Энциклопедия пожаробезопасности

Для алканов характерно наличие. Алканы – определение, строение, физические и химические свойства. – Гидрирование ненасыщенных углеводородов

Алканы с химической точки зрения представляют собой углеводороды, то есть общая формула алканов включает в себя исключительно атомы углерода и водорода. Помимо того, что эти соединения не содержат никаких функциональных групп, они образуются только за счет одинарных связей. Такие углеводороды называются насыщенными.

Типы алканов

Все алканы можно выделить в две большие группы:

  • Алифатические соединения. Их структура имеет вид линейной цепочки, общая формула алканов алифатического типа C n H 2n+2 , где n - количество атомов углерода в цепи.
  • Циклоалканы. Эти соединения имеют циклическую структуру, что обуславливает существенное отличие их химических свойств от линейных соединений. В частности, структурная формула алканов этого типа обуславливает сходство их свойств с алкинами, то есть углеводородами с тройной связью между атомами углерода.

Электронная структура алифатических соединений

Эта группа алканов может иметь либо линейную, либо разветвленную углеводородную цепь. Их химическая активность является невысокой по сравнению с другими органическими соединениями, поскольку все связи внутри молекулы являются насыщенными.

Молекулярная формула алканов алифатического типа говорит о том, что их химическая связь имеет sp 3- гибридизацию. Это означает, что все четыре ковалентные связи вокруг атома углерода по своим характеристикам (геометрическим и энергетическим) являются абсолютно равноправными. При таком типе гибридизации электронные оболочки уровней s и p атомов углерода имеют одинаковую форму вытянутой гантели.

Между атомами углерода связь в цепи является ковалентной, а между атомом углерода и водорода она частично поляризована, при этом электронная плотность оттягивается к углероду, как к элементу более электроотрицательному.

Из следует, что в их молекулах существуют только связи C-C и C-H. Первые образуются в результате перекрывания двух электронных гибридизованных орбиталей sp 3 двух атомов углерода, а вторые образуются при перекрывании орбитали s водорода и орбитали sp 3 углерода. Длина связи C-C равна 1,54 ангстрема, а связи C-H - 1,09 ангстрема.

Геометрия молекулы метана

Метан является самым простым алканом, который состоит всего из одного атома углерода и четырех атомов водорода.

Благодаря энергетической равноправности его трех 2p и одной 2s орбиталей, полученной в результате sp 3 -гибридизации, все орбитали в пространстве расположены под одинаковым углом друг к другу. Он равен 109,47°. В результате такой молекулярной структуры в пространстве образуется подобие треугольной равносторонней пирамиды.

Простые алканы

Самым простым алканом является метан, который состоит из одного атома углерода и четырех атомов водорода. Следующие в ряду алканов за метаном пропан, этан и бутан образованы тремя, двумя и четырьмя атомами углерода соответственно. Начиная с пяти атомов углерода в цепи, соединения получили название согласно номенклатуре ИЮПАК.

Таблица с формулами алканов и их названиями приведена ниже:

При потере одного водородного атома у молекулы алкана образуется активный радикал, окончание которого меняется с "ан" на "ил", например, этан C 2 H 6 - этил C 2 H 5 . Структурная формула алкана этана приведена на фото.

Номенклатура органических соединений

Правила определения названий алканов и соединений на их основе установлены международной номенклатурой ИЮПАК. Для органических соединений действуют следующие правила:

  1. Название химического соединения базируется на названии его самой длинной цепи из атомов углерода.
  2. Нумерацию атомов углерода следует начинать с конца, ближе к которому начинается разветвление цепи.
  3. Если в соединении присутствуют две или более углеродные цепи одинаковой длины, то в качестве основной выбирается та, которая имеет меньше всего радикалов, и они имеют более простую структуру.
  4. Если в молекуле имеются две и более одинаковые группы радикалов, тогда в названии соединения используются соответствующие префиксы, которые удваивают, утраивают и так далее названия указанных радикалов. Например, вместо выражения "3-метил-5-метил" используется "3,5-диметил".
  5. Все радикалы записываются в алфавитном порядке в общее название соединения, при этом префиксы не берутся во внимание. Последний радикал пишется слитно с названием самой цепи.
  6. Числа, отражающие номера радикалов в цепи, отделяются от названий дефисом, а сами цифры записываются через запятую.

