Енциклопедія пожежної безпеки

Як вирішується геометрична прогресія. Що таке геометрична прогресія? Основні поняття

Арифметична та геометрична прогресії

Теоретичні відомості

Теоретичні відомості

Арифметична прогресія

Геометрична прогресія

Визначення

Арифметичною прогресією a nназивається послідовність, кожен член якої, починаючи з другого, дорівнює попередньому члену, складеному з одним і тим самим числом d (d- Різниця прогресій)

Геометричною прогресією b nназивається послідовність відмінних від нуля чисел, кожен член якої, починаючи з другого, дорівнює попередньому члену, помноженому на одне і те ж число q (q- знаменник прогресії)

Рекурентна формула

Для будь-якого натурального n
a n + 1 = a n + d

Для будь-якого натурального n
b n + 1 = b n ∙ q, b n ≠ 0

Формула n-ого члена

a n = a 1 + d (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Характеристична властивість
Сума n-перших членів

Приклади завдань із коментарями

Завдання 1

У арифметичної прогресії (a n) a 1 = -6, a 2

За формулою n-ого члена:

a 22 = a 1+ d (22 - 1) = a 1+ 21 d

За умовою:

a 1= -6, отже a 22= -6 + 21 d.

Необхідно знайти різницю прогресій:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = - 48.

Відповідь: a 22 = -48.

Завдання 2

Знайдіть п'ятий член геометричної прогресії: -3; 6;....

1-й спосіб (за допомогою формули n-члена)

За формулою n-ого члена геометричної прогресії:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4.

Так як b 1 = -3,

2-й спосіб (за допомогою рекурентної формули)

Оскільки знаменник прогресії дорівнює -2 (q = -2), то:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Відповідь: b 5 = -48.

Завдання 3

В арифметичній прогресії ( a n ) a 74 = 34; a 76= 156. Знайдіть сімдесят п'ятий член цієї прогресії.

Для арифметичної прогресії характеристичне властивість має вигляд .

З цього випливає:

.

Підставимо дані у формулу:

Відповідь: 95.

Завдання 4

В арифметичній прогресії ( a n ) a n= 3n - 4. Знайдіть суму сімнадцяти перших членів.

Для знаходження суми n-перших членів арифметичної прогресії використовують дві формули:

.

Яку з них у цьому випадку зручніше застосовувати?

За умовою відома формула n-ого члена вихідної прогресії ( a n) a n= 3n - 4. Можна знайти відразу і a 1, і a 16без знаходження d. Тому скористаємося першою формулою.

Відповідь: 368.

Завдання 5

В арифметичній прогресії( a n) a 1 = -6; a 2= -8. Знайдіть двадцять другий член прогресії.

За формулою n-ого члена:

a 22 = a 1 + d (22 – 1) = a 1+ 21d.

За умовою, якщо a 1= -6, то a 22= -6 + 21d. Необхідно знайти різницю прогресій:

d = a 2 – a 1 = -8 – (-6) = -2

a 22 = -6 + 21 ∙ (-2) = -48.

Відповідь: a 22 = -48.

Завдання 6

Записано кілька послідовних членів геометричної прогресії:

Знайдіть член прогресії, позначений літерою x.

За рішенням скористаємося формулою n-го члена b n = b 1 ∙ q n - 1для геометричних прогресій Перший член прогресії. Щоб знайти знаменник прогресії q необхідно взяти будь-який із цих членів прогресії та розділити на попередній. У нашому прикладі можна взяти та розділити на. Отримаємо, що q = 3. Замість n у формулу підставимо 3, оскільки необхідно знайти третій член заданої геометричної прогресії.

Підставивши знайдені значення формулу, отримаємо:

.

Відповідь: .

Завдання 7

З арифметичних прогресій, заданих формулою n-го члена, виберіть ту, для якої виконується умова a 27 > 9:

Оскільки задана умова має виконуватися для 27-го члена прогресії, підставимо 27 замість n у кожну з чотирьох прогресій. У 4-й прогресії отримаємо:

.

Відповідь: 4.

Завдання 8

В арифметичній прогресії a 1= 3, d = -1,5. Вкажіть найбільше значення n , для якого виконується нерівність a n > -6.

Розглянемо тепер питання сумування нескінченної геометричної прогресії. Назвемо частковою сумою даної біс кінцевої прогресіїсуму її перших членів. Позначимо часткову суму символом

Для кожної нескінченної прогресії

можна скласти (також нескінченну) послідовність її часткових сум

Нехай послідовність при необмеженому зростанні має межу

І тут число S, т. е. межа часткових сум прогресії, називають сумою нескінченної прогресії. Ми доведемо, що нескінченна спадна геометрична прогресія завжди має суму, і виведемо формулу для цієї суми (можна також показати, що при нескінченна прогресія не має суми, не існує).

Запишемо вираз часткової суми як суми членів прогресії за формулою (91.1) і розглядатимемо межу часткової суми при

З теореми п. 89 відомо, що для спадної прогресії; тому, застосовуючи теорему про межу різниці, знайдемо

(Тут також використано правило: постійний множник виноситься за знак межі). Існування доведено, і одночасно отримано формулу суми нескінченно спадної геометричної прогресії:

Рівність (92.1) можна також писати як

Тут може здаватися парадоксальним, що сумі нескінченної множини доданків приписується цілком певне кінцеве значення.

Можна навести наочну ілюстрацію для пояснення такого положення. Розглянемо квадрат із стороною, що дорівнює одиниці (рис. 72). Розділимо цей квадрат горизонтальною лінією на дві рівні частини і верхню частину прикладемо до нижньої так, щоб утворився прямокутник зі сторонами 2 і . Після цього праву половину цього прямокутника знову розділимо горизонтальною лінією навпіл і верхню частину прикладемо до нижньої (як показано на рис. 72). Продовжуючи цей процес, ми весь час перетворимо вихідний квадрат з площею, що дорівнює 1, в рівновеликі фігури (що приймають вигляд сходів з сходами, що потоншуються).

При нескінченному продовженні цього процесу вся площа квадрата розкладається в нескінченне число доданків - площ прямокутників з основами, рівними 1, і висотами Площі прямокутників якраз утворюють при цьому нескінченну спадаючу прогресію її сума

тобто, як і слід очікувати, дорівнює площі квадрата.

приклад. Знайти суми наступних нескінченних прогресій:

Рішення, а) Зауважуємо, що в цій прогресії Тому за формулою (92.2) знаходимо

б) Тут означає, за тією самою формулою (92.2) маємо

в) Знаходимо, що в цій прогресії Тому ця прогресія не має суми.

У п. 5 було показано застосування формули суми членів нескінченно спадної прогресії до обігу періодичного десяткового дробу у звичайний дріб.

Вправи

1. Сума нескінченно спадної геометричної прогресії дорівнює 3/5, а сума її перших чотирьох членів дорівнює 13/27. Знайти перший член та знаменник прогресії.

2. Знайти чотири числа, що утворюють знакочередову геометричну прогресію, у якої другий член менше першого на 35, а третій більше четвертого на 560.

3. Показати, що якщо послідовність

утворює нескінченно спадну геометричну прогресію, те й послідовність

за будь-якого утворює нескінченно спадаючу геометричну прогресію. Чи збережеться це твердження при

Вивести формулу добутку членів геометричної прогресії.

