Энциклопедия пожаробезопасности

Является ли дифференциальное уравнение первого порядка. Дифференциальные уравнения онлайн

Содержание статьи

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими-то величинами. Часто речь идет о соотношении между величинами, изменяющимися с течением времени, например экономичность двигателя, измеряемая расстоянием, которое автомашина может проехать на одном литре горючего, зависит от скорости движения автомашины. Соответствующее уравнение содержит одну или несколько функций и их производных и называется дифференциальным уравнением. (Темп изменения расстояния со временем определяется скоростью; следовательно, скорость – производная от расстояния; аналогично, ускорение – производная от скорости, так как ускорение задает темп изменения скорости со временем.) Большое значение, которое имеют дифференциальные уравнения для математики и особенно для ее приложений, объясняются тем, что к решению таких уравнений сводится исследование многих физических и технических задач. Дифференциальные уравнения играют существенную роль и в других науках, таких, как биология, экономика и электротехника; в действительности, они возникают везде, где есть необходимость количественного (числового) описания явлений (коль скоро окружающий мир изменяется во времени, а условия изменяются от одного места к другому).

Примеры.

Следующие примеры позволяют лучше понять, как различные задачи формулируются на языке дифференциальных уравнений.

1) Закон распада некоторых радиоактивных веществ состоит в том, что скорость распада пропорциональна наличному количеству этого вещества. Если x – количество вещества в некоторый момент времени t , то этот закон можно записать так:

где dx /dt – скорость распада, а k – некоторая положительная постоянная, характеризующая данное вещество. (Знак «минус» в правой части указывает на то, что x убывает со временем; знак «плюс», подразумеваемый всегда, когда знак явно не указан, означал бы, что x возрастает со временем.)

2) Емкость первоначально содержит 10 кг соли, растворенной в 100 м 3 воды. Если чистая вода вливается в емкость со скоростью 1 м 3 в минуту и равномерно перемешивается с раствором, а образовавшийся раствор вытекает из емкости с такой же скоростью, то сколько соли окажется в емкости в любой последующий момент времени? Если x – количество соли (в кг) в емкости в момент времени t , то в любой момент времени t в 1 м 3 раствора в емкости содержится x /100 кг соли; поэтому количество соли убывает со скоростью x /100 кг/мин, или

3) Пусть на тело массы m , подвешенное к концу пружины, действует возвращающая сила, пропорциональная величине растяжения пружины. Пусть x – величина отклонения тела от положения равновесия. Тогда по второму закону Ньютона, который утверждает, что ускорение (вторая производная от x по времени, обозначаемая d 2 x /dt 2) пропорционально силе:

Правая часть стоит со знаком минус потому, что возвращающая сила уменьшает растяжение пружины.

4) Закон охлаждения тел утверждает, что количество тепла в теле убывает пропорционально разности температур тела и окружающей среды. Если чашка кофе, разогретого до температуры 90° С находится в помещении, температура в котором равна 20° С, то

где T – температура кофе в момент времени t .

5) Министр иностранных дел государства Блефуску утверждает, что принятая Лиллипутией программа вооружений вынуждает его страну увеличить военные расходы на сколько это только возможно. С аналогичными заявлениями выступает и министр иностранных дел Лиллипутии. Возникающую в результате ситуацию (в простейшей интерпретации) можно точно описать двумя дифференциальными уравнениями. Пусть x и y – расходы на вооружение Лиллипутии и Блефуску. Предполагая, что Лиллипутия увеличивает свои расходы на вооружение со скоростью, пропорциональной скорости увеличения расходов на вооружение Блефуску, и наоборот, получаем:

где члены -ax и -by описывают военные расходы каждой из стран, k и l – положительные постоянные. (Эту задачу впервые таким образом сформулировал в 1939 Л.Ричардсон.)