Соблюдение правил номенклатуры ИЮПАК позволяет легко определить молекулярную формулу алкана по например, 2,3-диметилбутан имеет следующий вид.

Физические свойства

Физические свойства алканов во многом зависят от длины углеродной цепи, образующей конкретное соединение. Основными свойствами являются следующие:

  • Первые четыре представителя, согласно общей формуле алканов, при нормальных условиях находятся в газообразном состоянии, то есть это бутан, метан, пропан и этан. Что касается пентана и гексана, то они существуют уже в виде жидкостей, а начиная с семи атомов углерода, алканы представляют собой твердые вещества.
  • При увеличении длины углеродной цепи увеличивается и плотность соединения, а также его температуры фазовых переходов первого рода, то есть температуры плавления и кипения.
  • Поскольку полярность химической связи в формуле вещества алканов является незначительной, они не растворяются в полярных жидкостях, например, в воде.
  • Соответственно их можно использовать в качестве хороших растворителей таких соединений, как неполярные жиры, масла и воски.
  • В домашней газовой плите используется смесь алканов, богатая третьим членом химического ряда - пропаном.
  • При кислородном горении алканов выделяется большое количество энергии в виде тепла, поэтому эти соединения используют в качестве горючего топлива.

Химические свойства

Ввиду наличия стабильных связей в молекулах алканов, их реакционная способность в сравнении с другими органическими соединениями является низкой.

С ионными и полярными химическими соединениями алканы практически не реагируют. Они ведут себя инертно в растворах кислот и оснований. Алканы вступают в реакцию только с кислородом и галогенами: в первом случае речь идет о процессах окисления, во втором - о процессах замещения. Некоторую химическую активность они проявляют и в реакциях с переходными металлами.

Во всех этих химических реакциях важную роль играют разветвления углеродной цепи алканов, то есть наличие в них радикальных групп. Чем их больше, тем сильнее изменяется идеальный угол между связями 109,47° в пространственной структуре молекулы, что приводит к созданию напряжений внутри нее и, как следствие, увеличивает химическую активность такого соединения.

Реакция простых алканов с кислородом происходит по следующей схеме: C n H 2n+2 + (1,5n+0,5)O 2 → (n+1)H 2 O + nCO 2 .

Пример реакции с хлором приведен на фото ниже.

Опасность алканов для природы и человека

Гептан, пентан и гексан представляют собой легко воспламеняющиеся жидкости и являются опасными как для окружающей среды, так и для здоровья человека, поскольку они токсичны.

В таблице представлены некоторые представители ряда алканов и их радикалы.

Формула

Название

Название радикала

CH3 метил

C3H7 пропил

C4H9 бутил

изобутан

изобутил

изопентан

изопентил

неопентан

неопентил

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп - СН2 -.Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его называются гомологами.

Гомологи - вещества сходные по строению и свойствам, но отличающиеся по составу на одну или несколько гомологических разностей (- СН2 -)

Углеродная цепь - зигзаг (если n ≥ 3)

σ - связи (свободное вращение вокруг связей)

длина (-С-С-) 0,154 нм

энергия связи (-С-С-) 348 кДж/моль

Все атомы углерода в молекулах алканов находятся в состоянии sр3-гибридизации

угол между связями С-C составляет 109°28", поэтому молекулы нормальных алканов с большим числом атомов углерода имеют зигзагообразное строение (зигзаг). Длина связи С-С в предельных углеводородах равна 0,154 нм (1нм=1*10-9м).

