Энциклопедия пожаробезопасности

Закон всемирного тяготения формула и определение. Гравитационные силы. Закон всемирного тяготения. Вес тела

И. Ньютон сумел вывести из законов Кеплера один из фундаментальных законов природы - закон всемирного тяготения. Ньютон знал, что для всех планет Солнечной системы ускорение обратно пропорционально квадрату расстояния от планеты до Солнца и коэффициент пропорциональности - один и тот же для всех планет.

Отсюда следует прежде всего, что сила притяжения, действующая со стороны Солнца на планету, должна быть пропорциональна массе этой планеты. В самом деле, если ускорение планеты дается формулой (123.5), то сила, вызывающая ускорение,

где - масса этой планеты. С другой стороны, Ньютону было известно ускорение, которое Земля сообщает Луне; оно было определено из наблюдений движения Луны, обращающейся вокруг Земли. Это ускорение примерно в раз меньше ускорения , сообщаемого Землей телам, находящимся вблизи земной поверхности. Расстояние же от Земли до Луны равно приблизительно земным радиусам. Иными словами, Луна отстоит от центра Земли в раз дальше, чем тела, находящиеся на поверхности Земли, а ускорение ее в раз меньше.

Если принять, что Луна движется под действием притяжения Земли, то отсюда следует, что сила земного притяжения, так же как и сила притяжения Солнца, убывает обратно пропорционально квадрату расстояния от центра Земли. Наконец, сила притяжения Земли прямо пропорциональна массе притягиваемого тела. Этот факт Ньютон установил на опытах с маятниками. Он обнаружил, что период качаний маятника не зависит от его массы. Значит, маятникам разной массы Земля сообщает одинаковое ускорение, и, следовательно, сила притяжения Земли пропорциональна массе тела, на которое она действует. То же, конечно, следует из одинаковости ускорения свободного падения для тел разных масс, но опыты с маятниками позволяют проверить этот факт с большей точностью.

Эти сходные черты сил притяжения Солнца и Земли и привели Ньютона к заключению о том, что природа этих сил едина и что существуют силы всемирного тяготения, действующие между всеми телами и убывающие обратно пропорционально квадрату расстояния между телами. При этом сила тяготения, действующая на данное тело массы , должна быть пропорциональна массе .

Исходя из этих фактов и соображений, Ньютон сформулировал закон всемирного тяготения таким образом: любые два тела притягиваются друг к другу с силой, которая направлена по линии, их соединяющей, прямо пропорциональна массам обоих тел и обратно пропорциональна квадрату расстояния между ними, т. е. сила взаимного тяготения

где и - массы тел, - расстояние между ними, а - коэффициент пропорциональности, называемый гравитационной постоянной (способ ее измерения будет описан ниже). Сращивая эту формулу с формулой (123.4), видим, что , где - масса Солнца. Силы всемирного тяготения удовлетворяют третьему закону Ньютона. Это подтвердилось всеми астрономическими наблюдениями над движением небесных тел.

В такой формулировке закон всемирного тяготения применим к телам, которые можно считать материальными точками, т. е. к телам, расстояние между которыми очень велико по сравнению с их размерами, иначе следовало бы учитывать, что разные точки тел отстоят друг от друга на разные расстояния. Для однородных шарообразных тел формула верна при любом расстоянии между телами, если в качестве взять расстояние между их центрами. В частности, в случае притяжения тела Землей расстояние нужно отсчитывать от центра Земли. Это объясняет тот факт, что сила тяжести почти не убывает по мере увеличения высоты над Землей (§ 54): так как радиус Земли равен примерно 6400, то при изменении положения тела над поверхностью Земли в пределах даже десятков километров сила притяжения Земли остается практически неизменной.

Гравитационную постоянную можно определить, измерив все остальные величины, входящие в закон всемирного тяготения, для какого-либо конкретного случая.

Определить значение гравитационной постоянной впервые удалось при помощи крутильных весов, устройство которых схематически изображено на рис. 202. Легкое коромысло, на концах которого закреплены два одинаковых шара массы , повешено на длинной и тонкой нити. Коромысло снабжено зеркальцем, которое позволяет оптическим способом измерять малые повороты коромысла вокруг вертикальной оси. К шарам с разных сторон могут быть приближены два шара значительно большей массы .

Рис. 202. Схема крутильных весов для измерения гравитационной постоянной

Силы притяжения малых шаров к большим создают пару сил, вращающую коромысло по часовой стрелке (если смотреть сверху). Измерив угол, на который поворачивается коромысло при приближении к шарам шаров , и, зная упругие свойства нити, на которой подвешено коромысло, можно определить момент пары сил, с которыми притягиваются массы к массам . Так как массы шаров и и расстояние между их центрами (при данном положении коромысла) известны, то из формулы (124.1) может быть найдено значение . Оно оказалось равным

После того как было определено значение , оказалось возможным из закона всемирного тяготения определить массу Земли. Действительно, в соответствии с этим законом, тело массы , находящееся у поверхности Земли, притягивается к Земле с силой

где - масса Земли, а - ее радиус. С другой стороны, мы знаем, что . Приравняв эти величины, найдем

.

Таким образом, хотя силы всемирного тяготения, действующие между телами различной массы, равны, значительное ускорение получает тело малой массы, а тело большой массы испытывает малое ускорение.