Урок та презентація на тему: "Числові послідовності. Геометрична прогресія"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання! Усі матеріали перевірені антивірусною програмою.

Навчальні посібники та тренажери в інтернет-магазині "Інтеграл" для 9 класу
Ступені та коріння Функції та графіки

Діти, сьогодні ми познайомимося з ще одним видом прогресії.
Тема сьогоднішнього заняття – геометрична прогресія.

Геометрична прогресія

Визначення. Числова послідовність, у якій кожен член, починаючи з другого, дорівнює добутку попереднього та деякого фіксованого числа, називається геометричною прогресією.
Задамо нашу послідовність рекурентно: $b_(1)=b$, $b_(n)=b_(n-1)*q$,
де b та q – певні задані числа. Число q називається знаменником прогресії.

приклад. 1,2,4,8,16… Геометрична прогресія, яка має перший член дорівнює одиниці, а $q=2$.

приклад. 8,8,8,8 ... Геометрична прогресія, у якої перший член дорівнює восьми,
а $ q = 1 $.

приклад. 3,-3,3,-3,3… Геометрична прогресія, у якої перший член дорівнює трьом,
а $ q = -1 $.

Геометрична прогресія має властивості монотонності.
Якщо $b_(1)>0$, $q>1$,
то послідовність зростаюча.
Якщо $b_(1)>0$, $0 Послідовність прийнято позначати як $b_(1), b_(2), b_(3), ..., b_(n), ...$.

Так само як і в арифметичній прогресії, якщо в геометричній прогресії кількість елементів звичайно, то прогресія називається кінцевою геометричною прогресією.

$b_(1), b_(2), b_(3), ..., b_(n-2), b_(n-1), b_(n)$.
Зазначимо, якщо послідовність є геометричною прогресією, то й послідовність квадратів членів також є геометричною прогресією. У другий послідовність перший член дорівнює $b_(1)^2$, а знаменник дорівнює $q^2$.

Формула n-ого члена геометричної прогресії

Геометричну прогресію можна ставити і в аналітичній формі. Давайте подивимося, як це зробити:
$b_(1)=b_(1)$.
$b_(2)=b_(1)*q$.
$b_(3)=b_(2)*q=b_(1)*q*q=b_(1)*q^2$.
$b_(4)=b_(3)*q=b_(1)*q^3$.
$b_(5)=b_(4)*q=b_(1)*q^4$.
Ми легко помічаємо закономірність: $b_(n)=b_(1)*q^(n-1)$.
Наша формула називається "формулою n-ого члена геометричної прогресії".

Повернемося до наших прикладів.

приклад. 1,2,4,8,16 ... Геометрична прогресія, у якої перший член дорівнює одиниці,
а $ q = 2 $.
$b_(n)=1*2^(n)=2^(n-1)$.

приклад. 16,8,4,2,1,1/2… Геометрична прогресія, яка має перший член дорівнює шістнадцяти, а $q=\frac(1)(2)$.
$b_(n)=16*(\frac(1)(2))^(n-1)$.

приклад. 8,8,8,8… Геометрична прогресія, яка має перший член дорівнює восьми, а $q=1$.
$b_(n)=8*1^(n-1)=8$.

приклад. 3,-3,3,-3,3 ... Геометрична прогресія, у якої перший член дорівнює трьом, а $ q = -1 $.
$b_(n)=3*(-1)^(n-1)$.

приклад. Дано геометричну прогресію $b_(1), b_(2), …, b_(n), … $.
а) Відомо, що $ b_ (1) = 6, q = 3 $. Знайти $b_(5)$.
б) Відомо, що $b_(1)=6, q=2, b_(n)=768$. Знайти n.
в) Відомо, що $q=-2, b_(6)=96$. Знайти $b_(1)$.
г) Відомо, що $b_(1)=-2, b_(12)=4096$. Знайти q.

Рішення.
а) $b_(5)=b_(1)*q^4=6*3^4=486$.
б) $b_n=b_1*q^(n-1)=6*2^(n-1)=768$.
$2^(n-1)=\frac(768)(6)=128$,оскільки $2^7=128 => n-1=7; n = 8 $.
в) $b_(6)=b_(1)*q^5=b_(1)*(-2)^5=-32*b_(1)=96 => b_(1)=-3$.
р) $b_(12)=b_(1)*q^(11)=-2*q^(11)=4096 => q^(11)=-2048 => q=-2$.

приклад. Різниця між сьомим і п'ятим членами геометричної прогресії дорівнює 192, сума п'ятого та шостого члена прогресії дорівнює 192. Знайти десятий член цієї прогресії.

Рішення.
Нам відомо, що $b_(7)-b_(5)=192$ і $b_(5)+b_(6)=192$.
Ми також знаємо: $b_(5)=b_(1)*q^4$; $b_(6)=b_(1)*q^5$; $b_(7)=b_(1)*q^6$.
Тоді:
$b_(1)*q^6-b_(1)*q^4=192$.
$b_(1)*q^4+b_(1)*q^5=192$.
Отримали систему рівнянь:
$\begin(cases)b_(1)*q^4(q^2-1)=192\b_(1)*q^4(1+q)=192\end(cases)$.
Прирівнявши, наші рівняння отримаємо:
$b_(1)*q^4(q^2-1)=b_(1)*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Отримали два рішення q: $q_(1)=2, q_(2)=-1$.
Послідовно підставимо на друге рівняння:
$b_(1)*2^4*3=192 => b_(1)=4$.
$b_(1)*(-1)^4*0=192 =>$ немає рішень.
Отримали що $b_(1)=4, q=2$.
Знайдемо десятий член: $b_(10)=b_(1)*q^9=4*2^9=2048$.

Сума кінцевої геометричної прогресії

Нехай ми маємо кінцеву геометричну прогресію. Давайте, як і для арифметичної прогресії, порахуємо суму її членів.

Нехай дано кінцеву геометричну прогресію: $b_(1),b_(2),…,b_(n-1),b_(n)$.
Введемо позначення суми її членів: $S_(n)=b_(1)+b_(2)+⋯+b_(n-1)+b_(n)$.
Якщо $q=1$. Усі члени геометричної прогресії дорівнюють першому члену, тоді очевидно, що $S_(n)=n*b_(1)$.
Розглянемо тепер випадок $q≠1$.
Помножимо зазначену вище суму на q.
$S_(n)*q=(b_(1)+b_(2)+⋯+b_(n-1)+b_(n))*q=b_(1)*q+b_(2)*q+⋯ +b_(n-1)*q+b_(n)*q=b_(2)+b_(3)+⋯+b_(n)+b_(n)*q$.
Зауважимо:
$S_(n)=b_(1)+(b_(2)+⋯+b_(n-1)+b_(n))$.
$S_(n)*q=(b_(2)+⋯+b_(n-1)+b_(n))+b_(n)*q$.

$S_(n)*q-S_(n)=(b_(2)+⋯+b_(n-1)+b_(n))+b_(n)*q-b_(1)-(b_(2) )+⋯+b_(n-1)+b_(n))=b_(n)*q-b_(1)$.

$S_(n)(q-1)=b_(n)*q-b_(1)$.

