Энциклопедия пожаробезопасности

Какие плоскости называются параллельными привести примеры. Параллельность плоскостей: признак, условие. Параллельные плоскости на примерах

Положение плоскости в пространстве определяется:

  • тремя точками, не лежащими на одной прямой;
  • прямой и точкой, взятой вне прямой;
  • двумя пересекающимися прямыми;
  • двумя параллельными прямыми;
  • плоской фигурой.

В соответствии с этим на эпюре плоскость может быть задана:

  • проекциями трёх точек, не лежащих на одной прямой (Рисунок 3.1,а);
  • проекциями точки и прямой (Рисунок 3.1,б);
  • проекциями двух пересекающихся прямых (Рисунок 3.1,в);
  • проекциями двух параллельных прямых (Рисунок 3.1,г);
  • плоской фигурой (Рисунок 3.1,д);
  • следами плоскости;
  • линией наибольшего ската плоскости.

Рисунок 3.1 – Способы задания плоскостей

Плоскость общего положения – это плоскость, которая не параллельна и не перпендикулярна ни одной из плоскостей проекций.

Следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с одной из плоскостей проекций.

Плоскость общего положения может иметь три следа: горизонтальный απ 1 , фронтальный απ 2 и профильный απ 3 , которые она образует при пересечении с известными плоскостями проекций: горизонтальной π 1 , фронтальной π 2 и профильной π 3 (Рисунок 3.2).

Рисунок 3.2 – Следы плоскости общего положения

3.2. Плоскости частного положения

Плоскость частного положения – плоскость, перпендикулярная или параллельная плоскости проекций.

Плоскость, перпендикулярная плоскости проекций, называется проецирующей и на эту плоскость проекций она будет проецироваться в виде прямой линии.

Свойство проецирующей плоскости : все точки, линии, плоские фигуры, принадлежащие проецирующей плоскости, имеют проекции на наклонном следе плоскости (Рисунок 3.3).

Рисунок 3.3 – Фронтально-проецирующая плоскость, которой принадлежат: точки А , В , С ; линии АС , АВ , ВС ; плоскость треугольника АВС

Фронтально-проецирующая плоскость плоскость, перпендикулярная фронтальной плоскости проекций (Рисунок 3.4, а).

Горизонтально-проецирующая плоскость плоскость, перпендикулярная горизонтальной плоскости проекций (Рисунок 3.4, б).

Профильно-проецирующая плоскость плоскость, перпендикулярная профильной плоскости проекций .

Плоскости, параллельные плоскостям проекций, называются плоскостями уровня или дважды проецирующими плоскостями .

Фронтальная плоскость уровня плоскость, параллельная фронтальной плоскости проекций (Рисунок 3.4, в).

Горизонтальная плоскость уровня плоскость, параллельная горизонтальной плоскости проекций (Рисунок 3.4, г).

Профильная плоскость уровня плоскость, параллельная профильной плоскости проекций (Рисунок 3.4, д).

Рисунок 3.4 – Эпюры плоскостей частного положения

3.3. Точка и прямая в плоскости. Принадлежность точки и прямой плоскости

Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости (Рисунок 3.5).

Прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки (Рисунок 3.6).

Рисунок 3.5 – Принадлежность точки плоскости

α = m // n

D n D α

Рисунок 3.6 – Принадлежность прямой плоскости

Упражнение

Дана плоскость, заданная четырехугольником (Рисунок 3.7, а). Необходимо достроить горизонтальную проекцию вершины С .


а б

Рисунок 3.7 – Решение задачи

Решение :

  1. ABCD – плоский четырехугольник, задающий плоскость.
  2. Проведём в нём диагонали AC и BD (Рисунок 3.7, б), которые являются пересекающимися прямыми, также задающими ту же плоскость.
  3. Согласно признаку пересекающихся прямых, построим горизонтальную проекцию точки пересечения этих прямых — K по её известной фронтальной проекции: A 2 C 2 ∩ B 2 D 2 =K 2 .
  4. Восстановим линию проекционной связи до пересечения с горизонтальной проекцией прямой BD : на проекции диагонали B 1 D 1 строим К 1 .
  5. Через А 1 К 1 проводим проекцию диагонали А 1 С 1 .
  6. Точку С 1 получаем, посредством линии проекционной связи до пересечения её с горизонтальной проекцией продолженной диагонали А 1 К 1 .

3.4. Главные линии плоскости

В плоскости можно построить бесконечное множество прямых, но есть особые прямые, лежащие в плоскости, называемые главными линиями плоскости (Рисунок 3.8 – 3.11).

Прямой уровня или параллелью плоскости называется прямая, лежащая в данной плоскости и параллельная одной из плоскостей проекций.

Горизонталь или горизонтальная прямая уровня h (первая параллель) – это прямая, лежащая в данной плоскости и параллельная горизонтальной плоскости проекций (π 1) (Рисунок 3.8, а; 3.9).

Фронталь или фронтальная прямая уровня f (вторая параллель) – это прямая лежащая в данной плоскости и параллельная фронтальной плоскости проекций (π 2) (Рисунок 3.8, б; 3.10).

Профильная прямая уровня p (третья параллель) – это прямая лежащая в данной плоскости и параллельная профильной плоскости проекций (π 3) (Рисунок 3.8, в; 3.11).

Рисунок 3.8 а – Горизонтальная прямая уровня в плоскости, заданной треугольником


Рисунок 3.8 б – Фронтальная прямая уровня в плоскости, заданной треугольником


Рисунок 3.8 в – Профильная прямая уровня в плоскости, заданной треугольником


Рисунок 3.9 – Горизонтальная прямая уровня в плоскости, заданной следами

Рисунок 3.10 – Фронтальная прямая уровня в плоскости, заданной следами

Рисунок 3.11 – Профильная прямая уровня в плоскости, заданной следами

3.5. Взаимное положение прямой и плоскости

Прямая по отношению к заданной плоскости может быть параллельной и может с ней иметь общую точку, то есть пересекаться.

3.5.1. Параллельность прямой плоскости

Признак параллельности прямой плоскости : прямая параллельна плоскости, если она параллельна какой-либо прямой, принадлежащей этой плоскости (Рисунок 3.12).