Так как суммарная масса всех планет Солнечной системы составляет немногим больше массы Солнца, ускорение, которое испытывает Солнце в результате действия на него сил тяготения со стороны планет, ничтожно мало по сравнению с теми ускорениями, которые сила тяготения Солнца сообщает планетам. Относительно малы и силы тяготения, действующие между планетами. Поэтому при рассмотрении законов движения планет (законов Кеплера) мы не учитывали движения самого Солнца и приближенно считали, что траектории планет - эллиптические орбиты, в одном из фокусов которых находится Солнце. Однако в точных расчетах приходится принимать во внимание те «возмущения», которые вносят в движение самого Солнца или какой-либо планеты силы тяготения со стороны других планет.

124.1. Насколько уменьшится сила земного притяжения, действующая на ракетный снаряд, когда он поднимется на 600 км над поверхностью Земли? Радиус Земли принять равным 6400 км.

124.2. Масса Луны в 81 раз меньше массы Земли, а радиус Луны приблизительно в 3,7 раза меньше радиуса Земли. Найдите вес человека на Луне, если его вес на Земле равен 600Н.

124.3. Масса Луны в 81 раз меньше массы Земли. Найдите на линии, соединяющей центры Земли и Луны, точку, в которой равны друг другу силы притяжения Земли и Луны, действующие на помещенное в этой точке тело.

Джеймс Э. МИЛЛЕР

Огромный рост числа молодых энергичных работников, подвизающихся на научной ниве, есть счастливое следствие расширения научных исследований в нашей стране, поощряемых и лелеемых Федеральным правительством. Измотанные и задерганные научные руководители бросают этих неофитов на произвол судьбы, и они часто остаются без лоцмана, который мог бы провести их среди подводных камней государственного субсидирования. По счастью, они могут вдохновляться историей сэра Исаака Ньютона, открывшего закон всемирного тяготения. Вот как это произошло.

В 1665 году молодой Ньютон стал профессором математики в Кембриджском университете – своей альма-матер. Он был влюблен в работу, и способности его как преподавателя не вызывали сомнений. Однако нужно заметить, что это ни в коей мере не был человек не от мира сего или же непрактичный обитатель башни из слоновой кости. Его работа в колледже не ограничивалась только аудиторными занятиями: он был деятельным членом Комиссии по Составлению Расписаний, заседал в управлении университетского отделения Ассоциации Молодых Христиан Благородного Происхождения, подвизался в Комитете Содействия Декану, в Комиссии по Публикациям и прочих и прочих комиссиях, которые были необходимы для надлежащего управления колледжем в далеком XVII веке. Тщательные исторические изыскания показывают, что всего за пять лет Ньютон заседал в 379 комиссиях, которые занимались изучением 7924 проблем университетской жизни, из коих решена 31 проблема.

Однажды (а было это в 1680 году) после очень напряженного дня заседание комиссии, назначенное на одиннадцать часов вечера – раньше времени не было, не собрало необходимого кворума, ибо один из старейших членов комиссии внезапно скончался от нервного истощения. Каждое мгновение сознательной жизни Ньютона было тщательно распланировано, а тут вдруг оказалось, что в этот вечер ему нечего делать, так как начало заседания следующей комиссии было назначено только на полночь. Поэтому он решил немного пройтись. Эта коротенькая прогулка изменила мировую историю.

Была осень. В садах многих добрых граждан, живших по соседству со скромным домиком Ньютона, деревья ломились под тяжестью спелых яблок. Все было готово к сбору урожая. Ньютон увидел, как на землю упало очень аппетитное яблоко. Немедленной реакцией Ньютона на это событие – типичной для человеческой стороны великого гения – было перелезть через садовую изгородь и сунуть яблоко в карман. Отойдя на приличное расстояние от сада, он с наслаждением надкусил сочный плод.

Вот тут его и осенило. Вез обдумывания, без предварительных логических рассуждений в мозгу его блеснула мысль, что падение яблока и движение планет по своим орбитам должны подчиняться одному и тому же универсальному закону. Не успел он доесть яблоко и выбросить огрызок, как формулировка гипотезы о законе всемирного тяготения была уже готова. До полуночи оставалось три минуты, и Ньютон поспешил на заседание Комиссии по Борьбе с Курением Опиума Среди Студентов Неблагородного Происхождения.

В последующие недели мысли Ньютона все снова и снова возвращались к этой гипотезе. Редкие свободные минуты между двумя заседаниями он посвящал планам ее проверки. Прошло несколько лет, в течение которых, как показывают тщательные подсчеты, он уделил обдумыванию этих планов 63 минуты 28 секунд. Ньютон понял, что для проверки его предположения нужно больше свободного времени, чем то, на которое он может рассчитывать. Ведь требовалось определить с большой точностью длину одного градуса широты на земной поверхности и изобрести дифференциальное исчисление.

Не имея еще опыта в таких делах, он выбрал простую процедуру и написал краткое письмо из 22 слов королю Карлу, в котором изложил свою гипотезу и указал на то, какие великие возможности она сулит, если подтвердится. Видел ли король это письмо – неизвестно, вполне возможно, что и не видел, так как он ведь был перегружен государственными проблемами и планами грядущих войн. Однако нет никакого сомнения в том, что письмо, пройдя по соответствующим каналам, побывало у всех начальников отделов, их заместителей и заместителей их заместителей, которые имели полную возможность высказать свои соображения и рекомендации.