а) электронная и структурная формулы;

б) пространственное строение

4. Изомерия - характерна СТРУКТУРНАЯ изомерия цепи с С4

Один из этих изомеров (н -бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

Атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным , с двумя другими атомами углерода - вторичным , с тремя - третичным , с четырьмя - четвертичным .

С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

Сравнительная характеристика гомологов и изомеров


1. Свою номенклатуру имеют радикалы (углеводородные радикалы)

Алкан

С n H2n+2

Радикал (R)

С n H2n+ 1

НАЗВАНИЕ

Физические свойства

В обычных условиях

С1- С4 - газы

С5- С15 - жидкие

С16 - твёрдые

Температуры плавления и кипения алканов, их плотности увеличиваются в гомологическом ряду с ростом молекулярной массы. Все алканы легче воды, в ней не растворимы, однако растворимы в неполярных растворителях (например, в бензоле) и сами являются хорошими растворителями. Физические свойства некоторых алканов представлены в таблице.

Таблица 2. Физические свойства некоторых алканов

а) Галогенирование

при действии света - hν или нагревании (стадийно - замещение атомов водорода на галоген носит последовательный цепной характер. Большой вклад в разработку цепных реакций внёс физик, академик, лауреат Нобелевской премии Н. Н. Семёнов)

В реакции образуются вещества галогеналканы или С n H 2 n +1 Г

(Г - это галогены F, Cl, Br, I)

CH4 + Cl2 hν → CH3Cl + HCl (1 стадия) ;

метан хлорметан CH3Cl + Cl2 hν → CH2Cl2 + HCl (2 стадия);

дихлорметан

СH2Cl2 + Cl2 hν → CHCl3 + HCl (3 стадия);

трихлорметан

CHCl3 + Cl2 hν → CCl4 + HCl (4 стадия).

тетрахлорметан

Скорость реакции замещения водорода на атом галогена у галогеналканов выше, чем у соответствующего алкана, это связано с взаимным влиянием атомов в молекуле:

Электронная плотность связи С - Cl смещена к более электроотрицательному хлору, в результате на нём скапливается частичный отрицательный заряд, а на атоме углерода - частичный положительный заряд.

На атом углерода в метильной группе (- СН3) создаётся дефицит электронной плотности, поэтому он компенсирует свой заряд за счёт соседних атомов водорода, в результате связь С - Н становится менее прочной и атомы водорода легче замещаются на атомы хлора. При увеличении углеводородного радикала наиболее подвижными остаются атомы водорода у атома углерода ближайщего к заместителю:

CH3 - CH2 - Cl + Cl2 h ν CH3 - CHCl2 + HCl

хлорэтан 1 ,1 -дихлорэтан

Со фтором реакция идёт со взрывом.

С хлором и бромом требуется инициатор.

Иодирование происходит обратимо, поэтому требуется окислитель для удаления HI из рекции.

Внимание!

В реакциях замещения алканов легче всего замещаются атомы водорода у третичных атомов углерода, затем у вторичных и, в последнюю очередь, у первичных. Для хлорирования эта закономерность не соблюдается при T >400˚ C .


б) Нитрование

(реакция М.И. Коновалова, он провёл её впервые в 1888 г)

CH4 + HNO3(раствор ) С CH3NO2 + H2O

нитрометан

RNO2 или С n H2n+1 NO2 ( нитроалкан )

Алканы - насыщенные углеводороды, в молекулах которых все атомы углеродов заняты посредством простых связей атомами водорода. Поэтому для гомологов ряда метана характерна структурная изомерия алканов.

Изомерия углеродного скелета

Для гомологов с четырьмя и более атомами углерода характерна структурная изомерия по изменению углеродного скелета. Метильные группы -СН 2 могут присоединяться к любому углероду цепи, образуя новые вещества. Чем больше атомов углерода в цепи, тем больше изомеров могут образовывать гомологи. Теоретическое количество гомологов высчитывается математически.

Рис. 1. Примерное количество изомеров гомологов метана.

Помимо метильных групп к атомам углерода могут присоединяться длинные углеродные цепи, образуя сложные разветвлённые вещества.