Рисунок 3.12 – Параллельность прямой плоскости

3.5.2. Пересечение прямой с плоскостью

Для построения точки пересечения прямой с плоскостью общего положения (Рисунок 3.13), необходимо:

  1. Заключить прямую а во вспомогательную плоскость β (в качестве вспомогательной плоскости следует выбирать плоскости частного положения);
  2. Найти линию пересечения вспомогательной плоскости β с заданной плоскостью α;
  3. Найти точку пересечения заданной прямой а с линией пересечения плоскостей MN .

Рисунок 3.13 – Построение точки встречи прямой с плоскостью

Упражнение

Заданы: прямая АВ общего положения, плоскость σ⊥π 1 . (Рисунок 3.14). Построить точку пересечения прямой АВ с плоскостью σ.

Решение :

  1. Плоскость σ – горизонтально-проецирующая, следовательно, горизонтальной проекцией плоскости σ является прямая σ 1 (горизонтальный след плоскости);
  2. Точка К должна принадлежать прямой АВ К 1 ∈А 1 В 1 и заданной плоскости σ ⇒ К 1 ∈σ 1 , следовательно, К 1 находится в точке пересечения проекций А 1 В 1 и σ 1 ;
  3. Фронтальную проекцию точки К находим посредством линии проекционной связи: К 2 ∈А 2 В 2 .

Рисунок 3.14 – Пересечение прямой общего положения с плоскостью частного положения

Упражнение

Заданы: плоскость σ = ΔАВС – общего положения, прямая EF (Рисунок 3.15).

Требуется построить точку пересечения прямой EF с плоскостью σ.


а б

Рисунок 3.15 – Пересечение прямой с плоскостью

  1. Заключим прямую EF во вспомогательную плоскость, в качестве которой воспользуемся горизонтально-проецирующей плоскостью α (Рисунок 3.15, а);
  2. Если α⊥π 1 , то на плоскость проекций π 1 плоскость α проецируется в прямую (горизонтальный след плоскости απ 1 или α 1), совпадающую с E 1 F 1 ;
  3. Найдём прямую пересечения (1-2) проецирующей плоскости α с плоскостью σ (решение подобной задачи будет рассмотрено );
  4. Прямая (1-2) и заданная прямая EF лежат в одной плоскости α и пересекаются в точке K .

Алгоритм решения задачи (Рисунок 3.15, б):

Через EF проведем вспомогательную плоскость α:

3.6. Определение видимости методом конкурирующих точек

При оценке положения данной прямой, необходимо определить – точка какого участка прямой расположена ближе (дальше) к нам, как к наблюдателям, при взгляде на плоскость проекций π 1 или π 2 .

Точки, которые принадлежат разным объектам, а на одной из плоскостей проекций их проекции совпадают (то есть, две точки проецируются в одну), называются конкурирующими на этой плоскости проекций .

Необходимо отдельно определить видимость на каждой плоскости проекций.

Видимость на π 2 (рис. 3.15)

Выберем точки, конкурирующие на π 2 – точки 3 и 4. Пусть точка 3∈ВС∈σ , точка 4∈EF .

Чтобы определить видимость точек на плоскости проекций π 2 надо определить расположение этих точек на горизонтальной плоскости проекций при взгляде на π 2 .

Направление взгляда на π 2 показано стрелкой.

По горизонтальным проекциям точек 3 и 4, при взгляде на π 2 , видно, что точка 4 1 располагается ближе к наблюдателю, чем 3 1 .

4 1 ∈E 1 F 1 ⇒ 4∈EF ⇒ на π 2 будет видима точка 4, лежащая на прямой EF , следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена перед плоскостью σ и будет видима до точки K

Видимость на π 1

Для определения видимости выберем точки, конкурирующие на π 1 – точки 2 и 5.

Чтобы определить видимость точек на плоскости проекций π 1 надо определить расположение этих точек на фронтальной плоскости проекций при взгляде на π 1 .

Направление взгляда на π 1 показано стрелкой.

По фронтальным проекциям точек 2 и 5, при взгляде на π 1 , видно, что точка 2 2 располагается ближе к наблюдателю, чем 5 2 .

2 1 ∈А 2 В 2 ⇒ 2∈АВ ⇒ на π 1 будет видима точка 2, лежащая на прямой АВ , следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена под плоскостью σ и будет невидима до точки K – точки пересечения прямой с плоскостью σ.

Видимой из двух конкурирующих точек будет та, у которой координата «Z» или(и) «Y» больше.

3.7. Перпендикулярность прямой плоскости

Признак перпендикулярности прямой плоскости : прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости.


а б

Рисунок 3.16 – Задание прямой, перпендикулярной плоскости

Теорема. Если прямая перпендикулярна плоскости, то на эпюре: горизонтальная проекции прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция прямой перпендикулярна фронтальной проекции фронтали (Рисунок 3.16, б)

Теорема доказывается через теорему о проецировании прямого угла в частном случае.

Если плоскость задана следами, то проекции прямой перпендикулярной плоскости перпендикулярны соответствующим следам плоскости (Рисунок 3.16, а).

Пусть прямая p перпендикулярна плоскости σ=ΔАВС и проходит через точку K .

  1. Построим горизонталь и фронталь в плоскости σ=ΔАВС : A-1 ∈σ; A-1 //π 1 ; С-2 ∈σ; С-2 //π 2 .
  2. Восстановим из точки K перпендикуляр к заданной плоскости: p 1 h 1 и p 2 f 2 , или p 1 ⊥απ 1 и p 2 ⊥απ 2

3.8. Взаимное положение двух плоскостей

3.8.1. Параллельность плоскостей

Две плоскости могут быть параллельными и пересекающимися между собой.

Признак параллельности двух плоскостей : две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Упражнение

Задана плоскость общего положения α=ΔАВС и точка F ∉α (Рисунок 3.17).

Через точку F провести плоскость β, параллельную плоскости α.

Рисунок 3.17 – Построение плоскости, параллельной заданной

Решение :

В качестве пересекающихся прямых плоскости α возьмем, например, стороны треугольника АВ и ВС.

  1. Через точку F проводим прямую m , параллельную, например, АВ .
  2. Через точку F , или же через любую точку, принадлежащую m , проводим прямую n , параллельную, например, ВС , причём m∩ n=F .
  3. β = m n и β//α по определению.