После того, как задача записана на языке дифференциальных уравнений, следует попытаться их решить, т.е. найти величины, скорости изменения которых входят в уравнения. Иногда решения находятся в виде явных формул, но чаще их удается представить лишь в приближенном виде или же получить о них качественную информацию. Часто бывает трудно установить, существует ли решение вообще, не говоря уже о том, чтобы найти его. Важный раздел теории дифференциальных уравнений составляют так называемые «теоремы существования», в которых доказывается наличие решения у того или иного типа дифференциальных уравнений.

Первоначальная математическая формулировка физической задачи обычно содержит упрощающие предположения; критерием их разумности может служить степень согласованности математического решения с имеющимися наблюдениями.

Решения дифференциальных уравнений.

Дифференциальному уравнению, например dy /dx = x /y , удовлетворяет не число, а функция, в данном конкретном случае такая, что ее график в любой точке, например в точке с координатами (2,3), имеет касательную с угловым коэффициентом, равным отношению координат (в нашем примере 2/3). В этом нетрудно убедиться, если построить большое число точек и от каждой отложить короткий отрезок с соответствующим наклоном. Решением будет функция, график которой касается каждой своей точкой соответствующего отрезка. Если точек и отрезков достаточно много, то мы можем приближенно наметить ход кривых-решений (три такие кривые показаны на рис. 1). Существует ровно одна кривая-решение, проходящая через каждую точку с y № 0. Каждое отдельное решение называется частным решением дифференциального уравнения; если удается найти формулу, содержащую все частные решения (за исключением, быть может, нескольких особых), то говорят, что получено общее решение. Частное решение представляет собой одну функцию, в то время как общее – целое их семейство. Решить дифференциальное уравнение – это значит найти либо его частное, либо общее решение. В рассматриваемом нами примере общее решение имеет вид y 2 – x 2 = c , где c – любое число; частное решение, проходящее через точку (1,1), имеет вид y = x и получается при c = 0; частное решение, проходящее через точку (2,1), имеет вид y 2 – x 2 = 3. Условие, требующее, чтобы кривая-решение проходила, например, через точку (2,1), называется начальным условием (так как задает начальную точку на кривой-решении).

Можно показать, что в примере (1) общее решение имеет вид x = ce kt , где c – постоянная, которую можно определить, например, указав количество вещества при t = 0. Уравнение из примера (2) – частный случай уравнения из примера (1), соответствующий k = 1/100. Начальное условие x = 10 при t = 0 дает частное решение x = 10e t /100 . Уравнение из примера (4) имеет общее решение T = 70 + ce kt и частное решение 70 + 130 –kt ; чтобы определить значение k , необходимы дополнительные данные.

Дифференциальное уравнение dy /dx = x /y называется уравнением первого порядка, так как содержит первую производную (порядком дифференциального уравнения принято считать порядок входящей в него самой старшей производной). У большинства (хотя и не у всех) возникающих на практике дифференциальных уравнений первого рода через каждую точку проходит только одна кривая-решение.

Существует несколько важных типов дифференциальных уравнений первого порядка, допускающих решения в виде формул, содержащих только элементарные функции – степени, экспоненты, логарифмы, синусы и косинусы и т.д. К числу таких уравнений относятся следующие.

Уравнения с разделяющимися переменными.

Уравнения вида dy /dx = f (x )/g (y ) можно решить, записав его в дифференциалах g (y )dy = f (x )dx и проинтегрировав обе части. В худшем случае решение представимо в виде интегралов от известных функций. Например, в случае уравнения dy /dx = x /y имеем f (x ) = x , g (y ) = y . Записав его в виде ydy = xdx и проинтегрировав, получим y 2 = x 2 + c . К уравнениям с разделяющимися переменными относятся уравнения из примеров (1), (2), (4) (их можно решить описанным выше способом).

Уравнения в полных дифференциалах.