Примеры изомерии алканов:

  • нормальный бутан или н-бутан (СН 3 -СН 2 -СН 2 -СН 3) и 2-метилпропан (СН 3 -СН(СН 3)-СН 3);
  • н-пентан (СН 3 -СН 2 -СН 2 -СН 2 -СН 3), 2-метилбутан (СН 3 -СН 2 -СН(СН 3)-СН 3), 2,2-диметилпропан (СН 3 -С(СН 3) 2 -СН 3);
  • н-гексан (CH 3 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3), 2-метилпентан (CH 3 -CH(CH 3)-CH 2 -CH 2 -CH 3), 3-метилпентан (CH 3 -CH 2 -CH(CH 3)-CH 2 -CH 3), 2,3-диметилбутан (CH 3 -CH(CH 3)-CH(CH 3)-CH 3), 2,2-диметилбутан (CH 3 -C(CH 3) 2 -CH 2 -CH 3).

Рис. 2. Примеры структурных изомеров.

Разветвлённые изомеры отличаются от линейных молекул физическими свойствами. Алканы с разветвлённой структурой плавятся и кипят при более низких температурах, чем линейные аналоги.

Номенклатура

Международная номенклатура ИЮПАК установила правила наименования разветвлённых цепей. Чтобы назвать структурный изомер, следует:

  • найти самую длинную цепь и назвать её;
  • пронумеровать атомы углерода, начиная с конца, где больше всего заместителей;
  • указать количество одинаковых заместителей числовыми приставками;
  • дать названия заместителям.

Название состоит их четырёх частей, идущих друг за другом:

  • цифры, обозначающие атомы цепи, у которых стоят заместители;
  • числовые приставки;
  • название заместителя;
  • название главной цепи.

Например, в молекуле СН 3 -СН(СН 3)-СН 2 -С(СН 3) 2 -СН 3 главная цепь имеет пять атомов углерода. Значит, это пентан. У правого конца больше разветвлений, поэтому нумерация атомов начинается отсюда. При этом у второго атома находится два одинаковых заместителя, что также отражается в названии. Получается, что данное вещество имеет название 2,2,4-триметилпентан.

Разные заместители (метил, этил, пропил) перечисляются в названии по алфавиту: 4,4-диметил-3-этилгептан, 3-метил-3-этилоктан.

Обычно используются числовые приставки от двух до четырёх: ди- (два), три- (три), тетра- (четыре).

Что мы узнали?

Для алканов характерна структурная изомерия. Структурные изомеры свойственны всем гомологам, начиная с бутана. При структурной изомерии заместители присоединяются к атомам углерода в углеродной цепи, образуя сложные разветвлённые цепи. Название изомера состоит из названий главной цепи, заместителей, словесного обозначения количества заместителей, цифрового обозначения атомов углерода, к которым присоединены заместители.

алканом или парафином (историческое название, которое также имеет другие значения), является ациклический насыщенный углеводород. Другими словами, алкан состоит из водорода и атомов углерода, расположенных в древовидной структуре, в которой все углерод-углеродные связи являются одиночными.

Алканы имеют общую химическую формулу C n H 2n + 2 . Алканы варьируются по сложности от простейшего случая метана, CH 4 , где n = 1 (иногда называемая исходной молекулой), до сколь угодно больших молекул.

Химическая структура метана, простейший алкан

Кроме этого стандартного определения названная Международным союзом теоретической и прикладной химии, в использовании некоторых авторов термин алкана применяется к любому насыщенному углеводороду, в том числе те, которые являются либо моноциклическими (т.е. циклоалканы) или полициклическими.

В алкане, каждый атом углерода имеет 4 связи (либо С-С или С-Н), и каждый атом водорода присоединен к одному из атомов углерода (как в С-Н-связи). Самая длинная серия связанных атомов углерода в молекуле известна как ее углеродный скелет или углеродная основа. Число атомов углерода можно рассматривать как размер алкана.