3.8.2. Пересечение плоскостей

Результатом пересечения 2-х плоскостей является прямая. Любая прямая на плоскости или в пространстве может быть однозначно задана двумя точками. Поэтому для того, чтобы построить линию пересечения двух плоскостей, следует найти две точки, общие для обеих плоскостей, после чего соединить их.

Рассмотрим примеры пересечения двух плоскостей при различных способах их задания: следами; тремя точками, не лежащими на одной прямой; параллельными прямыми; пересекающимися прямыми и др.

Упражнение

Две плоскости α и β заданы следами (Рисунок 3.18). Построить линию пересечения плоскостей.

Рисунок 3.18 – Пересечение плоскостей общего положения, заданных следами

Порядок построения линии пересечения плоскостей :

  1. Найти точку пересечения горизонтальных следов — это точка М (её проекции М 1 и М 2 , при этом М 1 , т.к. М – точка частного положения, принадлежащая плоскости π 1).
  2. Найти точку пересечения фронтальных следов — это точка N (её проекции N 1 и N 2 , при этом N 2 = N , т.к. N – точка частного положения, принадлежащая плоскости π 2).
  3. Построить линию пересечения плоскостей, соединив одноименные проекции полученных точек: М 1 N 1 и М 2 N 2 .

М N – линия пересечения плоскостей.

Упражнение

Задана плоскость σ = ΔАВС , плоскость α – горизонтально- проецирующая (α⊥π 1) ⇒α 1 – горизонтальный след плоскости (Рисунок 3.19).

Построить линию пересечения этих плоскостей.

Решение :

Так как плоскость α пересекает стороны АВ и АС треугольника АВС , то точки пересечения K и L этих сторон с плоскостью α являются общими для обеих заданных плоскостей, что позволит, соединив их, найти искомую линию пересечения.

Точки могут быть найдены как точки пересечения прямых с проецирующей плоскостью: находим горизонтальные проекции точек K и L , то есть K 1 и L 1 , на пересечении горизонтального следа (α 1) заданной плоскости α с горизонтальными проекциями сторон ΔАВС : А 1 В 1 и A 1 C 1 . После чего посредством линий проекционной связи находим фронтальные проекции этих точек K 2 и L 2 на фронтальных проекциях прямых АВ и АС . Соединим одноимённые проекции: K 1 и L 1 ; K 2 и L 2 . Линия пересечения заданных плоскостей построена.

Алгоритм решения задачи :

KL – линия пересечения ΔАВС и σ (α∩σ = KL ).

Рисунок 3.19 – Пересечение плоскостей общего и частного положения

Упражнение

Заданы плоскости α = m//n и плоскость β = ΔАВС (Рисунок 3.20).

Построить линию пересечения заданных плоскостей.

Решение :

  1. Чтобы найти точки, общие для обеих заданных плоскостей и задающие линию пересечения плоскостей α и β, необходимо воспользоваться вспомогательными плоскостями частного положения.
  2. В качестве таких плоскостей выберем две вспомогательные плоскости частного положения, например: σ // τ; σ⊥π 2 ; τ⊥π 2 .
  3. Вновь введённые плоскости пересекаются с каждой из заданных плоскостей α и β по прямым, параллельным друг другу, так как σ // τ:

— результатом пересечения плоскостей α, σ и τ являются прямые (4-5) и (6-7);

— результатом пересечения плоскостей β, σ и τ являются прямые (3-2) и (1-8).

  1. Прямые (4-5) и (3-2) лежат в плоскости σ; точка их пересечения М одновременно лежит в плоскостях α и β, то есть на прямой пересечения этих плоскостей;
  2. Аналогично находим точку N , общую для плоскостей α и β.
  3. Соединив точки M и N , построим прямую пересечения плоскостей α и β.

Рисунок 3.20 – Пересечение двух плоскостей общего положения (общий случай)

Алгоритм решения задачи :

Упражнение

Заданы плоскости α = ΔАВС и β = a //b . Построить линию пересечения заданных плоскостей (Рисунок 3.21).

Рисунок 3.21 Решение задачи на пересечение плоскостей

Решение :

Воспользуемся вспомогательными секущими плоскостями частного положения. Введём их так, чтобы сократить количество построений. Например, введём плоскость σ⊥π 2 , заключив прямую a во вспомогательную плоскость σ (σ∈a ). Плоскость σ пересекает плоскость α по прямой (1-2), а σ∩β=а . Следовательно (1-2)∩а =K .

Точка К принадлежит обеим плоскостям α и β.

Следовательно, точка K , является одной из искомых точек, через которые проходит прямая пересечения заданных плоскостей α и β.

Для нахождения второй точки, принадлежащей прямой пересечения α и β, заключим прямую b во вспомогательную плоскость τ⊥π 2 (τ∈b ).

Соединив точки K и L , получим прямую пересечения плоскостей α и β.

3.8.3. Взаимно перпендикулярные плоскости

Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой.

Упражнение

Задана плоскость σ⊥π 2 и прямая общего положения – DE (Рисунок 3.22)

Требуется построить через DE плоскость τ⊥σ.

Решение .

Проведём перпендикуляр CD к плоскости σ – C 2 D 2 ⊥σ 2 (на основании ).

Рисунок 3.22 – Построение плоскости, перпендикулярной к заданной плоскости

По теореме о проецировании прямого угла C 1 D 1 должна быть параллельна оси проекций. Пересекающиеся прямые CD∩ DE задают плоскость τ. Итак, τ⊥σ.

Аналогичные рассуждения, в случае плоскости общего положения.

Упражнение

Задана плоскость α = ΔАВС и точка K вне плоскости α.

Требуется построить плоскость β⊥α, проходящую через точку K .

Алгоритм решения (Рисунок 3.23):

  1. Построим горизонталь h и фронталь f в заданной плоскости α = ΔАВС ;
  2. Через точку K проведём перпендикуляр b к плоскости α (по теореме о перпендикуляре к плоскости : если прямая перпендикулярна плоскости, то её проекции перпендикулярны к наклонным проекциям горизонтали и фронтали, лежащих в плоскости: b 2 f 2 ; b 1 h 1 ;
  3. Задаём плоскость β любым способом, например, β = a∩ b , таким образом, плоскость, перпендикулярная к заданной, построена: α⊥β.

Рисунок 3.23 – Построение плоскости, перпендикулярной к заданной ΔАВС

3.9. Задачи для самостоятельного решения

1. Задана плоскость α = m //n (Рисунок 3.24). Известно, что K ∈α.