Если дифференциальное уравнение имеет вид dy /dx = M (x ,y )/N (x ,y ), где M и N – две заданные функции, то его можно представить как M (x ,y )dx N (x ,y )dy = 0. Если левая часть является дифференциалом некоторой функции F (x ,y ), то дифференциальное уравнение можно записать в виде dF (x ,y ) = 0, что эквивалентно уравнению F (x ,y ) = const. Таким образом, кривые-решения уравнения – это «линии постоянных уровней» функции, или геометрические места точек, удовлетворяющих уравнениям F (x ,y ) = c . Уравнение ydy = xdx (рис. 1) – с разделяющимися переменными, и оно же – в полных дифференциалах: чтобы убедиться в последнем, запишем его в виде ydy xdx = 0, т.е. d (y 2 – x 2) = 0. Функция F (x ,y ) в этом случае равна (1/2)(y 2 – x 2); некоторые из ее линий постоянного уровня представлены на рис. 1.

Линейные уравнения.

Линейные уравнения – это уравнения «первой степени» – неизвестная функция и ее производные входят в такие уравнения только в первой степени. Таким образом, линейное дифференциальное уравнение первого порядка имеет вид dy /dx + p (x ) = q (x ), где p (x ) и q (x ) – функции, зависящие только от x . Его решение всегда можно записать с помощью интегралов от известных функций. Многие другие типы дифференциальных уравнений первого порядка решаются с помощью специальных приемов.

Уравнения старших порядков.

Многие дифференциальные уравнения, с которыми сталкиваются физики, это уравнения второго порядка (т.е. уравнения, содержащие вторые производные) Таково, например, уравнение простого гармонического движения из примера (3), md 2 x /dt 2 = –kx . Вообще говоря, можно ожидать, что уравнение второго порядка имеет частные решения, удовлетворяющие двум условиям; например, можно потребовать, чтобы кривая-решение проходила через данную точку в данном направлении. В случаях, когда дифференциальное уравнение содержит некоторый параметр (число, величина которого зависит от обстоятельств), решения требуемого типа существуют только при определенных значениях этого параметра. Например, рассмотрим уравнение md 2 x /dt 2 = –kx и потребуем, чтобы y (0) = y (1) = 0. Функция y є 0 заведомо является решением, но если – целое кратное числа p , т.е. k = m 2 n 2 p 2, где n – целое число, а в действительности только в этом случае, существуют другие решения, а именно: y = sin npx . Значения параметра, при которых уравнение имеет особые решения, называются характеристическими или собственными значениями; они играют важную роль во многих задачах.

Уравнение простого гармонического движения служит примером важного класса уравнений, а именно: линейных дифференциальных уравнений с постоянными коэффициентами. Более общий пример (также второго порядка) – уравнение

где a и b – заданные постоянные, f (x ) – заданная функция. Такие уравнения можно решать различными способами, например, с помощью интегрального преобразования Лапласа. То же можно сказать и о линейных уравнениях более высоких порядков с постоянными коэффициентами. Не малую роль играют также и линейные уравнения с переменными коэффициентами.

Нелинейные дифференциальные уравнения.

Уравнения, содержащие неизвестные функции и их производные в степени выше первой или каким-либо более сложным образом, называются нелинейными. В последние годы они привлекают все большее внимание. Дело в том, что физические уравнения обычно линейны лишь в первом приближении; дальнейшее и более точное исследование, как правило, требует использования нелинейных уравнений. Кроме того, многие задачи нелинейны по своей сути. Так как решения нелинейных уравнений зачастую очень сложны и их трудно представить простыми формулами, значительная часть современной теории посвящена качественному анализу их поведения, т.е. разработке методов, позволяющих, не решая уравнения, сказать нечто существенное о характере решений в целом: например, что все они ограниченны, или имеют периодический характер, или определенным образом зависят от коэффициентов.

Приближенные решения дифференциальных уравнений могут быть найдены в численном виде, но для этого требуется много времени. С появлением быстродействующих компьютеров это время сильно сократилось, что открыло новые возможности численного решения многих, ранее не поддававшихся такому решению, задач.

Теоремы существования.