Одна группа высших алканов представляет собой воски, твердые вещества при стандартных температуре окружающей среды и давлении (СТиДОС(Стандартная температура и давление окружающей среды)), для которых число атомов углерода в углеродной цепи больше, что примерно в 17 раз.

С повторными -CH 2 — звеньями алканы составляют гомологичный ряд органических соединений, в которых группы отличаются молекулярной массой кратным 14,03 мк (общая масса каждой такой метиленовой звеновой единицы, которая содержит единственный атом углерода с массой 12,01 мк и два атома водорода с массой ~ 1,01 мк каждый).

Алканы не очень реакционноспособны и обладают небольшой биологической активностью. Их можно рассматривать как молекулярные деревья, на которых могут быть подвешены более активные / реакционноспособные функциональные группы биологических молекул.

Алканы имеют два основных источника: нефть (сырая нефть) и природный газ.

Алкильная группа, обычно сокращенно обозначаемая символом R, представляет собой функциональную группу, которая, подобно алкану, состоит исключительно из связанных атомов ациклически связанных атомов углерода и водорода, например метильной или этильной группы.

Структура классификации

Насыщенными углеводородами являются углеводороды, имеющие только отдельные ковалентные связи между их атомами углерода. Они могут представлять:

  • Линейную (общая формула C n H 2n + 2), в которой атомы углерода соединены в змееподобной структуреe.
  • Разветвленную (общую формулу C n H2 n + 2 , n> 2), где углеродный скелет отщепляется в одном или нескольких направлениях.
  • Циклическую (общую формулу C n H 2n , n> 3), где углеродная цепь связана с образованием петли.

Изобутана для 2-метилпропана
Изопентан для 2-метилбутана
Неопентана для 2,2-диметилпропана.

Химические свойства алканов

— вы можете изучить по данной , в полном, понятном изложении.

Физические свойства алканов

Все алканы бесцветны и не имеют запаха.

Таблица алканов.

Алкан Формула Точка кипения [° C] Точка плавления [° C] Плотность [г · см-3] (при 20 ° C)
Метан CH 4 −162 −182 Газ
Этан C 2 H 6 -89 −183 Газ
Пропан C 3 H 8 −42 −188 Газ
Бутан C 4 H 10 0 −138 0.626
Пентан C 5 H 12 36 −130 0.659
Гексан C 6 H 14 69 −95 0.684
Гептан C 7 H 16 98 −91 0.684
Октан C 8 H 18 126 −57 0.718
Нонан C 9 H 20 151 −54 0.730
Декан C 10 H 22 174 −30 0.740
Ундекан C 11 H 24 196 -26 0.749
Додекан C 12 H 26 216 −10 0.769
Пентадекан C 15 H 32 270 10-17 0.773
Гексадекан C 16 H 34 287 18 Твердый
Эйкозан C 20 H 42 343 37 Твердый
Триконтан C 30 H 62 450 66 Твердый
Тетроконтан C 40 H 82 525 82 Твердый
Пентоконтан С 50 H 102 575 91 Твердый
Гексоконтан C 60 H 122 625 100 Твердый

Точка кипения

Алканы испытывают межмолекулярные силы Ван-дер-Ваальса. Более сильные межмолекулярные силы Ван-дер-Ваальса вызывают более высокие точки кипения алканов.

Для силы Ван-Дер-Ваальсовых сил существует два детерминанта:

  • Число электронов, окружающих молекулу, которое увеличивается с молекулярной массой алкана
  • Площадь поверхности молекулы

В стандартных условиях от CH 4 до C 4 H 10 алканы являются газообразными; От C 5 H 12 до C 17 H 36 они являются жидкостями; И после C 18 H 38 они являются твердыми. По мере того как температура кипения алканов в первую очередь определяются по весу, она не должна быть неожиданностью, что точка кипения имеет почти линейную зависимость с размером (молекулярная масса) молекулы. Как правило, температура кипения повышается на 20-30 ° C для каждого углерода, добавляемого в цепь. Это правило применяется и к другим гомологичным рядам.