$S_(n)=\frac(b_(n)*q-b_(1))(q-1)=\frac(b_(1)*q^(n-1)*q-b_(1)) (q-1)=\frac(b_(1)(q^(n)-1))(q-1)$.

$S_(n)=\frac(b_(1)(q^(n)-1))(q-1)$.

Ми отримали формулу суми кінцевої геометричної прогресії.


приклад.
Знайти суму перших семи членів геометричної прогресії, яка має перший член дорівнює 4, а знаменник 3.

Рішення.
$S_(7)=\frac(4*(3^(7)-1))(3-1)=2*(3^(7)-1)=4372$.

приклад.
Знайти п'ятий член геометричної прогресії, яку відомо: $b_(1)=-3$; $ b_ (n) = -3072 $; $ S_ (n) = -4095 $.

Рішення.
$b_(n)=(-3)*q^(n-1)=-3072$.
$ q ^ (n-1) = 1024 $.
$q^(n)=1024q$.

$S_(n)=\frac(-3*(q^(n)-1))(q-1)=-4095$.
$-4095(q-1)=-3*(q^(n)-1)$.
$-4095 (q-1) = -3 * (1024q-1) $.
$1365q-1365=1024q-1$.
$ 341q = 1364 $.
$ q = 4 $.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Характеристична властивість геометричної прогресії

Хлопці, дано геометрична прогресія. Давайте розглянемо три послідовні її члени: $b_(n-1),b_(n),b_(n+1)$.
Ми знаємо, що:
$ \ frac (b_ (n)) (q) = b_ (n-1) $.
$b_(n)*q=b_(n+1)$.
Тоді:
$\frac(b_(n))(q)*b_(n)*q=b_(n)^(2)=b_(n-1)*b_(n+1)$.
$b_(n)^(2)=b_(n-1)*b_(n+1)$.
Якщо прогресія кінцева, це рівність виконується всім членів, крім першого і останнього.
Якщо заздалегідь невідомо, який у послідовності, але відомо що: $b_(n)^(2)=b_(n-1)*b_(n+1)$.
Тоді можна сміливо казати, що це геометрична прогресія.

Числова послідовність є геометричною прогресією, коли квадрат кожного її члена дорівнює добутку двох сусідніх із нею членів прогресії. Не забуваймо, що для кінцевої прогресії ця умова не виконується для першого та останнього члена.


Давайте подивимося на це тотожність: $\sqrt(b_(n)^(2))=\sqrt(b_(n-1)*b_(n+1))$.
$|b_(n)|=\sqrt(b_(n-1)*b_(n+1))$.
$\sqrt(a*b)$ називається середнім геометричним чисел a та b.

Модуль будь-якого члена геометричної прогресії дорівнює середньому геометричному двох сусідніх із ним членів.


приклад.
Знайти такі х, щоб $х+2; 2x+2; 3x+3$ були трьома послідовними членами геометричної прогресії.

Рішення.
Скористаємося характеристичною властивістю:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_(1)=2$ і $x_(2)=-1$.
Підставимо послідовно у вихідні вирази, наші рішення:
При $x=2$, отримали послідовність: 4;6;9 – геометрична прогресія, яка $q=1,5$.
При $х=-1$ отримали послідовність: 1;0;0.
Відповідь: $х=2.$

Завдання для самостійного вирішення

1. Знайдіть восьмий перший член геометричної прогресії 16; -8; 4; -2 ... .
2. Знайдіть десятий член геометричної прогресії 11,22,44….
3. Відомо, що $b_(1)=5, q=3$. Знайти $b_(7)$.
4. Відомо, що $b_(1)=8, q=-2, b_(n)=512$. Знайти n.
5. Знайдіть суму перших 11 членів геометричної прогресії 3; 12; 48 ... .
6. Знайти такі х що $3х+4; 2x+4; x+5$ є трьома послідовними членами геометричної прогресії.

Важливі зауваження!
1. Якщо замість формул ти бачиш абракадабру, почисти кеш. Як це зробити у твоєму браузері написано тут:
2. Перш ніж почнеш читати статтю, зверни увагу на наш навігатор по самих корисним ресурсудля

Числова послідовність

Отже, сядемо і почнемо писати якісь числа. Наприклад:

Писати можна будь-які числа, і може бути скільки завгодно (у разі їх). Скільки б чисел ми не написали, ми завжди можемо сказати, яке з них перше, яке друге і так далі до останнього, тобто можемо їх пронумерувати. Це і є приклад числової послідовності:

Числова послідовність- це безліч чисел, кожному з яких можна надати унікальний номер.

Наприклад, для нашої послідовності:

Присвоєний номер характерний лише однієї числа послідовності. Іншими словами, у послідовності немає трьох других чисел. Друге число (як і число) завжди одне.

Число з номером називається м'яним членом послідовності.

Всю послідовність ми зазвичай називаємо якоюсь літерою (наприклад,), і кожен член цієї послідовності - тією ж літерою з індексом, що дорівнює номеру цього члена: .

У нашому випадку:

Найпоширеніші види прогресії це арифметична та геометрична. У цій темі ми поговоримо про другий вид - геометричній прогресії.

Навіщо потрібна геометрична прогресія та її історія виникнення.

Ще в давнину італійський математик монах Леонардо з Пізи (відоміший під ім'ям Фібоначчі) займався вирішенням практичних потреб торгівлі. Перед ченцем стояло завдання визначити, за допомогою якої найменшої кількості гир можна зважити товар? У своїх працях Фібоначчі доводить, що оптимальною є така система гир: Це одна з перших ситуацій, в якій людям довелося зіткнутися з геометричною прогресією, про яку ти напевно чув і маєш хоча б загальне поняття. Як тільки повністю розберешся в темі, подумай, чому така система оптимальна?

В даний час, у життєвій практиці, геометрична прогресія проявляється при вкладенні коштів у банк, коли сума відсотків нараховується на суму, що накопичилася на рахунку за попередній період. Іншими словами, якщо покласти гроші на терміновий внесокв ощадний банк, то через рік внесок збільшиться від вихідної суми, тобто. нова сума дорівнюватиме вкладу, помноженому на. Ще за рік вже ця сума збільшиться, тобто. сума, що вийшла в той раз, знову помножиться на і так далі. Подібна ситуація описана у завданнях на обчислення так званих складних відсотків- відсоток береться щоразу від суми, що є на рахунку з урахуванням попередніх відсотків. Про ці завдання ми поговоримо трохи згодом.

Є ще багато простих випадків, де застосовується геометрична прогресія Наприклад, поширення грипу: одна людина заразила людина, ті у свою чергу заразили ще по людину, і таким чином друга хвиля зараження – людина, а ті у свою чергу заразили ще … і так далі…

До речі, фінансова піраміда, та сама МММ - це простий і сухий розрахунок за властивостями геометричної прогресії. Цікаво? Давай розбиратись.

Геометрична прогресія.

Допустимо, у нас є числова послідовність:

Ти відразу ж відповиш, що це легко та ім'я такої послідовності – з різницею її членів. А як щодо такого:

Якщо ти відніматимеш з наступного числа попереднє, то ти побачиш, що щоразу виходить нова різниця(і т.д.), але послідовність безперечно існує і її нескладно помітити - кожне наступне числов раз більше попереднього!

