ХХХХХХ 25/Э3, а схема соединений автоматических устройств, видов которых в комплексе несколько, шифруется как АБВГ.ХХХХХХ 253 А4.2 А4 и т.п.

Электротехнические схемы выполняются на листах (форматах) следующих размеров: А0-841*1189; А1-594*841; А2-420*594; А3-297*420; А4-210*297-ГОСТ 2.301-68

Электротехнические схемы разрабатываются и поставляются для использования, как правило, комплектно. Например: - типовой комплект: структурная, функциональная, принципиальная и монтажная схемы.

В совокупности электротехнические схемы должны содержать информативность достаточную для проектирования, изготовления, монтажа, настройки, эксплуатации и ремонта изделия и вместе с тем должны быть рациональными, компактными и удобными в чтении. Поэтому необходимо понимать их смысл (формулировку), знать приёмы черчения и правила их чтения. Основные термины и определения даны в таблице 2.

Таблица 2. Термины и определения

Типы электротехнических схем

Структурные схемы

Структурная схема определяет основные функциональные части изделия, их назначение и взаимосвязи (например, см. рис. 1.1).

Функциональные части на схеме изображают в виде прямоугольников.

Графическое построение схемы должно давать наиболее наглядное представление о последовательности взаимодействия функциональных частей в изделии, для чего в каждой части указывают наименование функций и делают поясняющие (указательные) надписи и параметры.

З.У.
УЭ
ПЭ
В.Э.
О.У.
Р.О.
И.М.

Функциональные схемы

Функциональная схема разъясняет определенные процессы функционирования управления как электрические, так и технологические, протекающие в системе и устройстве в целом, так и в отдельных частях и элементах.

Более подробно эти схемы будут рассмотрены как функционально-технологические схемы автоматизации во 2 части книги.

Принципиальные схемы

Принципиальная (полная) схема – схема, определяющая полный состав элементов, узлов и связей между ними, а также элементов, которыми начинаются и заканчиваются входные и выходные цепи (разъемы, зажимы, клеммы и т.п.) и дающая детальное представление о принципах работы изделия (установки).

Основные требования стандартов к правилу выполнения принципиальных схем, закреплены в ГОСТ 2.710-81, ГОСТ 2.755-87, ГОСТ 2.721-74, ГОСТ 34.201-89, ГОСТ 21.403-80.

Схемы вычерчиваются для приборов, аппаратов и систем, находящихся в отключенном (обесточенном) состоянии.

Справочный графический материал электротехнических схем, как правило, не соответствует масштабам и общему виду элемента, и поэтому в стандартны, вводят требования к черчению элементов в виде условно-графических изображений и нанесении условно буквенно-цифровых обозначений, что, естественно вносит определенные трудности при изучении.

Для того чтобы осмысленно читать схемы необходимо уяснить, что на ней изображено. Для этого следует: знать терминологию и понимать систему построения графических и буквенно-цифровых условных обозначений элементов схем; знать, в каких случаях применяются то или иное обозначение.

Условные графические обозначения образуются из простейших геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по системе, предусмотренной стандартом, дает возможность легко изобразить все, что требуется: аппарат, приборы, электрические машины, линии механической и электрической связи, виды соединений обмоток, род тока, характер и способы регулирования и т.п.

Построить условные графические обозначения, значит, для каждого элемента предусмотреть специальный знак, но тогда потребовались бы десятки тысяч сложных знаков. Так как с каждым днем появляются новые элементы и аппараты, новые способы соединения и заранее предусмотреть обозначения на все случаи было бы невозможно. Условные обозначения были бы сложны как для изображения, так и для чтения.

Для упрощения изображения и чтения стандарты и правила допускают в схемах достаточно понятные фрагменты чертить без детализации (блоки, жгуты, разъемы, логические элементы и т.п.), либо применять дополнительные общепринятые изображения.

Для изучения и использования в процессе образования предлагается следующий справочный материал: условно-буквенных обозначений и условно-графических изображений.

Условно буквенные и цифровые обозначения в электрических схемах присваиваются всем элементам, устройствам и функциональным группам в виде однобуквенных и двухбуквенных кодов с цифрами ГОСТ 2.710-81 (рекомендуется применять двухбуквенные коды).

Буквенно-цифровые обозначения предназначены для записи кодом сведений об элементах, устройствах либо нанесенными на чертежи, либо используется как информация в текстовых документах.