В конце концов письмо Ньютона вместе с объемистой папкой комментариев, которыми оно успело обрасти по дороге, достигло кабинета секретаря ПКЕВИР/КИНИ/ППАБИ (Плановая Комиссия Его Величества по Исследованиям и Развитию, Комитет по Изучению Новых Идей, Подкомитет по Подавлению Антибританских Идей). Секретарь сразу же осознал важность вопроса и вынес его на заседание Подкомитета, который проголосовал за предоставление Ньютону возможности дать показания на заседании Комитета. Этому решению предшествовало краткое обсуждение идеи Ньютона на предмет выяснения, нет ли в его намерениях чего-нибудь антибританского, но запись этой дискуссии, заполнившая несколько томов in quarto, с полной ясностью показывает, что серьезного подозрения на него так и не упало.

Показания Ньютона перед ПКЕВИР/КИНИ следует рекомендовать для прочтения всем молодым ученым, еще не знающим, как вести себя, когда придет их час. Колледж проявил деликатность, предоставив ему на период заседаний Комитета двухмесячный отпуск без сохранения содержания, а зам декана по научно-исследовательской работе проводил его шутливым напутственным пожеланием не возвращаться без «жирного» контракта. Заседание Комитета проходило при открытых дверях, и публики набилось довольно много, но впоследствии оказалось, что большинство присутствующих ошиблось дверью, стремясь попасть на заседание КЕВОРСПВО – Комиссии Его Величества по Обличению Разврата Среди Представителей Высшего Общества.

После того как Ньютон был приведен к присяге и торжественно заявил, что он не является членом Лояльной Его Величества Оппозиции, никогда не писал безнравственных книг, не ездил в Россию и не совращал молочниц, его попросили кратко изложить суть дела. В блестящей, простой, кристально ясной десятиминутной речи, произнесенной экспромтом, Ньютон изложил законы Кеплера и свою собственную гипотезу, родившуюся при виде падающего яблока. В этот момент один из членов Комитета, импозантный и динамичный мужчина, настоящий человек действия, пожелал узнать, какие средства может предложить Ньютон для улучшения постановки дела по выращиванию яблок в Англии. Ньютон начал объяснять, что яблоко не является существенной частью его гипотезы, но был прерван сразу несколькими членами Комитета, которые дружно высказались в поддержку проекта по улучшению английских яблок. Обсуждение продолжалось несколько недель, в течение которых Ньютон с характерным для него спокойствием и достоинством сидел и ждал, когда Комитет пожелает с ним проконсультироваться. Однажды он опоздал на несколько минут к началу заседания и нашел дверь запертой. Он осторожно постучал, не желая мешать размышлениям членов Комитета. Дверь приотворилась, и привратник, прошептав, что мест нет, отправил его обратно. Ньютон, всегда отличавшийся логичностью мышления, пришел к заключению, что Комитет не нуждается более в его советах, а посему вернулся в свой колледж, где его ждала работа в различных комиссиях.

Спустя несколько месяцев Ньютон был удивлен, получив объемистый пакет из ПКЕВИР/КИНИ. Открыв его, он обнаружил, что содержимое состоит из многочисленных правительственных анкет, в пяти экземплярах каждая. Природное любопытство – главная черта всякого истинного ученого – заставило его внимательно изучить эти анкеты. Затратив на это изучение определенное время, он понял, что его приглашают подать прошение о заключении контракта на постановку научного исследования для выяснения связи между способом выращивания яблок, их качеством и скоростью падения на землю. Конечной целью проекта, как он понял, было выведение сорта яблок, которые не только имели бы хороший вкус, но и падали бы на землю мягко, не повреждая кожуры. Это, конечно, было не совсем то, что Ньютон имел в виду, когда писал письмо королю. Но он был человеком практичным и понял, что, работая над предлагаемой проблемой, сможет попутно проверить и свою гипотезу. Так он соблюдет интересы короля и позанимается немножко наукой – за те же деньги. Приняв такое решение, Ньютон принялся заполнять анкеты без дальнейших колебаний.

Однажды в 1865 году точный распорядок дня Ньютона был нарушен. В четверг после обеда он готовился принять комиссию вице-президентов компаний, входивших во фруктовый синдикат, когда пришло повергшее Ньютона в ужас и всю Британию в скорбь известие о гибели всего состава комиссии во время страшного столкновения почтовых дилижансов. У Ньютона, как это уже было однажды, образовалось ничем не занятое «окно», и он принял решение прогуляться. Во время этой прогулки ему пришла (он сам не знает как) мысль о новом, совершенно революционном математическом подходе, с помощью которого можно решить задачу о притяжении вблизи большой сферы. Ньютон понял, что решение этой задачи позволит проверить его гипотезу с наибольшей точностью, и тут же, не прибегая ни к чернилам, ни к бумаге, в уме доказал, что гипотеза подтверждается. Легко можно себе представить, в какой восторг он пришел от столь блестящего открытия.

Вот так правительство Его Величества поддерживало и воодушевляло Ньютона в эти напряженные годы работы над теорией. Мы не будем распространяться о попытках Ньютона опубликовать свое доказательство, о. недоразумениях с редакцией «Журнала садоводов» и о том, как его статью отвергли журналы «Астроном-любитель» и «Физика для домашних хозяек». Достаточно сказать, что Ньютон основал свой собственный журнал, чтобы иметь возможность напечатать без сокращений и искажений сообщение о своем открытии.

Напечатано в журнале «The American Scientist», 39, №1 (1951).