Такий вид числової послідовності називається геометричною прогресієюта позначається.

Геометрична прогресія ( ) - це числова послідовність, перший член якої відмінний від нуля, а кожен член, починаючи з другого, дорівнює попередньому, помноженому на те саме число . Це число називають знаменником геометричної прогресії.

Обмеження, що член ( ) не дорівнює і випадкові. Припустимо, що їх немає, і перший член все ж таки дорівнює, а q рівно, хм.. нехай, тоді виходить:

Погодься, що це вже не прогресія.

Як ти розумієш, ті самі результати ми отримаємо, якщо буде будь-яким числом, відмінним від нуля, а. У цих випадках прогресії просто не буде, тому що весь числовий ряд будуть або всі нулі або одне число, а всі інші нулі.

Тепер поговоримо докладніше про знаменника геометричної прогресії, тобто о.

Повторимо: - це число, у скільки разів змінюється кожен наступний членгеометричної прогресії.

Як ти гадаєш, яким може бути? Правильно, позитивним та негативним, але не нулем (ми говорили про це трохи вище).

Припустимо, що ми маємо позитивне. Нехай у нашому випадку, а. Чому дорівнює другий член і? Ти легко відповиш, що:

Все вірно. Відповідно, якщо всі наступні члени прогресії мають однаковий знак - вони позитивні.

А якщо негативне? Наприклад, а. Чому дорівнює другий член і?

Це вже зовсім інша історія

Спробуй порахувати член цієї прогресії. Скільки у тебе вийшло? У мене. Таким чином, якщо знаки членів геометричної прогресії чергуються. Тобто, якщо ти побачиш прогресію, з знаками, що чергуються у її членів, значить її знаменник на негативний. Це знання може допомогти тобі перевіряти себе під час вирішення завдань на цю тему.

Тепер трохи потренуємося: спробуй визначити, які числові послідовності є геометричною прогресією, а які арифметичною:

Розібрався? Порівняємо наші відповіді:

  • Геометрична прогресія – 3, 6.
  • Арифметична прогресія – 2, 4.
  • Не є ні арифметичною, ні геометричною прогресією – 1, 5, 7.

Повернемося до нашої останньої прогресії, а спробуємо так само як і в арифметичній знайти її член. Як ти вже здогадуєшся, є два способи його знаходження.

Послідовно множимо кожен член.

Отже, -ой член описаної геометричної прогресії дорівнює.

Як ти вже здогадуєшся, зараз ти сам виведеш формулу, яка допоможе тобі знайти будь-який член геометричної прогресії. Або ти її вже вивів для себе, розписуючи, як поетапно знаходити член? Якщо так, то перевір правильність твоїх міркувань.

Проілюструємо це з прикладу знаходження -го члена даної прогресії:

Іншими словами:

Знайди самостійно значення члена заданої геометричної прогресії.

Вийшло? Порівняємо наші відповіді:

Зверніть увагу, що в тебе вийшло таке ж число, як і в попередньому способі, коли ми послідовно множили на кожен попередній член геометричної прогресії.
Спробуємо «знеособити» цю формулу- Наведемо її в загальний вигляд і отримаємо:

Виведена формула правильна всім значень - як позитивних, і негативних. Перевір це самостійно, розрахувавши і члени геометричної прогресії зі наступними умовами: , а.

Порахував? Порівняємо отримані результати:

Погодься, що знаходити член прогресії можна було б так само як і член, проте є ймовірність неправильно порахувати. А якщо ми знайшли вже член геометричної прогресії, то що може бути простіше, ніж скористатися «обрізаною» частиною формули.

Нескінченна спадна геометрична прогресія.

Нещодавно ми говорили про те, що може бути як більше, так і меньше нуля, однак, є особливі значенняпри яких геометрична прогресія називається нескінченно спадаючою.

Як ти вважаєш, чому така назва?
Для початку запишемо якусь геометричну прогресію, що складається з членів.
Допустимо, а, тоді:

Ми бачимо, що кожен наступний член менший за попередній у рази, але чи буде якесь число? Ти одразу відповиш – «ні». Ось тому і нескінченно спадаюча - зменшується, зменшується, а банкрутом ніколи не стає.

Щоб чітко зрозуміти, як це виглядає візуально, спробуємо намалювати графік нашої прогресії. Отже, для нашого випадку формула набуває наступного вигляду:

На графіках нам звично будувати залежність від, тому:

Суть висловлювання не змінилася: у першому записі в нас була показана залежність значення члена геометричної прогресії від його порядкового номера, а у другому записі - ми просто набули значення члена геометричної прогресії за, а порядковий номер позначили не як, а як. Все, що залишилося зробити – побудувати графік.
Побачимо, що в тебе вийшло. Ось який графік вийшов у мене:

Бачиш? Функція зменшується, прагне до нуля, але ніколи його не перетне, тому вона нескінченно спадає. Зазначимо на графіку наші точки, а заразом і те, що означає координата і:

Спробуй схематично зобразити графік геометричної прогресії, якщо перший її член також дорівнює. Проаналізуй, у чому різниця з нашим попереднім графіком?

Впорався? Ось який графік вийшов у мене:

Тепер, коли ти повністю розібрався в основах теми геометричної прогресії: знаєш, що це таке, знаєш, як знайти її член, а також знаєш, що таке геометрична прогресія, що нескінченно убуває, перейдемо до її основної властивості.

Властивість геометричної прогресії.

Пам'ятаєш властивість членів арифметичної прогресії? Так, так, як визначити значення певної кількості прогресії, коли є попереднє і наступне значення членів цієї прогресії. Згадав? Ось це:

Тепер перед нами стоїть таке саме питання для членів геометричної прогресії. Щоб вивести подібну формулу, давай почнемо малювати та міркувати. Ось побачиш, це дуже легко, і якщо ти забудеш, зможеш вивести її самостійно.

Візьмемо ще одну просту геометричну прогресію, в якій нам відомі та. Як знайти? За арифметичної прогресії це легко і просто, а як тут? Насправді в геометричній теж немає нічого складного – необхідно просто розписати за формулою кожне дане нам значення.

Ти спитаєш, і що тепер нам із цим робити? Так, дуже просто. Для початку зобразимо дані формули малюнку, і спробуємо зробити із нею різні маніпуляції, щоб дійти значення.

Абстрагуємося від чисел, які ми маємо, зосередимося лише з їхньому вираженні через формулу. Нам необхідно знайти значення, виділене помаранчевим кольоромзнаючи сусідні з ним члени. Спробуємо зробити з ними різні дії, у яких ми зможемо отримати.

Додавання.
Спробуємо скласти два вирази і ми отримаємо:

З цього виразу, як ти бачиш, ми ніяк не зможемо висловити, отже, пробуватимемо інший варіант - віднімання.

Віднімання.

Як ти бачиш, з цього ми теж не можемо висловити, отже спробуємо помножити дані вирази один на одного.

множення.

А тепер подивися уважно, що ми маємо, перемножуючи дані нам члени геометричної прогресії порівняно з тим, що необхідно знайти:

Здогадався про що я говорю? Правильно, щоб знайти нам необхідно взяти квадратний коріньвід перемножених один на одного сусідніх із шуканим чисел геометричної прогресії:

Ну ось. Ти сам вивів властивість геометричної прогресії. Спробуй записати цю формулу в загальному вигляді. Вийшло?