В электрических схемах позиционное обозначения элемента состоит из трех частей, имеющих самостоятельное смысловое значение и записываемых без разделительных знаков и пробелов (буквы латинского алфавита) см. табл. 3

В первой части одной буквой (однобуквенный код) или нескольких букв (двухбуквенный код) указывают вид элементов, например, R-резистор, РА-амперметр.

Во второй части указывают номер элемента среди ему подобных (R1,R1,C1,C2,HL1,HL2 и т.д.). Допускается к номеру устройства добавлять через точку условный номер изображаемой части устройства, (например, KV1.5- пятый контакт реле KV1). Однако, обычно при выполнении принципиальных электрических схем, в том числе и при разнесенном способе выполнения, различным однотипным элементам, например, контактам одного устройства (реле и т.п.), не присваивают особых позиционных обозначений; они имеют тоже обозначение, что и устройство, которому они принадлежат. Так, все контакты реле KV будут иметь позиционное обозначение KV1. Первая и вторая части позиционного обозначения являются обязательными.

В третей части указывается функциональное назначения элементов (R1F-резистор R1, используемый как защитный).

Двухбуквенные коды для указания функционального назначения элементов приведены в таблице 3.

Таблица 3. Позиционное обозначение элементов схемы (буквенные коды)

Примеры видов элементов Код
Приборы измерительные: P
Амперметр PA
Счетчик активной энергии PI
Счетчик реактивной энергии PK
Омметр PR
Регистрирующий прибор: PS
Вольтметр PV
Ваттметр PW
Выключатели и разъединители в силовых цепях: Q
Выключатель автоматический QF
Короткозамыкатель QK
Разъединитель (концевой выключатель) QS
Трансформаторы, автотрансформаторы: T
Трансформатор тока TA
Электромагнитный стабилизатор TS
Трансформатор напряжения TV
Конденсаторы C
Генераторы, источники питания: G
Батарея GB
Двигатели M
Катушки индуктивности, дроссели, реакторы L
Разрядники, Предохранители, устройства защиты: F
Дискретный элемент защиты по току мгновенного действия FA
Дискретный элемент защиты по току инерционного действия FP
Предохранитель плавкий FU
Дискретный элемент защиты по напряжению, разрядник FV
Элементы разные: E
Нагревательный элемент EK
Лампа осветительная EL
Реле, контакторы, пускатели: K
Реле токовое KA
Реле указательное KH
Реле электротепловое KK
Контактор, магнитный пускатель KM
Реле времени KT
Реле напряжения KV
Устройство (усилитель, блок, приборы) AA
Преобразователи неэлектрических величин в электричестве BA
Устройство индикации MA
Интегральные схемы: аналоговые, цифровые DA,DD
Транзисторы VT
Диоды VD
Тиристор VS
Выключатель-переключатель SA
Выключатель кнопочный SB

При необходимости на схеме маркируют участки электрических цепей для опознания участков цепей, и может отражать их функциональное назначение в схеме. Участки цепи, разделенные размыкающими или замыкающими контактами приборов, обмотками реле, резисторами и другими элементами, имеют разную маркировку. Участки цепи, разделенные разъемными или неразборными контактными соединениями, должны иметь одинаковую маркировку. Для выявления различий участков цепей разрешается добавлять к маркировке числа или другие обозначения, например, 75-4 (участок 4 принадлежит цепи управления двигателей 75).

Маркировку проставляют последовательно от ввода источника питания нагрузки, а разветвляющиеся участки цепи – сверху вниз и слева направо. Силовые цепи переменного тока маркируют буквами, обозначающими фазы, и последовательными числами (А, В, С, А1, В1, С1 и т.д.).

Входные выходные силовые цепи постоянного тока маркируют с указанием полярности: плюс «+», минус «-». Участки цепей положительной полярности маркируют четными числами, отрицательной полярности – нечетными. Цепи управления (пуска и остановка электрических двигателей, сигнализации, защиты, блокировки, измерения) маркируют последовательными арабскими цифрами.

Последовательность чисел допускается устанавливать в пределах функциональной цепи. Маркировка может быть проведена числами с учетом функциональных признаков цепей, что упрощает чтение схемы, например:

Цепи измерения, управления, регулирования……………….от 1 до 399

Цепи сигнализации…………………………………………….от 400 до 799

Цепи питания…………………………………………………...от 800 до 999

Маркировку, (число) проставляют около концов или в середине участка цепи (при вертикальном расположении цепи – слева от изображения участка цепи, при горизонтальном – над изображением участка).