Дж.Э. Миллер – заведующий кафедрой метеорологии и океанографии Нью-йоркского университета.

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение - ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести . Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

Физическая величина - ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения , действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m 1 = m 2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными . Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н м 2 /кг 2 = м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 10 -11 Н м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 10 20 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса m и.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, - гравитационная масса m r .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

m и = m r . (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

Итак, движение планет, например Луны вокруг Земли или Земли вокруг Солнца,- это то же падение, но только падение, которое длится бесконечно долго (во всяком случае, если отвлечься от перехода энергии в «немеханические» формы).

Догадка о единстве причин, управляющих движением планет и падением земных тел, высказывалась учеными еще задолго до Ньютона. По-видимому, первым ясно высказал эту мысль греческий философ Анаксагор, выходец из Малой Азии, живший в Афинах почти две тысячи лет назад. Он говорил, что Луна, если бы не двигалась, упала бы на Землю.

Однако никакого практического влияния на развитие науки гениальная догадка Анаксагора, по-видимому, не имела. Ей суждено было оказаться не понятой современниками и забытой потомками. Античные и средневековые мыслители, чье внимание привлекало движение планет, были очень далеки от правильного (а чаще вообще от какого бы то ни было) истолкования причин этого движения. Ведь даже великий Кеплер, сумевший ценой гигантского труда сформулировать точные математические законы движения планет, считал, что причиной этого движения является вращение Солнца.

Согласно представлениям Кеплера, Солнце, вращаясь, постоянными толчками увлекает планеты во вращение. Правда, оставалось непонятным, почему время обращения планет вокруг Солнца отличается от периода обращения Солнца вокруг собственной оси. Кеплер писал об этом: «если бы планеты не обладали природными сопротивлениями, то нельзя было бы указать причины, почему бы им не следовать в точности вращению Солнца. Но хотя в действительности все планеты движутся в том же самом направлении, в котором совершается и вращение Солнца, скорость их движения не одинакова. Дело в том, что они смешивают в известных пропорциях косность своей собственной массы со скоростью своего движения».

Кеплер не смог понять, что совпадение направлений движения планет вокруг Солнца с направлением вращения Солнца вокруг своей оси связано не с законами движения планет, а с происхождением нашей солнечной системы. Искусственная планета может быть запущена как в направлении вращения Солнца, так и против этого вращения.

Гораздо ближе, чем Кеплер, подошел к открытию закона притяжения тел Роберт Гук. Вот его подлинные слова из работы под названием «Попытка изучения движения Земли», вышедшей в 1674 году: «Я разовью теорию, которая во всех отношениях согласуется с общепризнанными правилами механики. Теория эта основывается на трех допущениях: во-первых, что все без исключения небесные тела обладают направленным к их центру или тяжестью, благодаря которой они притягивают не только свои собственные части, но также и все находящиеся в сфере их действия небесные тела. Согласно второму допущению все тела, движущиеся прямолинейно и равномерным образом, будут двигаться по прямой линии до тех пор, пока они не будут отклонены какой-нибудь силой и не станут описывать траектории по кругу, эллипсу или какой-нибудь другой менее простой кривой. Согласно третьему допущению силы притяжения действуют тем больше, чем ближе к ним находятся тела, на которые они действуют. Я не мог еще установить при помощи опыта, каковы различные степени притяжения. Но если развивать дальше эту идею, то астрономы сумеют определить закон, согласно которому движутся все небесные тела».

Воистину можно лишь изумляться, что сам Гук не захотел заняться развитием этих идей, ссылаясь на занятость другими работами. Но появился ученый, который сделал прорыв в этой области

История открытия Ньютоном законом всемирного тяготения достаточно известна. Впервые мысль о том, что природа сил, заставляющих падать камень и определяющих движение небесных тел,- одна и та же, возникла еще у Ньютона-студента, что первые вычисления не дали правильных результатов, так как имевшиеся в то время данные о расстоянии от Земли до Луны были неточными, что 16 лет спустя появились новые, исправленные сведения об этом расстоянии. Для объяснения законов движения планет Ньютон применил законы созданной им динамики и установленный им же закон всемирного тяготения.

В качестве первого закона динамики он назвал галилеевский принцип инерции, включив его в систему основных законов- постулатов своей теории.

При этом Ньютону пришлось устранить ошибку Галилея, который считал, что равномерное движение по окружности - это движение по инерции. Ньютон указал (и это второй закон динамики), что единственный способ изменить движение тела - значение или направление скорости - это подействовать на него с некоторой силой. При этом ускорение, с которым движется тело под действием силы, обратно пропорционально массе тела.

Согласно третьему закону динамики Ньютона, «действию всегда есть равное и противоположное противодействие».

Последовательно применяя принципы – законы динамики, он вначале вычислил центростремительное ускорение Луны при ее движении по орбите вокруг Земли, а затем сумел показать, что отношение этого ускорения к ускорению свободного падения тел у поверхности Земли равно отношению квадратов радиусов Земли и лунной орбиты. Отсюда Ньютон сделал вывод, что природа силы тяжести и силы, удерживающей Луну на орбите, - одна и та же. Другими словами, согласно его выводам, Земля и Луна притягиваются друг к другу с силой, обратно пропорциональной квадрату расстояния между их центрами Fg ≈ 1∕r2.

Ньютону удалось показать, что единственным объяснением независимости ускорения свободного падения тел от их массы является пропорциональность силы тяжести массе.