Забув умову за? Подумай, чому воно важливо, наприклад, спробуй самостійно прорахувати, коли. Що вийде у цьому випадку? Правильно, повна дурість оскільки формула виглядає так:

Відповідно, не забувай це обмеження.

Тепер порахуємо, чому ж одно

Правильну відповідь - ! Якщо ти при розрахунку не забув друге можливе значення, то ти великий молодець і одразу можеш переходити до тренування, а якщо забув - прочитай те, що розібрано далі і зверни увагу, чому у відповіді необхідно записувати обидва корені.

Намалюємо обидві наші геометричні прогресії - одну зі значенням, а іншу зі значенням і перевіримо, чи обидві з них мають право на існування:

Щоб перевірити, чи існує така геометрична прогресія чи ні, необхідно подивитися, чи однакове між усіма її заданими членами? Розрахуй q для першого та другого випадку.

Бачиш, чому ми маємо писати дві відповіді? Тому що знак у члена, що шукається, залежить від того, який - позитивний або негативний! Оскільки ми не знаємо, який він, нам необхідно писати обидві відповіді і з плюсом, і з мінусом.

Тепер, коли ти засвоїв основні моменти та вивів формулу на властивість геометричної прогресії, знайди, знаючи та

Порівняй отримані відповіді з правильними:

Як ти думаєш, а якби нам були дані не сусідні з шуканим числом значення членів геометричної прогресії, а віддалені від нього. Наприклад, нам необхідно знайти, а дані і. Чи можемо ми використовувати виведену нами формулу? Спробуй так само підтвердити або спростувати цю можливість, розписуючи з чого складається кожне значення, як ти робив, виводячи спочатку формулу, при.
Що в тебе вийшло?

Тепер знову поглянь уважно.
і відповідно:

З цього ми можемо зробити висновок, що формула працює не тільки при сусідніхз шуканими членами геометричної прогресії, але й рівновіддаленимивід шуканого членами.

Таким чином, наша первісна формула набуває вигляду:

Тобто, якщо в першому випадку ми говорили, що, то зараз ми говоримо, що може дорівнювати будь-кому натуральному числу, Що менше. Головне, щоб був однаковим для обох заданих чисел.

Потренуйся на конкретні прикладиТільки будь гранично уважний!

  1. , . Знайти.
  2. , . Знайти.
  3. , . Знайти.

Вирішив? Сподіваюся, ти був дуже уважний і помітив невелику каверзу.

Порівнюємо результати.

У перших двох випадках ми спокійно застосовуємо вищеописану формулу та отримуємо наступні значення:

У третьому випадку при уважному розгляді порядкових номерів даних нам чисел, ми розуміємо, що вони не віддалені від шуканого нами числа: є попереднім числом, а видалена на позиції, таким чином застосувати формулу не надається можливим.

Як її вирішувати? Насправді, це не так складно, як здається! Давай з тобою розпишемо, з чого складається кожне дане нам і шукане число.

Отже, у нас є в. Побачимо, що з ними можна зробити? Пропоную поділити на. Отримуємо:

Підставляємо у формулу наші дані:

Наступним кроком ми можемо знайти – для цього нам необхідно взяти кубічний корінь із отриманого числа.

А тепер дивимося ще раз, що у нас є. У нас є, а знайти нам необхідно, а він, у свою чергу, дорівнює:

Усі необхідні дані для підрахунку ми знайшли. Підставляємо у формулу:

Наша відповідь: .

Спробуй вирішити ще одне таке завдання самостійно:
Дано: ,
Знайти:

Скільки у тебе вийшло? У мене - .

Як ти бачиш, по суті, тобі потрібно запам'ятати лише одну формулу- . Всі інші ти без будь-якої праці можеш вивести самостійно будь-якої миті. Для цього просто напиши на листку найпростішу геометричну прогресію і розпиши, чому згідно з вищеописаною формулою дорівнює кожне її число.

Сума членів геометричної прогресії.

Тепер розглянемо формули, які дозволяють швидко порахувати суму членів геометричної прогресії в заданому проміжку:

Щоб вивести формулу суми членів кінцевої геометричної прогресії, помножимо всі частини вищого рівняння. Отримаємо:

Подивися уважно: що спільного в останніх двох формулах? Правильно, спільні члени, наприклад, і так далі, крім першого та останнього члена. Давай спробуємо відняти з 2-го рівняння перше. Що в тебе вийшло?

Тепер вирази через формулу члена геометричної прогресії і підстави отриманий вираз у нашу останню формулу:

Згрупуй вираз. У тебе має вийти:

Все, що залишилося зробити – висловити:

Відповідно, у цьому випадку.

А що якщо? Яка формула працює тоді? Уяви собі геометричну прогресію при. Що вона собою являє? Правильно ряд однакових чисел, відповідно формула виглядатиме так:

Як і з арифметичної, і по геометричній прогресії існує безліч легенд. Одна з них - легенда про Сет, творця шахів.

Багато хто знає, що шахова грабула вигадана в Індії. Коли індуський цар познайомився з нею, він був захоплений її дотепністю та різноманітністю можливих у ній положень. Дізнавшись, що вона винайдена одним із його підданих, цар вирішив особисто нагородити його. Він викликав винахідника до себе і наказав просити у нього все, що він забажає, пообіцявши виконати навіть найвправніше бажання.

Сета попросив час на роздуми, а коли другого дня Сета з'явився до царя, він здивував царя безприкладною скромністю свого прохання. Він попросив видати за першу клітинку шахівниці пшеничне зерно, за другу пшеничні зерна, за третю, за четверту і т.д.

Цар розгнівався і прогнав Сета, сказавши, що прохання слуги недостойне царської щедрості, але пообіцяв, що слуга отримає свої зерна за всі клітини дошки.

А тепер питання: використовуючи формулу суми членів геометричної прогресії, вважай, скільки зерен має отримати Сета?

Почнемо міркувати. Оскільки за умовою за першу клітинку шахівниці Сета попросив пшеничне зерно, за другу, за третю, за четверту і т.д., то ми бачимо, що в задачі йдеться про геометричну прогресію. Чому одно в цьому випадку?
Правильно.

Усього клітин шахівниці. Відповідно, . Всі дані у нас є, залишилося лише підставити у формулу та порахувати.

Щоб уявити хоча б приблизно «масштаби» даного числа, Перетворимо, використовуючи властивості ступеня:

Звичайно, якщо ти хочеш, то можеш взяти калькулятор і порахувати, що за число в результаті в тебе вийде, а якщо ні, доведеться повірити мені на слово: підсумковим значенням виразу буде.
Тобто:

квінтильйонів квадрильйонів трильйона мільярда мільйонів тисяч.

Фух) Якщо хочете уявити собі величезність цього числа, то прикиньте, якої величини комору знадобився б для вміщення всієї кількості зерна.
При висоті комори м і шириною м довжина його мала б простягатися на км, - тобто. удвічі далі, ніж від Землі до Сонця.

Якби цар був би сильний у математиці, то він міг би запропонувати самому вченому відраховувати зерна, адже щоб відрахувати мільйон зерен, йому знадобилося б не менше доби невпинного рахунку, а враховуючи, що необхідно відрахувати квінтильйонів, зерна довелося б відраховувати все життя.