Для дополнительной информации о принципе работы узлов и отдельных устройств принципиальную схему дополняют таблицами, примечаниями, циклограммами. В качестве иллюстрации такой информации может служить таблица 4.

Таблица 4. Циклограмма.

Контакт Время в минутах Назначение контакта
К1 Управление двигателем КЭП
К2 Управление мешалкой
К3 Управление вентилятором
К4 Управление клапаном 1
К5 Управление клапаном 2
К6 Управление клапаном 3

Условно графические изображения элементов выполняют линиями толщиной от 0,2 до 1 мм. (в зависимости от формата листа и функциональной значимости). Так, например, для общих силовых цепей можно использовать линии толщиной 1 мм, для силовых цепей отдельных потребителей – толщиной до 0,6 мм, для цепей управления – толщиной 0,2-0,4 мм. Условно графические изображения основных элементов приведены в таблице 5.

Таблица 5. Условно графические изображения электротехнических схем

Наименование Условное изображение
Обозначение общего применения
Провод отдельный
Пересечение проводов, линий связи А) без соединения В) с электрическим соединением А) В)
Кабель, жгут
Экранизированная линия
Направление сигнала электрического
Механическая связь
Токосъемное подвижное устройство для ЭПС А) общее обозначение В) управляемый ноитограф А) В)
Допустимое изображение цепей трехфазных симметричных систем (однолинейное изображение)
А) заземление В) корпус А) В)
Контакт А) разборного В) неразборного соединения С) разъем штепсельный А) В) С)
Электрические машины
Машина электрическая А)общее обозначение В) при обозначении ротора и статора (однолинейное изображение) А) В)
Машина асинхронная с фазным ротором
Машина асинхронная двухфазная
Машина постоянного тока
Машина постоянного тока со смешанным возбуждением
Катушка индуктивности, дроссели, трансформаторы
Обмотка катушки индуктивности, дросселя, трансформатора
Катушка индуктивности с ферромагнитным сердечником
Реактор
Трансформатор однофазный с ферромагнитным сердечником А) основное изображение В) допустимое изображение А) В)
Трансформатор трехфазный А) общее обозначение В) трехобмоточный А) или В)
Автотрансформатор А) трехфазный В) однофазный
Трансформатор тока измерительный
Трансформатор напряжения измерительный А) однофазный В) трехфазный А) В)
Сердечник (магнитопровод) А) ферромагнитный В) диамагнитный А) В)
Устройства коммутационные и контактные соединения
Выключатель силовой высоковольтный
Разъединитель высоковольтный
Короткозамыкатель
Катушка реле, контактора и магнитного пускателя А) общее обозначение В) теплового реле А) В)
Контакт коммутационного устройства А) замыкающий В) размыкающий А) В)
Штепсельная розетка А) открытой проводки В) закрытой проводки А) В)
Контакт с механической связью (путевой выключатель, реле давления)
Контакт теплового реле
Выключатель трехполюсный А) без автоматического возврата В) с автоматическим возвратом А) В)
Контакт замыкающий с замедлителем (контакт реле времени) А) при срабатывании В) при возврате А) В)
Контакт А) переключающий В) со средним положением А) В)
Контакт силовой цепи
Выключатели кнопочный нажимной А) замыкающий контакт В) размыкающий контакт А) В)
Контакт электротеплового реле (при разнесенном способе)
Переключатель однополюсный, трехпозиционный (галетный)
Переключатели со сложной коммутацией
Резисторы, конденсаторы
Резистор постоянный
Резистор переменный а) параметрический в) потенциометр с) реостат d) подстрочный е) терморезистор А) В) С) D) Е)
Электронагреватель
Конденсатор постоянной емкости А) общее изображение В) полярный С) электролитический А) В) С)
Разрядник
Предохранитель плавкий
Приборы
Прибор А) интегрирующий (счетчик электрической энергии) В) регистрирующий А) В)
Прибор электроизмерительный показывающий (например, амперметр)
Сигнальная аппаратура
Лампа накаливания А) осветительная и сигнальная В) светильник А) В)
Газонаполненные индикаторы А) лампа низкого давления В) газоразрядный знаковый индикатор
Вторичные источники питания и их элементы
Род тока и назначение A) постоянный B) однофазный переменный C) трехфазный переменный промышленной частоты D)переменный повышенной частоты А) В) С) D)
Элемент гальванический или аккумуляторный или
Блок питания
Схемы соединения диодов мостовые A) однофазная B) трехфазная A) В)
Стабилитроны а) односторонние в) двухсторонние А) В)
Элементы электронных схем
А) диод B) тиристор C) светодиод D) оптрон A) B) C) D)
Транзисторы типа A) р-п-р b) п-р-п A) B)
Однопереходный транзистор
Униполярные транзисторы полевой A) п-канальный B) р-канальный A) B)
МДП – транзистор
Элементы интегральной электронной техники
Базовый элемент
Схемы логические A) повторителя B) инвертора (НЕ) C) сложения (ИЛИ) D) умножения (И) A) B) C) D)
Биполярная ячейка (триггер)
Дешифратор
Счетчик цифровой
Усилитель операционный