Обобщая полученные выводы, Ньютон писал: «не может быть сомнения, что природа тяжести на других планетах такова же, как и на Земле. В самом деле, вообразим, что земные тела подняты до орбиты Луны и пущены вместе с Луною, также лишенной всякого движения, падать на Землю. На основании уже доказанного (имеются в виду опыты Галилея) несомненно, что в одинаковые времена они пройдут одинаковые с Луною пространства, ибо их массы так относятся к массе Луны, как их веса к весу ее». Так Ньютон открыл, а затем сформулировал закон всемирного тяготения, который по праву является достоянием науки.

2. Свойства гравитационных сил.

Одно из самых замечательных свойств сил всемирного тяготения, или, как их часто называют, гравитационных сил, отражено уже в самом названии, данном Ньютоном: всемирные. Эти силы, если так можно выразиться, «самые универсальные» среди всех сил природы. Все, что имеет массу - а масса присуща любой форме, любому виду материи,- должно испытывать гравитационные воздействия. Исключения не составляет даже свет. Если представлять себе наглядно гравитационные силы с помощью ниточек, которые тянутся от одних тел к другим, то бесчисленное множество таких ниточек должно было бы пронизывать пространство в любом месте. При этом нелишне заметить, что порвать такую ниточку, загородиться от гравитационных сил невозможно. Для всемирного тяготения нет преград, радиус их действия не ограничен (r = ∞). Гравитационные силы – это дальнодействующие силы. Таково «официальное название» этих сил в физике. Вследствие дальнодействия гравитация связывает все тела Вселенной.

Относительная медленность убывания сил с расстоянием на каждом шагу проявляется в наших земных условиях: ведь все тела не изменяют своего веса, будучи перенесенными, с одной высоты на другую (или, если быть более точными, меняют, но крайне незначительно), именно потому, что при относительно малом изменении расстояния – в данном случае от центра Земли – гравитационные силы практически не изменяются.

Кстати, именно по этой причине закон измерения гравитационных сил с расстоянием был открыт «на небе». Все необходимые данные черпались из астрономии. Не следует, однако, думать, что уменьшение силы тяжести с высотой нельзя обнаружить в земных условиях. Так, например, маятниковые часы с периодом колебания в одну секунду отстанут в сутки почти на три секунды, если их поднять из подвала на верхний этаж Московского университета (200 метров) – и это только за счет уменьшения силы тяжести.

Высоты, на которых движутся искусственные спутники, уже сравнимы с радиусом Земли, так что для расчета их траектории учет изменения силы земного притяжения с расстоянием совершенно необходим.

Гравитационные силы имеют еще одно очень интересное и необыкновенное свойство, о котором и пойдет сейчас речь.

В течении многих веков средневековая наука принимала как незыблемую догму утверждение Аристотеля о том, что тело падает тем быстрее, чем больше его вес. Даже повседневный опыт подтверждает это: ведь известно, что пушинка падает медленнее, чем камень. Однако, как впервые сумел показать Галилей, все дело здесь в том, что сопротивление воздуха, вступая в игру, радикально искажает ту картину, которая была бы, если бы на все тела действовала одно только земное притяжение. Существует замечательный по своей наглядности опыт с так называемой трубкой Ньютона, позволяющий очень просто оценить роль сопротивления воздуха. Вот краткое описание этого опыта. Представьте себе обыкновенную стеклянную (чтобы было видно, что делается внутри) трубку, в которую помещены различные предметы: дробинки, кусочки пробки, перышки или пушинки и т. д. Если перевернуть трубку так, чтобы все это могла падать, то быстрее всего промелькнет дробинка, за ней кусочки пробки и, наконец, плавно опустится пух. Но попробуем проследить за падением тех же предметов, когда из трубки выкачан воздух. Пушинка, потеряв былую медлительность, несется, не отставая от дробинки и пробки. Значит, ее движение задерживалось сопротивлением воздуха, которое в меньшей степени сказывалось на движении пробки и еще меньше на движении дробинки. Следовательно, если бы не сопротивление воздуха, если бы на тела действовали только силы всемирного тяготения – в частном случае земное притяжение,- то все тела падали бы совершенно одинаково, ускоряясь в одном и том же темпе.

Но «ничего не ново под Луной». Две тысячи лет тому назад Лукреций Кар в своей знаменитой поэме «О природе вещей» писал:

все то, что падает в воздухе редком,

Падать быстрее должно в соответствии с собственным весом

Лишь потому, что воды или воздуха тонкая сущность

Не в состояньи вещам одинаковых ставить препятствий,

Но уступает скорее имеющим большую тяжесть.

Наоборот, никогда никакую нигде не способна

Вещь задержать пустота и явиться какой-то опорой,

В силу природы своей постоянно всему уступая.

Должно поэтому все, проносясь в пустоте без препятствий,

Равную скорость иметь, несмотря на различие в весе.

Конечно, эти замечательные слова были прекрасной догадкой. Чтобы превратить эту догадку в надежно установленный закон, потребовалось множество опытов, начиная с знаменитых экспериментов Галилея, изучившего падение с известной наклонной Пизанской башни шаров одинаковых размеров, но сделанных из различных материалов (мрамора, дерева, свинца и т. д.), и кончая сложнейшими современными измерениями влияния гравитации на свет. И все это многообразие экспериментальных данных настойчиво укрепляет нас в убеждении, что гравитационные силы сообщают всем телам одинаковое ускорение; в частности, ускорение свободного падения, вызванное земным притяжением, одинаково для всех тел и не зависит ни от состава, ни от строения, ни от массы самих тел.