А тепер вирішимо просте завдання на суму членів геометричної прогресії.
Учень 5 А класу Вася, захворів на грип, але продовжує ходити до школи. Щодня Вася заражає двох людей, які, своєю чергою, заражають ще двох і так далі. Загалом у класі людина. Через скільки днів на грип хворітиме весь клас?

Отже, перший член геометричної прогресії – це Вася, тобто людина. -ой член геометричної прогресії, це ті дві людини, яких він заразив у перший день свого приходу. Загальна сума членів прогресії дорівнює кількості учнів 5А. Відповідно, ми говоримо про прогресію, в якій:

Підставимо наші дані у формулу суми членів геометричної прогресії:

Весь клас занедужає за дні. Не віриш формулам та числам? Спробуй зобразити зараження учнів самостійно. Вийшло? Дивись, як це виглядає у мене:

Порахуй самостійно, за скільки днів учні захворіли б на грип, якби кожен заражав по людині, а в класі навчалася людина.

Яке значення в тебе вийшло? У мене вийшло, що всі почали хворіти через день.

Як ти бачиш, подібне завдання та малюнок до неї нагадує піраміду, в якій кожен наступний «наводить» нових людей. Однак рано чи пізно настає такий момент, коли останні не можуть нікого залучити. У нашому випадку, якщо уявити, що клас ізольований, людина замикає ланцюжок (). Таким чином, якби люди були залучені до фінансової піраміди, в якій гроші давалися у випадку, якщо ти приведеш двох інших учасників, то людина (або в загальному випадку) не привели б нікого, відповідно, втратили б усе, що вклали в цю фінансову аферу.

Все, що було сказано вище, відноситься до спадної або зростаючої геометричної прогресії, але, як ти пам'ятаєш, у нас є особливий вид - нескінченно спадна геометрична прогресія. Як же рахувати суму її членів? І чому цей вид прогресії має певні особливості? Давай розбиратись разом.

Отже, для початку подивимося ще раз на цей малюнок нескінченно спадної геометричної прогресії з нашого прикладу:

А тепер подивимося на формулу суми геометричної прогресії, виведену трохи раніше:
або

Чого в нас прагне? Правильно, на графіку видно, що воно прагне нуля. Тобто при майже рівному, відповідно, при обчисленні виразу ми отримаємо майже. У зв'язку з цим, ми вважаємо, що при підрахунку суми нескінченно спадної геометричної прогресії, даної дужкою можна знехтувати, оскільки вона дорівнюватиме.

- формула - сума членів нескінченно спадної геометричної прогресії.

ВАЖЛИВО!Формулу суми членів нескінченно спадної геометричної прогресії ми використовуємо тільки в тому випадку, якщо в умові в явному вигляді зазначено, що потрібно знайти суму нескінченногочисла членів.

Якщо зазначено конкретне число n, то користуємося формулою суми n членів, навіть якщо.

А тепер потренуємось.

  1. Знайди суму перших членів геометричної прогресії з в.
  2. Знайди суму членів нескінченно спадної геометричної прогресії з в.

Сподіваюся, ти був дуже уважний. Порівняємо наші відповіді:

Тепер ти знаєш про геометричну прогресію все, і настав час переходити від теорії до практики. Найпоширеніші завдання на геометричну прогресію, що зустрічаються на іспиті – це завдання на обчислення складних відсотків. Саме про них і йтиметься.

Завдання на обчислення складних процентів.

Ти, напевно, чув про так звану формулу складних відсотків. Чи ти розумієш, що вона означає? Якщо ні, давай розбиратися, тому що усвідомивши сам процес, ти одразу зрозумієш, причому тут геометрична прогресія.

Усі ми ходимо до банку і знаємо, що існують різні умовиза вкладами: це і термін, і додаткове обслуговування, і відсоток із двома у різний спосібйого нарахування - простим та складним.

З простими відсоткамивсе більш менш зрозуміло: відсотки нараховуються один раз наприкінці терміну вкладу. Тобто, якщо ми говоримо про те, що ми кладемо 100 рублів на рік під, то зарахуються лише наприкінці року. Відповідно, до закінчення вкладу ми отримаємо карбованців.

Складні відсотки— це такий варіант, за якого відбувається капіталізація відсотків, тобто. їх зарахування до суми вкладу та подальший розрахунок доходу немає від початкової, як від накопиченої суми вкладу. Капіталізація відбувається який завжди, і з деякою періодичністю. Як правило, такі періоди рівні і найчастіше банки використовують місяць, квартал чи рік.

Припустимо, що ми кладемо ті самі рублі по річних, але з щомісячною капіталізацією вкладу. Що в нас виходить?

Чи все тобі тут зрозуміло? Якщо ні, то давай розбиратися поетапно.

Ми принесли до банку карбованців. До кінця місяця у нас на рахунку має з'явитися сума, що складається з наших рублів плюс відсотків за ними, тобто:

Згоден?

Ми можемо винести за дужку, і тоді ми отримаємо:

Погодься, ця формула вже більше схожа на написану нами на початку. Залишилося розібратися з відсотками

За умови завдання нам сказано про річних. Як ти знаєш, ми не множимо на - ми переводимо відсотки в десяткові дроби, тобто:

Правильно? Зараз ти спитаєш, а звідки взялося число? Дуже просто!
Повторюся: за умови завдання сказано про РІЧНІвідсотки, нарахування яких відбувається Щомісячно. Як ти знаєш, у році місяців, відповідно, банк нараховуватиме нам на місяць частину від річних відсотків:

Зрозумів? А тепер спробуй написати, як виглядатиме ця частина формули, якщо я скажу, що відсотки нараховуються щодня.
Впорався? Давай порівняємо результати:

Молодець! Повернемося до нашого завдання: напиши скільки буде нараховано на наш рахунок на другий місяць, з урахуванням, що відсотки нараховуються на накопичену суму вкладу.
Ось що вийшло у мене:

Або, іншими словами:

Я думаю, що ти вже помітив закономірність і побачив у цьому геометричну прогресію. Напиши, чому дорівнюватиме її член, або, іншими словами, яку суму коштів ми отримаємо наприкінці місяця.
Зробив? Перевіряємо!

Як ти бачиш, якщо ти кладеш гроші у банк на рік під простий відсоток, то ти отримаєш карбованців, а якщо під складний – карбованців. Вигода невелика, але так відбувається тільки протягом року, а ось на більш тривалий період капіталізація набагато вигідніша:

Розглянемо ще один тип завдань на складні відсотки. Після того, в чому ти розібрався, це буде для тебе просто. Отже, завдання:

Компанія «Зірка» почала інвестувати у галузь 2000 року, маючи капітал доларів. Щороку, починаючи з 2001 року, вона отримує прибуток, який складає від капіталу попереднього року. Скільки прибутку отримає компанія «Зірка» після закінчення 2003 року, якщо прибуток з обороту не вилучався?

Капітал компанії «Зірка» у 2000 році.
- капітал компанії «Зірка» у 2001 році.
- капітал компанії «Зірка» у 2002 році.
- капітал компанії «Зірка» у 2003 році.

Або ми можемо написати коротко:

Для нашого випадку:

2000 рік, 2001 рік, 2002 рік та 2003 рік.