Практически любая принципиальная электрическая схема строится на базе элементарных цепей и типовых узлов. Это значительно облегчает разработку построение и чтение схемы любой сложности.

Отдельные цепи принципиальных электрических схем рекомендуется изображать горизонтальными (вертикальными) линиями (строками) в последовательности сверху вниз (слева направо), определяемой порядком связей и срабатывания установленных в них элементов. Такой способ выполнения схем называют строчным. Для облегчения нахождения элементов на схеме строки нумеруют: 1,2,3,4 и т.д. (см. на рис. 2)

Коммутирующие устройства (контакты, реле, кнопочные выключатели и т.д.) на схемах, как правило, должны изображаться в положении, соответствующим отсутствию тока во всех цепях схемы и внешних принудительных сил. Если в схеме приняты другие положения таких устройств, это следует оговорить в примечании. Контакты сигнализирующих и регулирующих приборов изображают при рациональном значении их параметров.

Рис 1.2 Пример обозначения строчных цепей.

Если схема сложна, для облегчения ее чтения с правой стороны строк следует дать поясняющие надписи, например: «Двигатель включен» и т.п.

Устройства на схемах могут изображаться совмещенным и разнесенным способом (рис 3). При совмещенном способе составные части устройств (например, катушка и контакты реле К1) изображают близко друг к другу. При разнесенном способе составные части располагают в разных местах схемы так, чтобы отдельные части цепи были изображены более наглядно. Разрешается некоторые устройства в схеме показывать разнесенным способом, а остальные (конструктивно более сложные) – совмещенным. Допускается также (в случае, если вся схема выполнена разнесенным способом) на свободном поле листа дать графические обозначения отдельных устройств, выполненные совмещенным способом (рис 1.3).

Рис 1.3. Принципиальная электрическая схема управления электродвигателем:

а) – совмещенный способ изображения элементов; б) – разнесенный способ изображения элементов: А1 – контактор; А2 – кнопочная станция; А3 – реле тепловой защиты; КМ – магнитный пускатель: КК1, КК2 – контакты реле тепловой защиты (А3).

Таким образом мы познакомились с техникой черчения схем электроустановок (см. табл. 2). Комплекс электроустановок для передачи транспорта, распределения (электроснабжения) электроэнергии называют электрическими сетями. Они имеют комплекс воздушных и кабельных линий, подстанций, распределительных устройств, токопроводов и т.д. Электросети до 1000В и свыше 1000В.

Подстанции обеспечивают преобразование и распределение электроэнергии. Для этого на территории подстанции расположено технологическое электрическое оборудование соединенное в соответствии с главной электрической принципиальной схемой. Пример которой смотри на рис.4.

Рис.4. Схема подстанции 110кВ с отделителями и короткозамыкателями.

Техника чтения электрических схем

Чтение принципиальной схемы начинают с определения назначения устройства, состава его схемы (силовая часть, блока управления, защиты и т.д.) и ознакомления с перечнем элементов, для чего находят на схеме каждый из них, читают все примечания и пояснения.

Для примера как всегда возьмём наш любимый Шевроле Лачетти.

Особенно сложно даётся новичкам чтение схем иностранных автомобилей, потому что сразу бросают в ступор аббревиатуры на английском языке и непонятные условные обозначения.

Как читать электрические схемы автомобиля

Но не стоит сразу пугаться и отказываться от цели разобраться в схеме. Достаточно потратить несколько минут на изучение справочной информации и потихоньку всё встанет на свои места, а электрическая схема уже не будет казаться чем-то страшным и непонятным.


Каждая схема состоит из элементов, узлов и механизмов, а соединяется это всё при помощи проводов разного цвета и сечения.