Этот простой, как будто бы, закон и выражает собой, пожалуй, самую замечательную особенность гравитационных сил. Нет буквально никаких других сил, которые бы одинаково ускоряли все тела независимо от их массы.

Итак, это свойство сил всемирного тяготения можно спрессовать в одно короткое утверждение: гравитационная сила пропорциональна массе тел. Подчеркнем, что здесь речь идет о той самой массе, которая в законах Ньютона выступает как мера инерции. Ее даже называют инертной массой.

В четырех словах «гравитационная сила пропорциональна массе» заключен удивительно глубокий смысл. Большие и малые тела, горячие и холодные, самого различного химического состава, любого строения – все они испытывают одинаковое гравитационное взаимодействие, если их массы равны.

А может быть, этот закон действительно прост? Ведь Галилей, например, считал его, чуть ли не самоочевидным. Вот его рассуждения. Пусть падают два тела разного веса. По Аристотелю тяжелое тело должно падать быстрее даже в пустоте. Теперь соединим тела. Тогда, с одной стороны, тела должны падать быстрее, так как общий вес увеличился. Но, с другой стороны, добавление к тяжелому телу части, падающей медленнее, должно тормозить это тело. Налицо противоречие, которое можно устранить, только если допустить, что все тела под действием одного только земного притяжения падают с одинаковым ускорением. Как будто все последовательно! Однако вдумаемся еще раз в приведенное рассуждение. Оно строится на распространенном методе доказательства «от противного»: предположив, что более тяжелое тело падает быстрее легкого, мы пришли к противоречию. И с самого начала появилось предположение, что ускорение свободного падения определяется весом и только весом. (Строго говоря, не весом, а массой.)

Но ведь это заранее (т. е. до эксперимента) вовсе не очевидно. А что, если бы это ускорение определялось объемом тел? Или температурой? Представим себе, что существует гравитационный заряд, аналогичный электрическому и, как этот последний, совершенно не связанный непосредственно с массой. Сравнение с электрическим зарядом очень полезно. Вот две пылинки между заряженными пластинами конденсатора. Пусть у этих пылинок равные заряды, а массы относятся как 1 к 2. Тогда ускорения должны отличаться в два раза: силы, определяемыми зарядами, равны, а при равных силах тело вдвое большей массы ускоряется вдвое меньше. Если же соединить пылинки, то, очевидно, ускорение будет иметь новое, промежуточное значение. Никакой умозрительный подход без экспериментального исследования электрических сил ничего здесь не может дать. Точно такой же была картина, если бы гравитационный заряд не был связан с массой. А ответить на вопрос о том, есть ли такая связь, может лишь опыт. И нам теперь понятно, что именно эксперименты, доказавшие одинаковость обусловленного гравитацией ускорения для всех тел, показали, по существу, что гравитационный заряд (гравитационная или тяжелая масса) равен инертной массе.

Опыт и только опыт может служить как основой для физических законов, так и критерием их справедливости. Вспомним хотя бы о рекордных по точности экспериментах, проведенных под руководством В. Б. Брагинского в МГУ. Эти опыты, в которых была получена точность порядка 10-12, еще раз подтвердили равенство тяжелой и инертной массы.

Именно на опыте, на широком испытании природы – от скромных масштабов небольшой лаборатории ученого до грандиозных космических масштабов – основан закон всемирного тяготения, который (если подытожить все сказанное выше) гласит:

Сила взаимного притяжения любых двух тел, размеры которых гораздо меньше расстояния между ними, пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между этими телами.

Коэффициент пропорциональности называется гравитационной постоянной. Если измерять длину в метрах, время в секундах, а массу в килограммах, гравитационная постоянно будет равна 6,673*10-11, причем ее размерность будет соответственно м3/кг*с2 или Н*м2/кг2.

G=6,673*10-11 Н*м2/кг2

3. Гравитационные волны.

В ньютоновском законе всемирного тяготения о времени передачи гравитационного взаимодействия ничего не говорится. Неявно предполагается, что оно осуществляется мгновенно, какими бы большими ни были расстояния между взаимодействующими телами. Такой взгляд вообще типичен для сторонников действия на расстоянии. Но из «специальной теории относительности» Эйнштейна вытекает, что тяготение передается от одного тела к другому с такой же скоростью, что и световой сигнал. Если какое-то тело сдвигается с места, то вызванное им искривление пространства и времени меняется не мгновенно. Сначала это скажется в непосредственной близости от тела, потом изменение будет захватывать все более и более далекие области, и, наконец, во всем пространстве установится новое распределение кривизны, отвечающее измененному положению тела.

И вот тут мы подходим к проблеме, которая вызывала и продолжает вызывать наибольшее число споров и разногласий – проблеме гравитационного излучения.

Может ли существовать тяготение, если нет создающей его массы? Согласно ньютоновскому закону – безусловно нет. Там такой вопрос бессмысленно даже ставить. Однако, как только мы согласились, что гравитационные сигналы передаются хотя и с очень большой, но все же не бесконечной скоростью, все радикально меняется. Действительно, представьте себе, что сначала вызывающая тяготение масса, например шарик, покоилась. На все тела вокруг шарика будут действовать обычные ньютоновские силы. А теперь с огромной скоростью удалим шарик с первоначального места. В первый момент окружающие тела этого не почувствуют. Ведь гравитационные силы не меняются мгновенно. Нужно время, чтобы изменения в кривизне пространства успели распространиться во все стороны. Значит, окружающие тела некоторое время будут испытывать прежнее воздействие шарика, когда самого шарика уже нет (во всяком случае, на прежнем месте).