Теоремой существования называется теорема, утверждающая, что при определенных условиях данное дифференциальное уравнение имеет решение. Встречаются дифференциальные уравнения, не имеющие решений или имеющие их больше, чем ожидается. Назначение теоремы существования – убедить нас в том, что у данного уравнения действительно есть решение, а чаще всего заверить, что оно имеет ровно одно решение требуемого типа. Например, уже встречавшееся нам уравнение dy /dx = –2y имеет ровно одно решение, проходящее через каждую точку плоскости (x ,y ), а так как одно такое решение мы уже нашли, то тем самым полностью решили это уравнение. С другой стороны, уравнение (dy /dx ) 2 = 1 – y 2 имеет много решений. Среди них прямые y = 1, y = –1 и кривые y = sin(x + c ). Решение может состоять из нескольких отрезков этих прямых и кривых, переходящих друг в друга в точках касания (рис. 2).

Дифференциальные уравнения в частных производных.

Обыкновенное дифференциальное уравнение – это некоторое утверждение о производной неизвестной функции одной переменной. Дифференциальное уравнение в частных производных содержит функцию двух или более переменных и производные от этой функции по крайней мере по двум различных переменным.

В физике примерами таких уравнений являются уравнение Лапласа

X , y ) внутри круга, если значения u заданы в каждой точке ограничивающей окружности. Поскольку проблемы с более чем одной переменной в физике являются скорее правилом, чем исключением, легко представить, сколь обширен предмет теории дифференциальных уравнений в частных производных.

Конспект лекций по

дифференциальным уравнениям

Дифференциальные уравнения

Введение

При изучении некоторых явлений часто возникает ситуация, когда процесс не удаётся описать с помощью уравнения y=f(x) или F(x;y)=0. Помимо переменной х и неизвестной функции, в уравнение входит производная этой функции.

Определение: Уравнение, связывающее переменную х, неизвестную функцию y(x) и её производные называется дифференциальным уравнением . В общем виде дифференциальное уравнение выглядит так:

F(x;y(x);;;...;y (n))=0

Определение: Порядком дифференциального уравнения называется порядок входящей в него старшей производной.

–дифференциальное уравнение 1 порядка

–дифференциальное уравнение 3 порядка

Определение: Решением дифференциального уравнения является функция, которая при подстановке в уравнение обращает его в тождество.

Дифференциальные уравнения 1 порядка

Определение: Уравнение вида =f(x;y) или F(x;y;)=0называется дифференциальным уравнением 1 порядка.

Определение: Общим решением дифференциального уравнения 1 порядка называется функция y=γ(x;c), где (с –const), которая при подстановке в уравнение обращает его в тождество. Геометрически на плоскости общим решением соответствует семейство интегральных кривых, зависящих от параметра с.

Определение: Интегральная кривая, проходящая через точку плоскости с координатами (х 0 ;y 0) соответствует частному решению дифференциального уравнения, удовлетворяющего начальному условию:

Теорема о существовании единственности решения дифференциального уравнения 1 порядка

Дано дифференциальное уравнение 1 порядка
и функцияf(x;y) непрерывна вместе с частными производными в некоторой области D плоскости XOY, тогда через точку М 0 (х 0 ;y 0)D проходит единственная кривая соответствующая частному решению дифференциального уравнения соответствующему начальному условию y(x 0)=y 0

Через точку плоскости с данными координатами проходит 1 интегральная кривая.

Если не удаётся получить общее решение дифференциального уравнения 1 порядка в явном виде, т.е
, то его можно получить в неявном виде:

F(x; y; c) =0 – неявный вид

Общее решение в таком виде называется общим интегралом дифференциального уравнения.

По отношению к дифференциальному уравнению 1 порядка ставится 2 задачи:

1)Найти общее решение (общий интеграл)

2)Найти частное решение (частный интеграл) удовлетворяющее заданному начальному условию. Эту задачу называют задачей Коши для дифференциального уравнения.

Дифференциальные уравнения с разделяющимися переменными

Уравнения вида:
называется дифференциальным уравнением с разделяющимися переменными.

Подставим

умножим на dx

разделим переменные

разделим на

Замечание: обязательно нужно рассматривать частный случай, когда

переменные разделены

проинтегрируем обе части уравнения

- общее решение

Дифференциальное уравнение с разделяющимися переменными можно записать в виде:

Отдельный случай
!