Постройте фронтальную проекцию точки К .

Рисунок 3.24

2. Постройте следы прямой, заданной отрезком CB , и определите квадранты, через которые она проходит (Рисунок 3.25).

Рисунок 3.25

3. Постройте проекции квадрата, принадлежащего плоскости α⊥π 2 , если его диагональ MN //π 2 (Рисунок 3.26).

Рисунок 3.26

4. Построить прямоугольник ABCD с большей стороной ВС на прямой m , исходя из условия, что отношение его сторон равно 2 (Рисунок 3.27).

Рисунок 3.27

5. Задана плоскость α=a //b (Рисунок 3.28). Построить плоскость β параллельную плоскости α и удаленную от нее на расстоянии 20 мм.

Рисунок 3.28

6. Задана плоскость α=∆АВС и точка D D плоскость β⊥α и β⊥π 1 .

7. Задана плоскость α=∆АВС и точка D вне плоскости. Построить через точку D прямую DE //α и DE //π 1 .

Параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Доказательство. Пусть a и b - данные плоскости, а 1 и а 2 – прямые в плоскости a , пересекающиеся в точке А , b 1 и b 2 соответственно параллельные им прямые в плоскости b . Допустим, что плоскости a и b не параллельны, то есть они пересекаются по некоторой прямой с . Прямая а 1 параллельна прямой b 1 , значит она параллельна и самой плоскости b (признак параллельности прямой и плоскости). Прямая а 2 параллельна прямой b 2 , значит она параллельна и самой плоскости b (признак параллельности прямой и плоскости). Прямая с принадлежит плоскости a , значит хотя бы одна из прямых а 1 или а 2 пересекает прямую с, то есть имеет с ней общую точку. Но прямая с также принадлежит и плоскости b , значит, пересекая прямую с, прямая а 1 или а 2 пересекает плоскость b , чего быть не может, так как прямые а 1 и а 2 параллельны плоскости b . Из этого следует, что плоскости a и b не пересекаются, то есть они параллельны.

Теорема 1 . Если две параллельные плоскости пересекаются третей, то прямые пересечения параллельны.
Доказательство. Пусть a и b - параллельные плоскости, а g - плоскость, пересекающая их. Плоскость a пересеклась с плоскостью g по прямой а. Плоскость b пересеклась с плоскостью g по прямой b . Линии пересечения а и b лежатв одной плоскости g и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.

Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.
Доказательство. Пусть a и b - параллельные плоскости, а а и b – параллельные прямые, пересекающие их. Через прямые а и b проведем плоскость g (эти прямые параллельны, значит определяют плоскость, причем только одну). Плоскость a пересеклась с плоскостью g по прямой АВ. Плоскость b пересеклась с плоскостью g по прямой СД.По предыдущей теореме прямая с параллельна прямой d . Прямые а, b , АВ и СД принадлежат плоскости g .Четырехугольник, ограниченный этими прямыми,есть параллелограмм (у него противоположные стороны параллельны). А раз это параллелограмм, то противоположные стороны у него равны, то есть АД = ВС

Ðассматривается отношение параллельности плоскостей, его свойства и применения.

Наглядное представление о расположении двух

Плоскостей дает моделирование с помощью плоскостей поверхностей смежных стен, потолка и пола комнаты, двухъярусных кроватей, двух скрепленных листов бу-

маги и т. п. (рис. 242–244).

Хотя существует бесконечное множество вариантов взаимного расположения различных плоскостей, для установления и характеристики которых в последующем будут применены измерения углов и расстояний, мы сначала остановимся на таких, где в основу классификации (как и прямых с плоскостями) положено количество их общих точек.

1. Две плоскости имеют не менее трёх общих точек, не лежащих на одной прямой. Такие плоскости совпадают (аксиома С 2 , §7).

2. Общие точки двух плоскостей расположены на одной прямой, являющейся линией пересеченияэтихплоскостей(аксиомаС 3 ,§7). Такие плоскости пересекаются.

3. Две плоскости не имеют общих точек.

В этом случае их называют параллельны-

Две плоскости называются параллельными, если они не имеют общих точек.

Параллельность плоскостей обозначается знаком ||: α || β.

Как всегда, при введении геометрических понятий возника-

ет проблема их существования. Существование пересекающих-

ся плоскостей является характерным признаком пространства,

и этим мы уже многократно пользовались. Менее очевидным яв-

ляется существование параллельных плоскостей. Нет никакого

сомнения в том, что, например, плоскости противоположных гра-

ней куба параллельны, то есть не пересекаются. Но непосредс-

твенно, по определению, это установить невозможно. Для реше-

ния поставленного вопроса, а также других вопросов, связанных с

параллельностью плоскостей, необходимо иметь признак параллельности.

Для поиска признака целесообразно рассматривать плоскость,

«сотканную» из прямых. Очевидно, что каждая прямая одной из

параллельных плоскостей должна быть параллельна другой.

В противном случае плоскости будут иметь общую точку. Доста-

точно ли параллельности плоскости β одной прямой плоскости α

для того, чтобы плоскости α и β были параллельными? Безуслов-

но, нет (обоснуйте это!). Практический опыт свидетельствует, что

двух таких пересекающихся прямых достаточно. Чтобы закрепить

на мачте параллельную земле площадку, достаточно положить ее

на две прикрепленные к мачте балки, параллель-

ные земле (рис. 245). Можно привести еще много

примеров применения этого приема обеспечения

параллельности плоских поверхностей реальных

объектов (попробуйте это сделать!).

Приведенные рассуждения позволяют сформу-

лировать следующее утверждение.

(признак параллельности плоскостей).

пересекающиеся прямые одной плоско-

сти параллельны второй плоскости, то эти плоскости параллельны.

 Пусть пересекающиеся прямые а и b плоскости α параллельны плоскости β. Докажем, что плоскости α и β параллельны методом от противного. Для этого допустим, что плоскости α и β пересекаются по прямой

т (рис. 246). Прямые а и b пересекать прямую т не могут по условию. Однако тогда в плоскости α через одну точку проведены две прямые, не пересекающиеся с прямой т, то есть параллельные ей. Это противоречие

и завершает доказательство теоремы.