Получается так, что искривления пространства обретают определенную самостоятельность, что можно вырвать тело из той области пространства, где оно вызвало искривления, причем так, что сами эти искривления, хотя бы на больших расстояниях, останутся и будут развиваться по своим внутренним законам. Вот и тяготение без тяготеющей массы! Можно пойти и дальше. Если заставить шарик колебаться, то, как получается из эйнштейновской теории, на ньютоновскую картину тяготения накладывается своеобразная рябь – волны тяготения. Чтобы лучше представит себе эти волны, необходимо воспользоваться моделью – резиновой пленкой. Если не только нажать пальцем на эту пленку, но одновременно совершать им колебательные движения, то эти колебания начнут передаваться по растянутой пленке во все стороны. Это и есть аналог гравитационных волн. Чем дальше от источника, тем такие волны слабее.

А теперь в какой-то момент перестанем давить на пленку. Волны не исчезнут. Они будут существовать и самостоятельно, разбегаясь по пленке все дальше и дальше, вызывая на своем пути искривление геометрии.

Совершенно так же волны искривления пространства – гравитационные волны – могут существовать самостоятельно. Такой вывод из теории Эйнштейна делают многие исследователи.

Конечно, все эти эффекты очень слабы. Так, например, энергия, выделяющаяся при сгорании одной спички, во много раз больше энергии гравитационных волн, излучаемых всей нашей солнечной системой за то же время. Но здесь важна не количественная, а принципиальная сторона дела.

Сторонники гравитационных волн – а они, по-видимому, сейчас в большинстве – предсказывают и еще одно удивительное явление; превращение гравитации в такие частицы, как электроны и позитроны (они должны рождаться парами), протоны антитроны и т. д. (Иваненко, Уиллер и др.).

Выглядеть это должно примерно так. До некоторого участка пространства дошла волна тяготения. В определенный момент это тяготение резко, скачком, уменьшается и одновременно там же появляется, скажем, электронно-позитронная пара. То же можно описать и как скачкообразное уменьшение кривизны пространства с одновременным рождением пары.

Есть много попыток перевести это на квантово-механический язык. Вводятся в рассмотрение частицы – гравитоны, которые сопоставляются неквантовому образу гравитационной волны. В физической литературе имеет хождение термин «трансмутация гравитонов в другие частицы», причем эти трасмутации – взаимные превращения – возможны между гравитонами и, в принципе, любыми другими частицами. Ведь не существует частиц, нечувствительных к гравитации.

Пусть такие превращения маловероятны, т. е. случаются чрезвычайно редко, - в космических масштабах они могут оказаться принципиальными.

4. Искривление пространства-времени гравитацией,

«притча Эддингтона».

Притча английского физика Эддингтона из книги «Пространство, время и тяготение» (пересказ):

«В океане, имеющем только два измерения, жила однажды порода плоских рыб. Было замечено, что рыбы вообще плавали по прямым линиям, пока они не встречали на своем пути явных препятствий. Это поведение казалось вполне естественным. Но в океане была таинственная область; когда рыбы в нее попадали, они казались заколдованными; некоторые проплывали через эту область, но изменяли направление своего движения, другие без конца кружились по этой области. Одна рыба (почти Декарт) предложила теорию вихрей; она говорила, что в этой области находятся водовороты, которые заставляют кружиться все, что в них попадает. С течением времени была предложена гораздо более совершенная теория (теория Ньютона); говорили, что все рыбы притягиваются к очень большой рыбе – рыбе-солнцу, дремлющей в середине области,- и этим объясняли отклонение их путей. Вначале эта теория казалась, быть может, немного странной; но она с удивительной точностью подтвердилась на самых разнообразных наблюдениях. Было найдено, что все рыбы обладают этим притягивающим свойством, пропорциональном их величине; закон притяжения (аналог закона всемирного тяготения) был чрезвычайно прост, но, не смотря на это, он объяснял все движения с такой точностью, до которой никогда раньше не доходила точность научных исследований. Правда, некоторые рыбы, ворча, заявляли, что они не понимают, как возможно такое действие на расстоянии; но все были согласны, что это действие распространяется при помощи океана и что его легче будет понять, когда лучше будет изучена природа воды. Поэтому почти каждая рыба, которая хотела объяснить притяжение, начинала с того, что предполагала какой-нибудь механизм, при помощи которого оно распространяется через воду.

Но была рыба, которая посмотрела на дело иначе. Она обратила внимание на тот факт, что большие рыбы и малые двигались всегда по одним и тем же путям, хотя могло казаться, что для отклонения большой рыбы с ее пути потребуется большая сила. (Рыба-солнце сообщала всем телам одинаковые ускорения.) Поэтому она вместо сил стала подробно изучать пути движения рыб и таким образом пришла к поразительному решению вопроса. В мире было возвышенное место, где лежала рыба-солнце. Рыбы не могли непосредственно заметить этого потому, что они были двумерны; но кода рыба в своем движении попадала на склон этого возвышения, то хотя она и старалась плыть по прямой линии, она невольно немного сворачивала в сторону. В этом состоял секрет таинственного притяжения или искривления путей, которое происходило в таинственной области. »

Эта притча показывает, как кривизна мира, в котором мы живем, может дать иллюзию силы притяжения, и мы видим, что эффект, подобный притяжению, есть единственное, в чем такая кривизна может проявиться.