Содержание цепи электрической схемы

Вот схема для примера

Понятно, что на ней изображено? Если нет, тогда разберёмся по порядку.

Красным пунктиром обведены отдельные элементы схемы и обозначены для наглядности латинскими буквами от А до Н:

  • А — верхние горизонтальные линии: Линии электропитания: 30, 15, 15А, 15С, 58. То есть, по этим проводам осуществляется питание схемы. В зависимости, в какое положение повёрнут ключ зажигания — соответственно напряжение подаётся на тот или иной провод

    Номер блока питания

    Состояние блока питания

    Питание от аккумуляторной батареи (В+) при замке зажигания в положении «ON» и «ST» (IGN 1)

    Питание от аккумуляторной батареи (В+) при замке зажигания в положении «ON» (IGN 2)

    Питание от аккумуляторной батареи (В+) при замке зажигания в положении «ON» и «АСС»

    Питание от аккумуляторной батареи (В+) непосредственно, независимо от положения замка зажигания

    Масса соединена с аккумуляторной батареей (-)

    Питание от аккумуляторной батареи (В+) при переключателе фар в положении 1 и 2 (цепь подсветки)

  • В — Ef20 или F2: номер предохранителя
    • Ef20 — предохранитель №20 в блоке предохранителей в моторном отсеке
    • F2 — предохранитель №2 в блоке предохранителей в салоне автомобиля
  • С — Разъем (С101~С902)
    • Разъем № С203 контакта №1
  • D — S201: контактная колодка (S101~S303), то есть, S — колодка, а 201 — это её номер

    УСЛОВНОЕ

    ОБОЗНАЧЕНИЕ

    ЗНАЧЕНИЕ

    Предохранитель в блоке предохранителей в моторном отсеке

    Предохранитель в блоке предохранителей в салоне автомобиля

    Контактная колодка (соединительный разъем)

  • Е — Реле и его внутренняя цепь. 85, 86, 87 и 30 — это номера контактов реле. Illumination relay — Реле подсветки. Весь перевод английских обозначений можно посмотреть в статье
  • F — Переключатель и его внутренняя схема. Head lamp switch — переключатель фар.
  • G — Цвет провода

    Сокращение

    Цвет

    Сокращение

    Цвет

    Коричневый

    Фиолетовый

Основными техническими документами для электромонтера и электромонтажника являются чертежи и электрические схемы. Чертеж включает размеры, форму, материал и состав электроустановки. По нему не всегда можно понять функциональную связь между элементами. В ней помогает разобраться электрическая схема, которую необходимо иметь при пользовании чертежами электроустановок.

Чтобы читать , необходимо хорошо знать и помнить: наиболее распространенные условные обозначения обмоток, контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п., условные обозначения, применяющиеся в той области с которой преимущественно приходится сталкиваться в силу профессии, схемы наиболее распространенных узлов электроустановок, например двигателей, выпрямителей, освещения лампами накаливания и газоразрядными и т. п, свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Расчленение схем на простые цепи

Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых - определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно "лишние" условия, и оценить их последствия.

Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.

Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, резистор, лампа, обмотка реле, разряженный конденсатор и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.). Понятно, что в цепях, не допускающих размыкания, например в цепях трансформаторов тока, контактов нет.

При чтении схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Реальность схемных решений

Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны.

Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.

Нереальность схемных решений обычно имеет в основном следующие причины:

    не хватает энергии для срабатывания аппарата,

    В схему проникает "лишняя" энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию ,

    не хватает времени для совершения заданных действий,

    аппаратом задана уставка, которая не может быть достигнута,

    совместно применены аппараты, резко отличающиеся по свойствам,

    не учтены коммутационная способность, уровень изоляции аппаратов и проводки, не погашены коммутационные перенапряжения,

    не учтены условия, в которых электроустановка будет эксплуатироваться,

    при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.

Порядок чтения электрических схем и чертежей

Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.

Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.

Если она не отражена па чертежах, то ее выясняют и записывают.

На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.

При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,

3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,

4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,

5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,

5) проверяют схему па отсутствие ложных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами ( , СНиП и т. п.).

Электрическая схема представляет собой документ, в котором по правилам ГОСТ обозначаются связи между составными частями устройств, работающих за счет протекания электроэнергии. Как Вы понимаете, этот чертеж дает понимание электрикам о том, как работает установка и из каких элементов она состоит. Основное назначение электросхемы – помощь в подключении установок, а также поиске неисправности в цепи. Далее мы расскажем, какие бывают виды и типы электрических схем, предоставив краткое описание, характеристики и примеры каждой разновидности.