В физической химии силы Ван-дер-Ваальса (или ван-дер-ваальсово взаимодействие), названные в честь голландского ученого Йоханнеса Дидерика Ван дер Ваальса, являются остаточными силами притяжения или отталкивания между молекулами или атомными группами, которые не возникают из ковалентных связей. Можно показать, что силы Ван-дер-Ваальса имеют то же происхождение, что и эффект Казимира, обусловленный квантовыми взаимодействиями с полем нулевой точки. Возникающие в результате силы Ван-дер-Ваальса могут быть притягивающими или отталкивающими.

Прямоцепной алкан будет иметь точку кипения выше, чем алкан с разветвленной цепью из-за большей площади поверхности, находящейся в контакте, таким образом, большие силы Ван-дер-Ваальса между соседними молекулами. Например, сравните изобутан (2-метилпропан) и н-бутан (бутан), которые кипят при -12 и 0 ° С, и 2,2-диметилбутан и 2,3-диметилбутан, которые кипят при 50 и 58 ° С, соответственно. В последнем случае две молекулы 2,3-диметилбутана могут «защелкиваться» друг с другом лучше, чем крестообразный 2,2-диметилбутан, поэтому большие силы Ван-дер-Ваальса

С другой стороны, циклоалканы, как правило, имеют более высокие точки кипения, чем их линейные аналоги из-за заблокированных конформаций молекул, которые дают плоскость межмолекулярного контакта.

Точки плавления

Точки плавления алканов имеют сходную тенденцию к точкам кипения по той же причине, что и выше. То есть, (при прочих равных условиях) тем больше молекуле, тем выше температура плавления. Существует одно существенное различие между точками кипения и температурами плавления. Твердые вещества имеют более жесткую и фиксированную структуру, чем жидкости. Эта жесткая структура требует энергию для разрушения. Таким образом, для лучшего соединения твердых структур потребуется больше энергии для разрыва. Для алканов это видно на графике выше (то есть на зеленой линии). Нечетные алканы имеют более низкую тенденцию к плавлению, чем четные алканы. Это объясняется тем, что даже пронумерованные алканы хорошо укладываются в твердой фазе, образуя хорошо организованную структуру, которая требует больше энергии для разрыва. Алканы с нечетными номерами укладываются хуже, и поэтому организованная структура уплотнения с более «рыхлой» требует меньше энергии для разрыва.

Точки плавления алканов с разветвленной цепью могут быть либо выше, либо ниже, чем у соответствующих алканов с прямой цепью, опять же в зависимости от способности рассматриваемого алкана хорошо укладываться в твердой фазе: это особенно справедливо для изоалканов (2 -метильные изомеры), которые часто имеют температуры плавления выше, чем температуры линейных аналогов.

Проводимость и растворимость

Алканы не проводят электричество и не поляризуются электрическим полем. По этой причине они не образуют водородных связей и нерастворимы в полярных растворителях, таких как вода. Поскольку водородные связи между отдельными молекулами воды выровнены вдали от молекулы алкана, сосуществование алкана и воды приводит к увеличению молекулярного порядка (уменьшение энтропии). Поскольку между молекулами воды и молекулами алкана нет значительного сцепления, второй закон термодинамики предполагает, что это уменьшение энтропии должно быть минимизировано путем сведения к минимуму контакта между алканом и водой: алканы, как говорят, являются гидрофобными в том смысле, что они отталкивают воду.

Их растворимость в неполярных растворителях относительно хорошая, свойство, которое называется липофильностью. Различные алканы, например, смешиваются во всех пропорциях между собой.

Плотность алканов обычно увеличивается с числом атомов углерода, но остается меньше, чем у воды. Следовательно, алканы образуют верхний слой в качестве алкана-водной смеси.