Признаком параллельности плоскостей пользуются при горизонтальном размещении плоских конструкций (бетонных плит, пола, диска угломерных приборов и т. п.) с помощью двух уровней, размещенных в плоскости конструкции на пересекающихся прямых. На основании этого признака можно выполнить построение плоскости, параллельной данной.

Задача 1. Через точку, лежащую вне данной плоскости, провести плоскость, параллельную данной.

 Пусть даны плоскость β и точка М вне плоскости (рис. 247, а). Проведем через точку М две пересекающиеся прямые а и b , параллельные плоскости β. Для этого нужно взять в плоскости β две пересекающиеся прямые с и d (рис. 247, б). Потом через точку М провести прямые а и b , параллельные прямым с и d соответствен-

но (рис. 247, в).

Пересекающиеся прямые а и b параллельны плоскости β, по признаку параллельности прямой и плоскости (теорема 1 §11). Они определяют однозначно плоскость α. Согласно доказанному признаку, α || β.

Пример 1. Дан куб ABCDA 1 B 1 C 1 D 1 , точки М , N , Р – середины ребер ВС , В 1 С 1 , А 1 D 1 соответственно. Установить взаимное расположение плоскостей: 1) АВВ 1 и PNM ; 2) NMA и A 1 C 1 C ; 3) A 1 NM

и РC 1 C ; 4) МAD 1 и DB 1 C.

 1) Плоскости ABB 1 и РNM (рис. 248) параллельны, по признаку параллельности плоскостей (теорема 1). Действительно, прямые РN и NM пересекаются и параллельны плоскости ABB 1 , по признаку параллельности прямой и плоскости (теорема 1 §11), ведь отрезки РN и NM соединяют середины противоположных сторон квадратов, поэтому они параллельны сторонам квадратов:

РN || A 1 B 1 , NM || В 1 B.

2) Плоскости NMA и A 1 C 1 C пересекаются по прямой AA 1 (рис. 249). Действительно, прямые AA 1 и СC 1 параллельны, по признаку параллельности прямых (AA 1 || ВB 1 , ВB 1 || СC 1 ). Поэтому прямая AA 1 лежит в плоскости A 1 C 1 C . Аналогично обосновывается принадлежность прямой AA 1 плоскости NMA .

3) Плоскости A 1 NM и РC 1 C (рис. 250) параллельны, по признаку параллельности плоскостей. Действительно, NM || С 1 C . Поэтому прямая NM параллельна плоскости РC 1 C. Отрезки РC 1 и A 1 N также параллельны, поскольку четырехугольник РC 1 NA 1 – параллелограмм (А 1 P || NC 1 , A 1 P = NC 1 ). Таким образом, прямая A 1 N параллельна плоскости РC 1 C. Прямые A 1 N и NM пересекаются.

4) Плоскости MAD 1 и DB 1 C пересекаются (рис. 251). Хотя линию их пересечения построить непросто, но указать одну точку этой линии нетрудно. Действительно, прямые A 1 D и В 1 C - параллельны, поскольку четырехугольник A 1 B 1 CD – параллелограмм (A 1 B 1 = AВ = СD , A 1 B 1 || AВ , AВ || СD ). Поэтому прямая A 1 D принадлежит плоскости DB 1 C. Прямые A 1 D и AD 1 пересекаются в точке, общей для плоскостей MAD 1 , и DB 1 C.

Приведенный признак параллельности плоскостей

иногда удобнее использовать в несколько другой

1′ (признак параллельности плоскостей).

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Пользуясь признаком параллельности прямой и плоскости (теорема 1 §11), нетрудно установить, что из условия теоремы 1′ вытекает условие теоремы 1. Применение теоремы, обратной признаку параллельности прямой и плоскости (теорема 2 §11) завершает обоснование эквивалентности условий теорем 1 и 1′.

Естественно возникает вопрос об однозначности приведенного в задаче 1 построения. Поскольку нам придется не раз воспользоваться этим свойством, то выделим его как отдельную теорему. Однако сначала рассмотрим другое утверждение.

Теорема 2 (о пересечении двух параллельных плоскостей третьей).

Если две параллельные плоскости пересекаются третьей плоскостью, то линии пересечения плоскостей параллельны.

 Пусть даны параллельные плоскости α, β и плоскость γ, их пересекающая (рис. 252). Обозначим линии пересечения

через а и b. Эти прямые лежат в плоскости γ и не пересекаются, поскольку плоскости α и β не имеют общих точек. Поэтому пря-

мые а и b - параллельны.

Теорема 3 (о существовании и единственности плоскости, параллельной данной).

Через точку, расположенную вне данной плоскости, можно провести единственную плоскость, параллельную данной.

 Построение такой плоскости выполнено в задаче 1. Однозначность построения докажем методом от противного. Допустим, что через точку М проведены две различные плоскости α и γ, па-

раллельные плоскости β (рис. 253), и прямая т - линия их пересечения. Проведем через точку М плоскость δ, пересекающуюся с прямой

т и плоскостью β (как это можно сделать?). Обозначим через а и b

линии пересечения плоскости δ с плоскостями α и γ, а через с - линию пересечения плоскостей δ и β (рис. 253). Согласно теореме 2, а || с

и b || с. То есть в плоскости δ через

точку М проходят две прямые, параллельные прямой с. Противоречие свидетельствует о неверности предположения.

Отношение параллельности плоскостей обладает рядом свойств, имеющих аналоги в планиметрии.

Теорема 4 (об отрезках параллельных прямых между параллельными плоскостями).

Отрезки параллельных прямых, отсекаемые параллельными плоскостями, равны между собой.

Пусть даны две параллельные плоскости α и β и отрезки АВ

и СD параллельных прямых a и d , отсекаемые этими плоскостями (рис. 254, а). Проведем через прямые a и d плоскость γ (рис. 254, б). Она пересекает плоскости α и β по прямым АС и BD, которые, согласно теореме 2, параллельны. Поэтому четырехугольник АBСD - параллелограмм, его противоположные стороны АС и BD равны.

Из приведенного свойства вытекает, что если от всех точек плоскости отложить

по одну сторону от плоскости параллельные отрезки одинаковой длины, то концы этих отрезков образуют две параллельные плоскости. Именно на этом свойстве основано построение параллелепипеда с помощью отложения отрезков (рис. 255).

Теорема 5 (о транзитивности отношения параллельности плоскостей).