Общая классификация

Для начала следует разобраться, что подразумевают под типами, а что под видами документов. Итак, согласно ГОСТ 2.701-84, существуют следующие виды схем (в скобках краткое обозначение):

  1. Электрические (Э).
  2. Гидравлические (Г).
  3. Пневматические (П).
  4. Газовые (Х).
  5. Кинематические (К).
  6. Вакуумные (В).
  7. Оптические (Л).
  8. Энергетические (Р).
  9. Деления (Е).
  10. Комбинированные (С).

Что, касается типов, основными считаются:

  1. Структурные (1).
  2. Функциональные (2).
  3. Принципиальные (полные) (3).
  4. Соединений (монтажные) (4).
  5. Подключения (5).
  6. Общие (6).
  7. Расположение (7).
  8. Объединенные (8).

Исходя из указанных обозначений, можно по наименованию электросхемы понять ее вид и тип. Как пример, документ с названием Э3 является принципиальной электрической схемой. С виду она выглядит так:

Далее мы подробно рассмотрим, назначение и состав каждой из перечисленных типов электросхем. Рекомендуем перед этим ознакомиться со , чтобы было еще проще понять, что собой представляет каждый вариант чертежа.

Назначение каждой электросхемы

Этот тип документа является наиболее простым и дает понимание о том, как работает электроустановка и из чего она состоит. Графическое изображение всех элементов цепи позволяет изначально увидеть общую картину, чтобы переходить к более сложному процессу подключения или же ремонта. Порядок чтения обозначается стрелочками и поясняющими надписями, что позволяет разобраться в структурной электрической схеме даже начинающему электрику. Принцип построения Вы можете увидеть на примере ниже:

Функциональная электросхема установки, по сути, не слишком отличается от структурной. Единственное отличие – более подробное описание всех составляющих узлов цепи. Выглядит этот документ следующим образом:

Принципиальная

Принципиальная электрическая схема чаще всего применяется в распределительных сетях, т.к. дает самое раскрытое пояснение о том, как работает рассматриваемое электрооборудование. На таком чертеже должны обязательно быть указаны все функциональные узлы цепи и вид связи между ними. В свою очередь, принципиальная электросхема может иметь две разновидности: однолинейная или полная. В первом случае на чертеже изображают только первичные сети, называемые также силовыми. Пример однолинейного изображения Вы можете увидеть ниже:

Полная принципиальная схема может быть развернутой или элементной. Если электроустановка несложная и на один главный чертеж можно нанести все пояснения, достаточно сделать развернутый план. Если же Вы имеете дело со сложной аппаратурой, которая имеет в составе цепь управления, автоматизации и измерения, лучше разнести все отдельные узлы на разные листы, чтобы не запутаться.

Существует также принципиальная электросхема изделия. Этот тип документа представляет собой своеобразную выкопировку из общего плана, на которой обозначено только, как работает и из чего состоит определенный узел.

Монтажная

Эту разновидность электрических схем мы чаще всего используем на сайте, когда рассказываем о том, как самостоятельно выполнить . Дело в том, что на монтажной электросхеме можно показать точное расположение всех элементов цепи, способ их соединения, а также буквенно-цифровые характеристики составляющих чертеж установок. Если взять за пример , на ней мы увидим, где нужно размещать розетки, выключатели, светильники и остальные изделия.

Основное назначение монтажной схемы – руководство для проведения электромонтажных работ. Согласно подготовленному чертежу можно понять, где, что и как нужно подключать.

Кстати, монтажной также считается электросхема соединений, которая предназначена для подключения электрооборудования, а также соединения установок между собой в пределах одной цепи. При руководствуются именно монтажной схемой.

Ну и последней из применяемых в распределительных сетях электросхемой является объединенная, которая может включать в себя несколько видов и типов документов. Ее используют в том случае, если можно без сильного нагромождения чертежа обозначить все важные особенности цепи. Используют объединенный проект чаще всего на предприятиях. Домашним мастерам такой тип схемы вряд ли может встретиться. Пример Вы можете увидеть ниже:

Существует также схема кабельных трасс, которая представляет собой упрощенный план прокладки кабельной линии к распределительным пунктам и трансформаторным подстанциям. Ее назначение аналогично монтажной электросхеме – с помощью данного документа монтажники руководствуются как вести линию от точки А к точке Б.

Похожие публикации