Проинтегрируем обе части уравнения:

1)

2)
нач. условия:

Однородные дифференциальные уравнения 1 порядка

Определение: Функция
называется однородной порядкаn, если

Пример: - однородная функция порядкаn=2

Определение: Однородная функция порядка 0 называется однородной .

Определение: Дифференциальное уравнение
называется однородным, если
- однородная функция, т.е

Таким образом однородное дифференциальное уравнение может быть записано в виде:

С помощью замены , гдеt – функция переменной х, однородное дифференциальное уравнение сводится к уравнению с разделяющимися переменными.

- подставим в уравнение

Переменные разделены, проинтегрируем обе части уравнения

Сделаем обратную замену, подставив вместо , получим общее решение в неявном виде.

Однородное дифференциальное уравнение может быть записано в дифференциальной форме.

M(x;y)dx+N(x;y)dy=0, где M(x;y) и N(x;y) – однородные функции одинакового порядка.

Разделим на dx и выразим

1)

Вспомним задачу, которая стояла перед нами при нахождении определенных интегралов:

или dy = f(x)dx. Ее решение:

и сводится она к вычислению неопределенного интеграла. На практике чаще встречается более сложная задача: найти функцию y , если известно, что она удовлетворяет соотношению вида

Это соотношение связывает независимую переменную x , неизвестную функцию y и ее производные до порядка n включительно, называются .

В дифференциальное уравнение входит функция под знаком производных (или дифференциалов) того или иного порядка. Порядок наивысшей называется порядком (9.1).

Дифференциальные уравнения:

- первого порядка,

Второго порядка,

- пятого порядка и т. д.

Функция, которая удовлетворяет данному дифференциальному уравнению, называется его решением, или интегралом. Решить его - значит найти все его решения. Если для искомой функции y удалось получить формулу, которая дает все решения, то мы говорим, что нашли его общее решение, или общий интеграл.

Общее решение содержит n произвольных постоянных и имеет вид

Если получено соотношение, которое связывает x, y и n произвольных постоянных, в виде, не разрешенном относительно y -

то такое соотношение называется общим интегралом уравнения (9.1).

Задача Коши

Каждое конкретное решение, т. е. каждая конкретная функция, которая удовлетворяет данному дифференциальному уравнению и не зависит от произвольных постоянных, называется частным решением, или частным интегралом. Чтобы получить частные решения (интегралы) из общих, надо постоянным придают конкретные числовые значения.

График частного решения называется интегральной кривой. Общее решение, которое содержит все частные решения, представляет собой семейство интегральных кривых. Для уравнения первого порядка это семейство зависит от одной произвольной постоянной, для уравнения n -го порядка - от n произвольных постоянных.

Задача Коши заключается в нахождении частного решение для уравнения n -го порядка, удовлетворяющее n начальным условиям:

по которым определяются n постоянных с 1 , с 2 ,..., c n.

Дифференциальные уравнения 1-го порядка

Для неразрешенного относительно производной дифференциальное уравнения 1-го порядка имеет вид

или для разрешенного относительно

Пример 3.46 . Найти общее решение уравнения

Решение. Интегрируя, получим

где С - произвольная постоянная. Если придадим С конкретные числовые значения, то получим частные решения, например,

Пример 3.47 . Рассмотрим возрастающую денежную сумму, положенную в банк при условии начисления 100 r сложных процентов в год. Пусть Yo начальная денежная сумма, а Yx - по истечении x лет. При начислении процентов один раз в год,получим

где x = 0, 1, 2, 3,.... При начислении процентов два раза в год, получим

где x = 0, 1/2, 1, 3/2,.... При начислении процентов n раз в год и если x принимает последовательно значения 0, 1/n, 2/n, 3/n,..., тогда

Обозначить 1/n = h , тогда предыдущее равенство будет иметь вид:

При н еограниченном увеличении n (при ) в пределе приходем к процессу возрастания денежной суммы при непрерывном начислении процентов:

таким образом видно, что при непрерывном изменении x закон изменения денежной массы выражается дифференциальным уравнением 1- го порядка. Где Y x - неизвестная функция, x - независимая переменная, r - постоянная. Решим данное уравнение, для этого перепишем его следующим образом:

откуда , или , где через P обозначено e C .