Если каждая из двух плоскостей параллельна третьей, то данные две плоскости параллельны между собой.

Пусть плоскости α и β параллельны плоскости γ. Допустим, что

α и β не параллельны. Тогда плоскости α и β имеют общую точку, и через эту точку проходят две различные плоскости, параллельные плоскости γ, что противоречит теореме 3. Поэтому плоскости α и β не имеют общих точек, то есть они параллельны.

Теорема 5 является еще одним признаком параллельности плоскостей. Она широко применяется как в геометрии, так и в практической деятельности. Например, в многоэтажном здании параллельность плоскостей пола и потолка на каждом этаже гарантирует их параллельность и на разных этажах.

Задача 2. Доказать, что если прямая а пересекает плоскость α, то она пересекает также каждую плоскость, параллельную плоскости α.

 Пусть плоскости α и β параллельны, а прямая а пересекает плоскость α в точке А . Докажем, что она пересекает и плоскость

β. Допустим, что это не так. Тогда прямая а параллельна плоскости β. Проведем плоскость γ через прямую а и произвольную точку плоскости β (рис. 256).

Эта плоскость пересекает параллельные плоскости α и β по прямым b и с . Со-

гласно теореме 2, b || с, то есть в плоскости γ через точку А проходят две прямые а и b, параллельные прямой с . Это противоречие и доказывает утверждение.

Попробуйте доказать самостоятельно, что если плоскость α пересекает плоскость β, то она пересекает также каждую плоскость, параллельную плоскости β.

Пример 2. В тетраэдре АBCD точки K , F, Е - середины ребер DA, DС, DВ, а М и Р - центры масс граней АВD и ВСD соответственно.

1) Установить взаимное расположение плоскостей KEF и ABC ;

DEF и ABC.

2) Построить линию пересечения плоскостей AFB и KEC.

3) Найти площадь сечения тетраэдра плоскостью, параллельной плоскости АВD и проходящей через точку Р , если все рёбра тетраэдра равны а.

 Построим рисунок, соответствующий условию (рис. 257, а). 1) Плоскости KEF и ABC параллельны, по признаку параллельности плоскостей (теорема 1’): пересекающиеся прямые KE и KF плоскости KEF параллельны пересекающимся прямым AB и AC плоскости ABC (на них лежат средние линии соответствую-

щих треугольников).

Плоскости DEF и ABC пересекаются по прямой BC , так как прямая BC принадлежит обеим плоскостям, а совпадать они не могут - точки А , В , С , D не лежат в одной плоскости.

2) Плоскость AFB пересекается с плоскостью KEC по прямой, содержащей точку Р , так как прямые СЕ и BF , лежащие в этих плоскостях, находятся в плоскости BCD и пересекаются в точке Р . Другой точкой является точка пересечения Q прямых AF и CK в плоскости ACD (рис. 257, б). Очевидно, что эта точка является центром масс грани ACD. Искомым пересечением является прямая PQ.

3) Построим сечение, указанное в условии, пользуясь признаком параллельности плоскостей. Проведем через точки P и Q прямые, параллельные прямым DB и DA соответственно (рис. 257, в). Эти прямые пересекают отрезок CD в точке L. Последнее вытекает из свойства центра масс треугольника - он делит медианы треугольника в отношении 2: 1, считая от вершины. Осталось применить теорему Фалеса. Таким образом, плоскости PLQ и BDA параллельны. Искомым сечением является треугольник LSN.

По построению, треугольники BCD и SCL подобны с коэффициентом подобия CE CP = 3 2 . Поэтому LS = 3 2 BD . Аналогично уста-

навливаются равенства: LN = 3 2 AD , NS = 3 2 AB . Отсюда вытекает, что треугольники LSN и ABD подобны с коэффициентом подобия 3 2 . По свойствам площадей подобных треугольников,

S LNS = 4 9 S ABD . Осталось найти площадь треугольника ABD. По-

скольку, по условию, все рёбра тетраэдра равны а , то S ABD = 4 3 a 2 .

Искомая площадь равна 3 1 3 a 2 .

Уместно обратить внимание на то, что ответ зависит лишь от площади грани ABD. Поэтому равенство всех рёбер является лишь средством найти эту площадь. Таким образом, данную задачу можно существенно обобщить.

Ответ. 1) KEF || ABC ; 3) 3 1 3 a 2 .

 Контрольные вопросы

1. Верно ли, что две плоскости параллельны, если каждая прямая, лежащая в одной плоскости, параллельна другой плоскости?

2. Плоскости α и β параллельны. Существуют ли скрещивающиеся прямые, лежащие в этих плоскостях?

3. Две стороны треугольника параллельны некоторой плоскости. Параллельна ли этой плоскости третья сторона треугольника?

4. Две стороны параллелограмма параллельны некоторой плоскости. Верно ли, что плоскость параллелограмма параллельна данной плоскости?

5. Могут ли быть неравными отрезки двух прямых, отсекаемые параллельными плоскостями?

6. Может ли сечением куба быть равнобокая трапеция? Может ли сечением куба быть правильный пятиугольник? Верно ли, что две плоскости, параллельные одной и той же прямой, параллельны между собой?

Линии пересечения плоскостей α и β плоскостью γ параллельны между собой. Параллельны ли плоскости α и β?

Могут ли три грани куба быть параллельными одной плоскости?

Графические упражнения

1. На рис.258 изображен куб ABCDA 1 B 1 C 1 D 1 , точки М , N , K , L , Р - середины соответствующих рёбер. Заполните по приведенному образцу таблицу, выбрав необходимое расположение плоскостей α и β.

Взаимное

расположение

α || β α = β

α × β α || β α = β

A1 B1 C1

D 1 KP

и ADC

и BB1 D

и MNP

и BMN

B 1 KP

A1 DC1

A1 C1 C

и PLN

и DMN

и AB1 C

и MKP

2. На рис. 259 изображен тетраэдр ABCD, точки K , F, M , N , Q - середины соответствующих рёбер. Укажите:

1) плоскость, проходящую через точку K параллельно плоскости ABC;

2) плоскость, проходящую через прямую BD параллельно плоскости MNQ.

3. Определите, чем является сечение фигуры плоскостью, проходящей через данные три точки, изображенные на рисун-

ках 260, а)–д) и 261, а)–г).