Молекулярная геометрия

Молекулярная структура алканов непосредственно влияет на их физические и химические характеристики. Он получен из электронной конфигурации углерода, которая имеет четыре валентных электрона. Атомы углерода в алканов всегда sp 3 гибридизовали, то есть, что валентные электроны, как говорят, в четырех эквивалентных орбиталей, полученных из комбинации 2 s орбитальных и трех 2р-орбиталей. Эти орбитали, имеющие одинаковые энергии, расположены пространственно в виде тетраэдра, угол между ними cos -1 (- 1/3) ≈ 109,47 °.

Длины связей и валентные углы

Молекула алкана имеет только одинарные связи C-H и C-C. Первые являются следствием перекрытия sp 3 орбитали углерода с 1s-орбиталью водорода; Последний — перекрытием двух sp 3 -орбиталей на разных атомах углерода. Длины связей составляют 1,09 × 10 -10 м для связи C-H и 1,54 × 10 -10 мкм для связи C-C.

Пространственное расположение связей похоже на пространственное расположение четырех sp3-орбиталей — они расположены тетраэдрически с углом 109,47 ° между ними. Структурные формулы, которые представляют собой облигацию как под прямым углом друг к другу, в то время как и общие и полезные, не соответствуют действительности.

Конформация

Структурная формула и углы связи обычно недостаточны для полного описания геометрии молекулы. Существует еще одна степень свободы для каждого углерод-углеродной связи: торсионный угол между атомами или группами, связанными с атомами на каждом конце связи. Пространственное расположение, описываемое углами кручения молекулы, известно как его форма.

Этан образует простейший случай для изучения конформации алканов, так как существует только одна связь C-C. Если посмотреть вниз по оси C-C-связи, то увидите так называемую проекцию Ньюмана. Атомы водорода как на переднем, так и на заднем углеродном атоме имеют угол 120 ° между ними, что обусловлено проекцией основания тетраэдра на плоскую плоскость. Однако угол кручения между данным атомом водорода, присоединенным к переднему углероду, и заданным атомом водорода, присоединенным к заднему углероду, может свободно изменяться от 0 ° до 360 °. Это является следствием свободного вращения вокруг простой углерод-углеродной связи. Несмотря на эту кажущуюся свободу, важны только две предельные конформации: затменная конформация и ступенчатая конформация.


Шариковые и двухшнековые модели двух ротамеров этана

Две конформации, также известные как ротамеры, различаются по энергии: шахматная конформация составляет 12,6 кДж / моль ниже по энергии (более стабильной), чем затмеваемая конформация (наименее стабильная).

Это различие в энергии между двумя конформациями, называемое энергией кручения, мало по сравнению с тепловой энергией молекулы этана при температуре окружающей среды. Постоянное вращение вокруг связи C-C. Время, необходимое для перехода молекулы этана из одной шахматной конформации в другую, что эквивалентно вращению одной группы СН3 на 120 ° относительно другой, составляет порядка 10 -11 с.


Проекции двух конформаций этана: затмивление на левой стороне, в шахматном порядке справа.

Высшие алканы является более сложные, но основанные на аналогичных принципах, при этом антиперипланарная конформация всегда наиболее благоприятна вокруг каждой углерод-углеродной связи. По этой причине алканы обычно показаны зигзагообразно на диаграммах и в моделях. Фактическая структура всегда будет несколько отличаться от этих идеализированных форм, так как различия в энергии между конформациями малы по сравнению с тепловой энергией молекул, так как молекулы алканов не имеют фиксированной структурной формы, независимо от того, что может показывать модель.

Спектроскопические свойства

Практически все органические соединения содержат углерод-углеродные и углерод-водородные связи и поэтому показывают некоторые особенности алканов в их спектрах. Алканы отличаются отсутствием других групп и, следовательно, отсутствием других характерных спектроскопических признаков различных функциональных групп, таких как -ОН, -CHO, -COOH и т.д.