Из начальных условий Y(0) = Yo , найдем P: Yo = Pe o , откуда, Yo = P. Следовательно, решение имеет вид:

Рассмотрим вторую экономическую задачу. Макроэкономические модели тоже описываются линейным дифференциальным уравнениям 1-го порядка, описывающим изменение дохода или выпуска продукции Y как функций времени.

Пример 3.48 . Пусть национальный доход Y возрастает со скоростью, пропорциональной его величине:

и пусть, дефицит в расходах правительства прямо пропорционален доходу Y с коэффициентом пропорциональности q . Дефицит в расходах приводит к возрастанию национального долга D:

Начальные условия Y = Yo и D = Do при t = 0. Из первого уравнения Y= Yoe kt . Подставляя Y получаем dD/dt = qYoe kt . Общее решение имеет вид
D = (q/ k) Yoe kt +С, где С = const, которая определяется из начальных условий. Подставляя начальные условия, получаем Do = (q/ k)Yo + С. Итак, окончательно,

D = Do +(q/ k)Yo (e kt -1),

отсюда видно, что национальный долг возрастает с той же относительной скоростью k , что и национальный доход.

Рассмотрим ростейшие дифференциальные уравнения n -го порядка, это уравнения вида

Его общее решение получитм с помощью n раз интегрирований.

Пример 3.49. Рассмотрим пример y """ = cos x.

Решение. Интегрируя, находим

Общее решение имеет вид

Линейные дифференциальные уравнения

В экономике большое применение имеют , рассмотрим решение таких уравнений. Если (9.1) имеет вид:

то оно называется линейным, где рo(x), р1(x),..., рn(x), f(x) - заданные функции. Если f(x) = 0, то (9.2) называется однородными, в противном случае - неоднородным. Общее решение уравнения (9.2) равно сумме какого-либо его частного решения y(x) и общего решения однородного уравнения соответствующего ему:

Если коэффициенты р o (x), р 1 (x),..., р n (x) постоянные, то (9.2)

(9.4) называется линейным дифференциальным уравнением с постоянными коэффициентами порядка n .

Для (9.4) имеет вид:

Можно положить без ограничения общности р o = 1 и записать (9.5) в виде

Будем искать решение (9.6) в виде y = e kx , где k - константа. Имеем: ; y " = ke kx , y "" = k 2 e kx , ..., y (n) = kne kx . Подставим полученные выражения в (9.6), будем иметь:

(9.7) есть алгебраическое уравнение, его неизвестным является k , оно называется характеристическим. Характеристическое уравнение имеет степень n и n корней, среди которых могут быть как кратные, так и комплексные. Пусть k 1 , k 2 ,..., k n - действительные и различные, тогда - частные решения (9.7), а общее

Рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами:

Его характеристическое уравнение имеет вид

(9.9)

его дискриминант D = р 2 - 4q в зависимости от знака D возможны три случая.

1. Если D>0, то корни k 1 и k 2 (9.9) действительны и различны, и общее решение имеет вид:

Решение. Характеристическое уравнение: k 2 + 9 = 0, откуда k = ± 3i, a = 0, b = 3, общее решение имеет вид:

y = C 1 cos 3x + C 2 sin 3x.

Линейные дифференциальные уравнения 2-го порядка применяются при изучении экономической модели паутинообразного типа с запасами товаров, где скорость изменения цены P зависит от величины запаса (см. параграф 10). В случае если спрос и предложение являются линейными функциями цены, то есть

а - есть постоянная, определяющая скорость реакции, то процесс изменения цены описывается дифференциальным уравнением:

За частное решения можно взять постоянную

имеющую смысл цены равновесия. Отклонение удовлетворяет однородному уравнению

(9.10)

Характеристическое уравнение будет следующее:

В случае член положителен. Обозначим . Корни характеристического уравнения k 1,2 = ± i w, поэтому общее решение (9.10) имеет вид:

где C и произвольные постоянные, они определяются из начальных условий. Получили закон изменения цены во времени:

Введите свое дифференциальное уравнение, для ввода производной используется апостроa """, нажмите submit получите решение

Данный онлайн калькулятор позволяет решать дифференциальные уравнения онлайн. Достаточно в соответствующее поле ввести ваше уравнение, обозначая через апостроф " производную от функции и нажать на кнопку "решить уравнение". И система, реализованная на основе популярного сайта WolframAlpha выдаст подробное решение дифференциального уравнения абсолютно бесплатно. Вы можете также задать задачу Коши, чтобы из всего множества возможных решений выбрать частное соответствующее заданным начальным условиям. Задача Коши вводится в отдельном поле.

Дифференциальное уравнение

По умолчанию в уравнении функция y является функцией от переменной x . Однако вы можете задать своё обозначение переменной, если напишете, например, y(t) в уравнении, то калькулятор автоматически распознает, что y есть функция от переменной t . С помощью калькулятора вы сможете решать дифференциальные уравнения любой сложности и вида: однородные и неоднородные, линейные или нелинейные, первого порядка или второго и более высоких порядков, уравнения с разделяющимися или неразделяющимися переменными и т.д. Решение диф. уравнения даётся в аналитическом виде, имеет подробное описание. Дифференциальные уравнения очень часто встречаются в физике и математике. Без их вычисления невозможно решать многие задачи (особенно в математической физике).

Одним из этапов решения дифференциальных уравнений является интегрирование функций . Есть стандартные методы решений дифференциальных уравнений. Необходимо привести уравнения к виду с разделяющимися переменными y и x и отдельно проинтегрировать разделенные функции. Чтобы это сделать иногда следует провести определенную замену.

Дифференциальное уравнение (ДУ) - это уравнение ,
где - независимые переменные, y - функция и - частные производные.

Обыкновенное дифференциальное уравнение - это дифференциальное уравнение, которое имеет только одну независимую переменную, .

Дифференциальное уравнение в частных производных - это дифференциальное уравнение, которое имеет две и более независимых переменных.

Слова “обыкновенные“ и "в частных производных" могут опускаться, если ясно, какое уравнение рассматривается. В дальнейшем рассматриваются обыкновенные дифференциальные уравнения.

Порядок дифференциального уравнения - это порядок старшей производной.

Вот пример уравнения первого порядка:

Вот пример уравнения четвертого порядка:

Иногда дифференциальное уравнение первого порядка записывается через дифференциалы:

В этом случае переменные x и y являются равноправными. То есть независимой переменной может быть как x так и y . В первом случае y является функцией от x . Во втором случае x является функцией от y . Если необходимо, мы можем привести это уравнение к виду, в котором явно входит производная y′ .
Разделив это уравнение на dx , мы получим:
.
Поскольку и , то отсюда следует, что
.

Решение дифференциальных уравнений

Производные от элементарных функций выражаются через элементарные функции. Интегралы от элементарных функций часто не выражаются через элементарные функции. С дифференциальными уравнениями дело обстоит еще хуже. В результате решения можно получить:

  • явную зависимость функции от переменной;

    Решение дифференциального уравнения - это функция y = u(x) , которая определена, n раз дифференцируема, и .

  • неявную зависимость в виде уравнения типа Φ(x, y) = 0 или системы уравнений;

    Интеграл дифференциального уравнения - это решение дифференциального уравнения, которое имеет неявный вид.

  • зависимость, выраженную через элементарные функции и интегралы от них;

    Решение дифференциального уравнения в квадратурах - это нахождение решения в виде комбинации элементарных функций и интегралов от них.

  • решение может не выражается через элементарные функции.

Поскольку решение дифференциальных уравнений сводится к вычислению интегралов, то в состав решения входит набор постоянных C 1 , C 2 , C 3 , ... C n . Количество постоянных равно порядку уравнения.Частный интеграл дифференциального уравнения - это общий интеграл при заданных значениях постоянных C 1 , C 2 , C 3 , ... , C n .


Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Похожие публикации