4. Постройте рисунок по приведенным данным.

1) Из вершин параллелограмма ABCD, лежащего в одной из двух параллельных плоскостей, проведены параллельные прямые, пересекающие вторую плоскость соответственно в точках A 1 , B 1 , C 1 , D 1 .

2) Треугольник A 1 B 1 C 1 является проекцией треугольника ABC на параллельную ему плоскость α. Точка М - середина ВС , М 1 - проекция точки М на плоскость α.

207. В кубе ABCDA 1 B 1 C 1 D 1 точки О , О 1 - центры граней ABCD и A 1 B 1 C 1 D 1 соответственно, М - середина ребра АВ .

1°) Определите взаимное расположение плоскостей МО 1 О

и ADD 1 , ABD 1 и СО 1 С 1 .

2°) Постройте точку пересечения плоскости DCC 1 и прямой МО 1 и линию пересечения плоскостей МСС 1 и A 1 D 1 C 1 .

3) Найдите площадь сечения куба плоскостью, параллельной плоскости AD 1 C 1 и проходящей через точку О 1 , если ребро куба равно а.

208. В тетраэдре ABCD точки K , L , Р - центры масс граней ABD , BDC , ABC соответственно, а М - середина ребра AD .

1°) Определите взаимное расположение плоскостей ACD

и KLP ; МLK и ABC .

2°) Постройте точку пересечения плоскости ABC и прямой МL и линию пересечения плоскостей МKL и ABC.

3) Найдите площадь сечения тетраэдра плоскостью, проходящей через точки K , L и М параллельно прямой AD, если все рёбра тетраэдра равны а.

209. Дан куб ABCDA 1 B 1 C 1 D 1 . Точки L, M, M 1 - середины рёбер AB, AD и A 1 D 1 соответственно.

1°) Определите взаимное расположение плоскостей B 1 D 1 D

и LMM1 .

2) Постройте плоскость, проходящую через точку М параллельно плоскости ACC 1 .

3) Постройте сечение куба плоскостью, проходящей через точку M 1 параллельно плоскости CDD 1 .

4) Определите взаимное расположение плоскостей МА 1 В 1

и CDМ1 .

5) Постройте плоскость, проходящую через прямую C 1 D 1 параллельно плоскости CDM 1 .

210. В правильной четырехугольной пирамиде SABCD все рёбра равны между собой. Точки L , M и N - середины рёбер AS , BS , CS соответственно.

1°) Определите взаимное расположение: прямых LM и BC ; прямой LN и плоскости ABD; плоскостей LMN и BDC .

2°) Докажите, что треугольники ABC и LMN подобны.

3) Постройте сечение пирамиды плоскостью AMN ; плоскостью LMN; плоскостью LBC .

4*) Какое из сечений пирамиды, проходящих через вершину S , имеет наибольшую площадь?

Параллельность прямых и плоскостей

В тетраэдре SABC все грани - правильные треугольники. Точки L, M и N - середины рёбер AS, BS, CS соответственно. 1°) Определите взаимное расположение прямых LM и ВС. 2°) Определите взаимное расположение прямой LN и плоскости АВС.

3) Докажите, что треугольники LMN и AВС подобны.

Из вершин параллелограмма ABCD, лежащего в одной из

двух параллельных плоскостей, проведены попарно парал-

лельные прямые, пересекающие вторую плоскость соответс-

твенно в точках A 1 , В 1 , C 1 , D 1 .

1°) Докажите, что четырехугольник A 1 B 1 C 1 D 1 – параллело-

2°) Докажите, что параллелограммы ABCD и A 1 B 1 C 1 D 1

равны между собой.

3°) Определите взаимное расположение плоскостей АВВ 1

и DD1 C1 .

4) Проведите через середину отрезка АА 1 плоскость так,

чтобы она пересекала данные прямые в точках, являющих-

ся вершинами параллелограмма, равного параллелограм-

му ABCD.

Даны две параллельные плоскости и точка О , не принадле-

жащая ни одной из этих плоскостей и не лежащая между

ними. Из точки О

проведены три луча, пересекающие плос-

кости соответственно в точках A , B, C и A 1 , B 1 , C 1 ине лежа-

щие в одной плоскости.

1°) Определите взаимное расположение данных плоскостей

иплоскости,проходящейчерезсерединыотрезковAA 1 ,BB 1 ,CC 1 .

2) Найдите периметр треугольника A 1 B 1 C 1 , если OA = m,

AA 1 = n, AB = c, AC = b, BC = а.

Треугольник А 1 В 1 С 1 является проекцией треугольника АВС

на параллельную ему плоскость α. Точка M - середина сто-

роны ВС ; М 1 - проекция точки М

на плоскость α. Точка N

делит сторону АВ

в отношении 1:2.

плоскости M 1 MN и пря-

1) Постройте точку пересечения N 1

мой А 1 В 1 .

2) Определите форму четырехугольника M 1 N 1 NM.

M лежит вне плоскости трапеции ABCB с основания-

ми AD

и BC. Постройте линию пересечения плоскостей:

1°) ABM и CDM ;

2) CBM и ADM.

Постройте сечение куба, являющееся: 1°) равносторонним треугольником; 2) пятиугольником.

217. Постройте сечение тетраэдра, являющееся параллелограммом.

218°. Докажите, что противоположные грани параллелепипеда параллельны.

219. Докажите, что множество всех прямых, проходящих через данную точку и параллельных данной плоскости, образует плоскость, параллельную данной.

220. Даны четыре точки A , B , C , D , не лежащие в одной плоскости. Докажите, что каждая плоскость, параллельная прямым AB и CD, пересекает прямые AC, AD, BD, BC в вершинах параллелограмма.

221. Докажите, что плоскость и прямая, не принадлежащая этой плоскости, параллельны между собой, если обе они параллельны одной и той же плоскости.

222. Через точку О пересечения диагоналей куба ABCDA 1 B 1 C 1 D 1 проведена плоскость параллельно грани ABCD. Эта плоскость пересекает рёбра BB 1 и CC 1 в точках M и N соответственно. Докажите, что угол MON - прямой.

223. Докажите, что две плоскости параллельны между собой тогда и только тогда, когда каждая прямая, пересекающая одну из плоскостей, пересекает и вторую.

224*. В треугольной пирамиде SABC через отрезки AD и CE, где D - середина SB, а E - середина SA , проведите сечения пирамиды, параллельные между собой.