Коротко это можно сформулировать следующим образом. Так как гравитация одинаковым образом искривляет пути всех тел, мы можем считать тяготение искривлением пространства-времени.

5. Тяготение на Земле.

Если вдуматься, какую роль играют силы тяготения в жизни нашей планеты, то открываются целые океаны. И не только океаны явлений, но и океаны в буквальном смысле этого слова. Океаны воды. Воздушный океан. Без тяготения они бы не существовали.

Волна в море, движение каждой капли воды в питающих это море реках, все течения, все ветры, облака, весь климат планеты определяются игрой двух основных факторов: солнечной деятельности и земного притяжения.

Гравитация не только удерживает на Земле людей, животных, воду и воздух, но и сжимает их. Это сжатие у поверхности Земли не так уж велико, но роль его немаловажна.

Корабль плывет по морю. Что мешает ему утонуть – известно всем. Это знаменитая выталкивающая сила Архимеда. А ведь она появляется, только потому, что вода сжата тяготением с силой, увеличивающейся с ростом глубины. Внутри космического корабля в полете выталкивающей силы нет, как нет и веса. Сам земной шар сжат силами тяготения до колоссальных давлений. В центре Земли давление, по-видимому, превышает 3 миллиона атмосфер.

Под влиянием длительно действующих сил давления в этих условиях все вещества, которые мы привыкли считать твердыми, ведут себя подобно вару или смоле. Тяжелые материалы опускаются на дно (если можно так называть центр Земли), а легкие всплывают. Процесс этот доится миллиарды лет. Не окончился он, как следует из теории Шмидта, и сейчас. Концентрация тяжелых элементов в области центра Земли медленно нарастает.

Ну а как же проявляется у нас на Земле притяжение Солнца и ближайшего к нам небесного тела Луны? Наблюдать это притяжение без специальных приборов могут только жители океанских побережий.

Солнце действует почти одинаковым образом на все, находящееся на Земле и внутри нее. Сила, с которой Солнце притягивает человека в полдень, когда он ближе всего к Солнцу, почти не отличается от силы, действующей на него в полночь. Ведь расстояние от Земли до Солнца в десять тысяч раз больше земного диаметра и увеличение расстояния на одну десятитысячную при повороте Земли вокруг своей оси на пол-оборота практически не меняет силы притяжения. Поэтому Солнце сообщает почти одинаковые ускорения всем частям земного шара и всем телам на его поверхности. Почти, но все же не совсем одинаковые. Из-за этой разницы возникают приливы и отливы в океане.

На обращенном к Солнцу участке земной поверхности сила притяжения несколько больше, чем это необходимо для движения этого участка по эллиптической орбите, а на противоположной стороне Земли – несколько меньше. В результате согласно законам механики Ньютона вода в океане немного выпучивается в направлении, обращенном к Солнцу, а на противоположной стороне отступает от поверхности Земли. Возникают, как говорят, приливообразующие силы, растягивающие земной шар и придающие, грубо говоря, поверхности океанов форму эллипсоида.

Чем меньше расстояния между взаимодействующими телами, тем больше приливообразующие силы. Вот почему на форму мирового океана большее влияние оказывает Луна, чем Солнце. Более точно, приливное воздействие определяется отношением массы тела к кубу его расстояния от Земли; это отношение для Луны примерно вдвое больше, чем для Солнца.

Если бы не было сцепления между частями земного шара, то приливообразующие силы разорвали бы его.

Возможно, это произошло с одним из спутников Сатурна, когда он близко подошел к этой большой планете. То состоящее из осколков кольцо, которое делает Сатурн столь примечательной планетой, возможно и есть обломки спутника.

Итак, поверхность мирового океана подобна эллипсоиду, большая ось которого обращена в сторону Луны. Земля вращается вокруг своей оси. Поэтому по поверхности океана навстречу направлению вращения Земли перемещается приливная волна. Когда она приближается к берегу – начинается прилив. В некоторых местах уровень воды поднимается до 18 метров. Затем приливная волна уходит и начинается отлив. Уровень воды в океане колеблется, в среднем, с периодом 12ч. 25мин. (половина лунных суток).

Эта простая картина сильно искажается одновременным приливообразующим действием Солнца, трением воды, сопротивлением материков, сложностью конфигурации океанических берегов и дна в прибрежных зонах и некоторыми другими частными эффектами.

Важно, что приливная волна тормозит вращение Земли.

Правда, эффект очень мал. За 100 лет сутки увеличиваются на тысячную долю секунды. Но, действуя миллиарды лет, силы торможения приведут к тому, что Земля будет повернута к Луне все время одной стороной, и земные сутки станут равными лунному месяцу. С Луной это уже произошло. Луна заторможена настолько, что повернута к Земле все время одной стороной. Чтобы «заглянуть» на обратную сторону Луны, пришлось посылать вокруг нее космический корабль.

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету .

Вторая космическая скорость

Запишем закон сохранения энергии:

,

где в правой части равенства стоит работа силы тяжести: A = Fs.

Отсюда получаем, что вторая космическая скорость равна:

Таким образом, вторая космическая скорость в раз больше первой:

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

Похожие публикации