Відповідно:
рублів
Зауваж, у цьому задачі ми не маємо поділу ні на, ні на, тому що відсоток дано ЩОРІЧНИЙ і нараховується він ЩОРІЧНО. Тобто, читаючи завдання на складні відсотки, зверни увагу, який відсоток дано, і в який період він нараховується, і лише потім приступай до обчислень.
Тепер ти знаєш про геометричну прогресію все.

Тренування.

  1. Знайдіть член геометричної прогресії, якщо відомо, що,
  2. Знайдіть суму перших членів геометричної прогресії, якщо відомо, що, а
  3. Компанія «МДМ Капітал» почала інвестувати у галузь 2003 року, маючи капітал доларів. Щороку, починаючи з 2004 року, вона отримує прибуток, який складає від капіталу попереднього року. Компанія «МСК Грошові потоки» почала інвестувати в галузь у 2005 році у розмірі 10000 доларів, починаючи отримувати прибуток з 2006 року у розмірі. На скільки доларів капітал однієї компанії більше за іншу після закінчення 2007 року, якщо прибуток з обороту не вилучався?

Відповіді:

  1. Так як за умови завдання не сказано, що прогресія нескінченна і потрібно знайти суму конкретної кількості її членів, то розрахунок йде за формулою:

  2. Компанія «МДМ Капітал»:

    2003, 2004, 2005, 2006, 2007 року.
    - Збільшується на 100%, тобто у 2 рази.
    Відповідно:
    рублів
    Компанія «МСК Грошові потоки»:

    2005, 2006, 2007 року.
    - Збільшується на, тобто в рази.
    Відповідно:
    рублів
    рублів

Підведемо підсумки.

1) Геометрична прогресія ( ) - це числова послідовність, перший член якої відмінний від нуля, а кожен член, починаючи з другого, дорівнює попередньому, помноженому на те саме число. Це число називають знаменником геометричної прогресії.

2) Рівняння членів геометричної прогресії - .

3) може набувати будь-яких значень, крім і.

  • якщо всі наступні члени прогресії мають однаковий знак - вони позитивні;
  • якщо, то всі наступні члени прогресії чергують знаки;
  • при - прогресія називається нескінченно спадаючою.

4) , при - властивість геометричної прогресії (сусідні члени)

або
, при (рівновіддалені члени)

При знаходженні не варто забувати про те, що відповіді має бути дві.

Наприклад,

5) Сума членів геометричної прогресії обчислюється за такою формулою:
або


або

ВАЖЛИВО!Формулу суми членів нескінченно спадаючою геометричної прогресії ми використовуємо лише тому випадку, якщо в умові явно зазначено, що необхідно знайти суму нескінченного числа членів.

6) Завдання на складні відсотки також обчислюються за формулою -го члена геометричної прогресії, за умови, що грошові коштиз обороту не вилучалися:

ГЕОМЕТРИЧНА ПРОГРЕСІЯ. КОРОТКО ПРО ГОЛОВНЕ

Геометрична прогресія( ) - це числова послідовність, перший член якої відмінний від нуля, а кожен член, починаючи з другого, дорівнює попередньому, помноженому на те саме число. Це число називають знаменником геометричної прогресії.

Знаменник геометричної прогресіїможе приймати будь-які значення, крім в.

  • Якщо всі наступні члени прогресії мають однаковий знак - вони позитивні;
  • якщо, то наступні члени прогресії чергують знаки;
  • при - прогресія називається нескінченно спадаючою.

Рівняння членів геометричної прогресії - .

Сума членів геометричної прогресіїобчислюється за такою формулою:
або

Якщо прогресія є нескінченно спадною, то:

Ну ось, тема закінчена. Якщо ти читаєш ці рядки, значить ти дуже крутий.

Тому що лише 5% людей здатні освоїти щось самостійно. І якщо ти дочитав до кінця, то ти потрапив у ці 5%!

Тепер найголовніше.

Ти розібрався з теорією на цю тему. І, повторюся, це… це просто супер! Ти вже краще, ніж абсолютна більшість твоїх однолітків.

Проблема в тому, що цього не вистачить.

Для чого?

Для успішної здачі ЄДІ, для вступу до інституту на бюджет і, найголовніше, для життя.

Я не буду тебе ні в чому переконувати, просто скажу одну річ…

Люди, які отримали хороша освіта, заробляють набагато більше, ніж ті, хто не отримав. Це – статистика.

Але й це – не головне.

Головне те, що вони БІЛЬШЕ ЩАСЛИВІ (є такі дослідження). Можливо тому, що перед ними відкривається набагато більше можливостейі життя стає яскравішим? Не знаю...

Але, думай сам...

Що потрібно, щоб бути, напевно, кращим за інших на ЄДІ і бути зрештою… більш щасливим?

Набити руку, вирішуючи завдання за цією темою.

На іспиті в тебе не питатимуть теорію.

Тобі треба буде вирішувати завдання на якийсь час.

І, якщо ти не вирішував їх (Багато!), ти обов'язково десь безглуздо помилишся або просто не встигнеш.

Це як у спорті – потрібно багато разів повторити, щоби виграти напевно.

Знайди де хочеш збірку, обов'язково з рішеннями, докладним розбором і вирішуй, вирішуй, вирішуй!

Можна скористатися нашими завданнями (не обов'язково), і ми їх, звичайно, рекомендуємо.

Для того, щоб набити руку за допомогою наших завдань, потрібно допомогти продовжити життя підручнику YouClever, який ти зараз читаєш.

Як? Є два варіанта:

  1. Відкрий доступ до всіх прихованих завдань у цій статті
  2. Відкрий доступ до всіх прихованих завдань у всіх 99 статтях підручника. Купити підручник - 499 руб

Так, у нас у підручнику 99 таких статей та доступ для всіх завдань та всіх прихованих текстіву них можна відкрити одразу.

Доступ до всіх прихованих завдань надається на весь час існування сайту.

І на закінчення...

Якщо наші завдання тобі не подобаються, то знайди інші. Тільки не зупиняйся на теорії.

"Зрозумів" і "Вмію вирішувати" - це зовсім різні навички. Тобі потрібні обидва.

Знайди завдання та вирішуй!

Це число називається знаменником геометричної прогресії, тобто кожен член відрізняється від попереднього q разів. (Вважатимемо, що q ≠ 1, інакше все аж надто тривіально). Неважко бачити, що загальна формула n-го члена геометричної прогресії b n = b 1 q n - 1; члени з номерами b n і b m відрізняються q n – m разів.

Вже у Стародавньому Єгиптізнали як арифметичну, а й геометричну прогресію. Ось, наприклад, завдання з папірусу Райнда: «У семи осіб по сім котів; кожна кішка з'їдає по сім мишей, кожна миша з'їдає по сім колосків, з кожного колосу може вирости по сім заходів ячменю. Які великі числа цього ряду та їх сума?»


Рис. 1. Давньоєгипетське завдання про геометричну прогресію

Це завдання багато разів з різними варіаціями повторювалося і в інших народів за інших часів. Наприклад, у написаній у XIII ст. «Книзі про абака» Леонардо Пизанського (Фібоначчі) є завдання, в якому фігурують 7 старих, що прямують до Риму (очевидно, паломниць), у кожної з яких 7 мулів, на кожному з яких по 7 мішків, у кожному з яких по 7 хлібів , у кожному з яких по 7 ножів, кожен з яких у 7 піхвах. У задачі питається, скільки всього предметів.