Инфракрасная спектроскопия

Углеродно-водородный метод растяжения дает сильное поглощение между 2850 и 2960 см -1 , в то время как углерод-углеродный режим растяжения поглощает от 800 до 1300 см -1 . Методы изгиба углерод-водород зависят от природы группы: метильные группы показывают полосы при 1450 см -1 и 1375 см -1 , в то время как метиленовые группы показывают полосы при 1465 см -1 и 1450 см -1 . Углеродные цепи с более чем четырьмя атомами углерода демонстрируют слабое поглощение при температуре около 725 см -1 .

ЯМР-спектроскопия

Протон-резонансы алканов обычно обнаруживаются при δH = 0,5-1,5. Резонансы углерода 13 зависят от числа атомов водорода, связанных с углеродом: δ C = 8-30 (первичный, метил, -CH 3), 15-55 (вторичный, метилен, -CH 2 -), 20-60 (третичный, Метин, С-Н) и четвертичный. Углерод-13-резонанс четвертичных атомов углерода характеризуется слабостью из-за отсутствия ядерного эффекта Оверхаузера и длительным временем релаксации и может быть пропущен в слабых образцах или образцах, которые не были проработаны в течение достаточно длительного времени.

Масс-спектрометрия

Алканы обладают высокой энергией ионизации, а у молекулярной ион обычно слабый. Фрагментацию фрагментации может быть трудно интерпретировать, но в случае разветвленных алканов углеродная цепь предпочтительно расщепляется на третичных или четвертичных углеродах из-за относительной стабильности полученных свободных радикалов. Фрагмент, являющийся результатом потери одной метильной группы (М-15), часто отсутствует, а другой фрагмент часто отделен интервалами четырнадцати массовых единиц, что соответствует последовательной потере СН 2 -групп.

Способы получения алканов

О способах получения алканов, вы так же сможете узнать и изучить по данной .

Алканами в химии называют предельные углеводороды, у которых углеродная цепь является незамкнутой и состоит из углерода, связанных друг с другом при помощи одинарных связей. Также характерной особенностью алканов есть то, что они совсем не содержат двойных либо тройных связей. Порой алканы называют парафинами, дело в том, что парафины собственно и являются смесью предельных углеродов, то есть алканов.

Формула алканов

Формулу алкана можно записать как:

При этом n больше или равно 1.

Алканам свойственна изомерия углеродного скелета. При этом соединения могут принимать разные геометрические формы, как например это показано на картинке ниже.

Изомерия углеродного скелета алканов

С увеличением роста углеродной цепи увеличивается и количество изомеров. Так, например, у бутана есть два изомера.

Получение алканов

Алкан как правило получают различными синтетическими методами. Скажем, один из способов получения алкана предполагает реакцию «гидрирования», когда алканы добываются из ненасыщенных углеводов под воздействием катализатора и при температуре.

Физические свойства алканов

Алканы от других веществ отличаются полным отсутствием цвета, также они не растворим в воде. Температура плавления алканов повышается с увеличением их молекулярной массы и длины углеводородной цепи. То есть чем более разветвленным является алкан, тем у него большая температура горения и плавления. Газообразные алканы и вовсе горят бледно-голубым или бесцветным пламенем, при этом выделяя много тепла.

Химические свойства алканов

Алканы в химическом плане малоактивные вещества, по причине прочности крепких сигма связей С-С и С-Н. При этом связи С-С неполярны, а С-Н малополярны. А так как все это малополяризируемые виды связей, которые относятся к сигма виду, то разрываться они будут по механизму гомолитическому, в результате чего образуются радикалы. И как следствия химические свойства алканов представляют собой в основном реакции радикального замещения.

Так выглядит формула радикального замещения алканов (галогенирование алканов).

Помимо этого также можно выделить такие химические реакции как нитрирование алканов (реакция Коновалова).

Реакция эта протекает при температуре 140 С, причем лучше всего именно с третичным атомом углерода.

Крекинг алканов – эта реакция протекает при действии высоких температур и катализаторов. Тогда создаются условия, когда высшие алканы могут рвать свои связи образуя алканы более низкого порядка.

Похожие публикации