Сума перших n членів геометричної прогресії S n = b 1 (q n – 1) / (q – 1). Цю формулу можна довести, наприклад: S n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 .

Додамо до S n число b 1 q n і отримаємо:

S n + b 1 q n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 + b 1 q n = b 1 + (b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n –1) q = b 1 + S n q.

Звідси S n (q – 1) = b 1 (q n – 1) і ми отримуємо необхідну формулу.

Вже на одній із глиняних табличок Стародавнього Вавилону, що відноситься до VI ст. до зв. е., міститься сума 1 + 2 + 2 2 + 2 3 + ... + 2 9 = 2 10 - 1. Правда, як і в інших випадках ми не знаємо, звідки цей факт був відомий вавилонянам.

Швидке зростання геометричної прогресії у низці культур, – зокрема, в індійській, – неодноразово використовують як наочний символ неоглядності світобудови. У відомій легенді про появу шахів володар надає їх винахіднику можливість самому обрати нагороду, і той просить таку кількість пшеничних зерен, яку вдасться, якщо одне покласти на першу клітинку шахової дошки, два – на другу, чотири – на третю, вісім – на четверту та т. д., щоразу число збільшується вдвічі. Владика думав, що йдеться, найбільше, про кілька мішок, але він прорахувався. Неважко бачити, що за всі 64 клітини шахівниці винахідник мав би отримати (2 64 – 1) зерно, що виражається 20-значним числом; навіть якщо засівати всю поверхню Землі, знадобилося б щонайменше 8 років, щоб зібрати необхідну кількість зерен. Цю легенду іноді інтерпретують як вказівку на практично необмежені можливості, приховані у шахівниці.

Те, що це число справді 20-значне, побачити неважко:

2 64 = 2 4 ∙ (2 10) 6 = 16 ∙ 1024 6 ≈ 16 ∙ 1000 6 = 1,6∙10 19 (точніший розрахунок дає 1,84∙10 19). А ось цікаво, чи зможете ви дізнатися, якою цифрою закінчується це число?

Геометрична прогресія буває зростаючою, якщо знаменник за модулем більше 1, або спадною, якщо він менший за одиницю. В останньому випадку число q n при досить великих n може стати як завгодно малим. У той час як зростаюча геометрична прогресія зростає несподівано швидко, спадаюча так само швидко зменшується.

Чим більше n , тим слабше число q n відрізняється від нуля, і тим ближче сума n членів геометричної прогресії S n = b 1 (1 - q n ) / (1 - q ) до S = b 1 / (1 - q ) . (Так міркував, наприклад, Ф. Вієт). Число S називається сумою нескінченно спадної геометричної прогресії. Тим не менш, довгі століття питання про те, який сенс має підсумовування всієї геометричної прогресії, з її нескінченним числом членів, не був досить зрозумілий математикам.

Зменшуючу геометричну прогресію можна побачити, наприклад, в апоріях Зенона «Поділ навпіл» і «Ахіллес і черепаха». У першому випадку наочно показується, що вся дорога (припустимо, довжини 1) є сумою нескінченної кількості відрізків 1/2, 1/4, 1/8 і т. д. Так воно, звичайно, і є з точки зору уявлень про кінцеву суму нескінченної геометричної прогресії. І все-таки – як таке може бути?

Рис. 2. Прогресія з коефіцієнтом 1/2

В апорії про Ахіллеса ситуація трохи складніша, тому що тут знаменник прогресії дорівнює не 1/2, а якомусь іншому числу. Нехай, наприклад, Ахіллес біжить зі швидкістю v, черепаха рухається зі швидкістю u, а початкова відстань між ними дорівнює l. Ця відстань Ахіллес пробіжить за час l/v, черепаха за цей час зрушить на відстань lu/v. Коли Ахіллес пробіжить і цей відрізок, дистанція між ним і черепахою стане рівною l (u /v ) 2 і т. д. Виходить, що наздогнати черепаху - означає знайти суму нескінченно спадної геометричної прогресії з першим членом l і знаменником u /v . Ця сума - відрізок, який в результаті пробіжить Ахілес до місця зустрічі з черепахою - дорівнює l / (1 - u / v) = lv / (v - u). Але, знову ж таки, як треба інтерпретувати цей результат і чому він взагалі має якийсь сенс, довгий час було не дуже зрозумілим.

Рис. 3. Геометрична прогресія з коефіцієнтом 2/3

Суму геометричної прогресії використовував Архімед щодо площі сегмента параболи. Нехай даний сегмент параболи відмежований хордою AB і нехай у точці D параболи дотична паралельна AB. Нехай C – середина AB, E – середина AC, F – середина CB. Проведемо прямі, паралельні DC через точки A , E , F , B ; нехай дотичну, проведену в точці D, ці прямі перетинають у точках K, L, M, N. Проведемо також відрізки AD і DB. Нехай пряма EL перетинає пряму AD у точці G, а параболу у точці H; пряма FM перетинає пряму DB у точці Q, а параболу у точці R. Відповідно до загальної теорії конічних перерізів, DC – діаметр параболи (тобто відрізок, паралельний її осі); він і дотична в точці D можуть бути осями координат x і y , в яких рівняння параболи записується як y 2 = 2px (x – відстань від D до будь-якої точки даного діаметра, y – довжина паралельного даної дотичної відрізка від цієї точки діаметра до деякої точки на самій параболі).

Через рівняння параболи, DL 2 = 2 ∙ p ∙ LH , DK 2 = 2 ∙ p ∙ KA , а оскільки DK = 2DL , то KA = 4LH . Оскільки KA = 2LG, LH = HG. Площа сегмента ADB параболи дорівнює площі трикутника ADB і площам сегментів AHD і DRB, разом узятих. У свою чергу, площа сегмента AHD аналогічним чином дорівнює площі трикутника AHD і сегментів AH і HD, що залишилися, з кожним з яких можна провести ту ж операцію - розбити на трикутник (Δ) і два залишилися сегмента (), і т. д.:

Площа трикутника ΔAHD дорівнює половині площі трикутника ΔALD (у них загальна основа AD , а висоти відрізняються в 2 рази), яка, у свою чергу, дорівнює половині площі трикутника AKD , а значить, і половині площі трикутника ACD . Таким чином, площа трикутника AHD дорівнює чверті площі трикутника ACD . Аналогічно, площа трикутника ΔDRB дорівнює чверті площі трикутника ΔDFB. Отже, площі трикутників AHD і DRB, разом узяті, рівні чверті площі трикутника ADB. Повторення цієї операції у застосуванні до сегментів AH , HD , DR і RB виділить і з них трикутники, площа яких, разом узятих, буде в 4 рази менше, ніж площа трикутників AHD і DRB , разом узятих, а значить, в 16 разів менше, ніж площі трикутника ADB . І так далі:

Таким чином, Архімед довів, що «будь-який сегмент, укладений між прямою і параболою, становить чотири третини трикутника, що має з ним одну і ту ж основу і рівну висоту».

Подібні публікації