225. Найдите геометрические места:

1) середин всех отрезков с концами на двух данных параллельных плоскостях; 2*) середин отрезков с концами на двух данных скрещивающихся прямых.

226*. Сторона АВ треугольника АВС , лежащего в плоскости α, параллельна плоскости β. Равносторонний треугольник А 1 В 1 С 1 является параллельной проекцией треугольника АВС на плоскость β; АВ = 5, ВС = 6, АС = 9.

1) Установите взаимное расположение прямых АВ и А 1 В 1 ,

ВС и В1 С1 , А1 С1 и AC.

2) Найдите площадь треугольника А 1 В 1 С 1 .

227*. Даны две скрещивающиеся прямые. Укажите множество всех точек пространства, через которые можно провести прямую, пересекающую каждую из двух данных прямых.

Основное определение

Две плоскости называ-

ются параллельными,

если они не имеют общих точек.

Основные утверждения

Признак парал- Если две пересекаю- лельности двух щиеся прямые одной плоскостей плоскости соответственно параллельны двум прямым второй плоскости, то эти плос-

кости параллельны.

Теорема о пе- Если две параллель- ресечении двух ные плоскости пе- параллельных ресекаются третьей плоскостей плоскостью, то линии третьей пересечения плоскос-

тей параллельны.

a α,b α,a ×b ,c β, d β, a || c , b || d α || β

α || β, a = γ∩α, b = γ∩β a || b

M α

β: α || β, М β

Готовимся к тематичес-

кому оцениванию по теме «Параллельность прямых и плоскостей»

Задания для самоконтроля

1. Четыре точки не принадлежат одной плоскости. Могут ли некоторые три из них лежать на одной прямой?

2. Могутлитриразличныеплоскостииметьровнодвеобщиеточки?

3. Могут ли две скрещивающиеся прямые быть одновременно параллельными третьей прямой?

4. Верно ли, что прямые а и b не параллельны, если не существует прямой с , параллельной а и b ?

5. Могут ли равные отрезки иметь неравные проекции?

6. Может ли луч быть параллельной проекцией прямой?

7. Может ли квадрат быть изображением куба?

8. Верно ли, что через данную точку пространства можно провести только одну плоскость, параллельную данной прямой?

9. Всегда ли через данную точку можно провести прямую, параллельную двум данным плоскостям, не содержащим эту точку?

10. Можно ли через две скрещивающиеся прямые провести параллельные плоскости?

Ответы к заданиям для самоконтрол я

Образец контрольной работы

Два параллелограмма АBCD и АBC 1 D 1 лежат в различных плоскостях.

1°) Определите взаимное расположение прямых CD и C 1 D 1 .

2°) Определите взаимное расположение прямой C 1 D 1 и плоскости

3°) Постройте линию пересечения плоскостей DD 1 С 1 и ВСС 1 .

4°)ОпределитевзаимноерасположениеплоскостейАDD 1 иВCC 1 .

5) Через точку М , делящую отрезок АВ в отношении 2:1, считая от точки А , проведите плоскость α, параллельную плоскости С 1 ВС. 6) Постройте точку пересечения прямой АС с плоскостью α и найдите отношение, в котором эта точка делит отрезок АС.

Параллельность прямых и плоскостей

Взаимное расположение прямых в пространстве

Таблица 21

Число общих точек

Не менее двух

лежат в одной

не лежат в од-

плоскости

ной плоскости

Взаимноерасположениепрямыхиплоскостейвпространстве

Таблица 22

Число общих точек

Не менее двух

Отсуствуют

а лежит в α

а пересекает α

а і α - параллель-

(а α)

(а × α)

ны (а || α)

Взаимное расположение плоскостей в пространстве

Таблица 23

Число общих точек

Не менее трех,

Не меньше одной, но

Отсуствуют

не лежащих на

нет общих точек, не ле-

одной прямой

жащих на одной прямой

Тригонометрические

С тригонометрическими функциями вы уже имели дело на уроках гео­ метрии. До сих пор их приложения, в основном, ограничивались решени­ ем треугольников, то есть речь шла о нахождении одних элементов тре­ угольника по другим. Из истории математики известно, что возникновение тригонометрии связано с измерением длин и углов. Однако, теперь сфера

ее приложений намного шире, чем в древности.

Слово «тригонометрия» происходит от греческих τριγωνον

(trigonon) – треугольник и µετρεω (metreo) - меряю, изме-

ряю. Буквально оно означает измерение треугольников.

В этой главе систематизируется материал, уже известный вам из кур­ са геометрии, продолжается изучение тригонометрических функций и их приложений для характеристики периодических процессов, в частности, вращательного движения, колебательных процессов и т. п.

Большинство применений тригонометрии касаются именно перио­ дических процессов, то есть процессов, повторяющихся через равные промежутки времени. Восход и закат Солнца, изменения времен года, вращения колеса - это простейшие примеры таких процессов. Меха­ нические и электромагнитные колебания являются также важными при­ мерами периодических процессов. Поэтому исследование периодических процессов - важное задание. И роль математики в его решении является определяющей.

готовимся к изучению темы «Тригонометрические функции»

Изучение темы «Тригонометрические функции» целесообразно начать с повторения определений и свойств тригонометрических функций углов треугольников и их применений для решения как прямоугольных, так и произвольных треугольников.

Синус, косинус, тангенс, котангенс углов прямоугольного

треугольника

Таблица 24

Синусом острого угла называют отношение противолежащего катета к гипотенузе:

sin α = a c .

Косинусом острого угла называют отношение прилежащего катета к гипотенузе:

cosα = b c .

Тангенсом острого угла называют отношение противолежащего катета к прилежащему:

tg α = a b .

Котангенсом острого угла называют отношение прилежащего катета к противолежащему:

ctgα = a b .

Синус, косинус, тангенс, котангенс углов от 0° до 180°

Таблица 25

sin α = R y ; cosα = R x ;

tg α = x y ; ctg α = x y .

(х ; у ) - координаты точки А , расположенной на верхней полуокружности, α - угол, образованный радиусом ОА окружности с осью х .

Значения синуса, косинуса, тангенса, котангенса

некоторых углов

Таблица 26

Угол t

0°

90°

180°

sin t

cos t

tg t

ctg t

Тригонометрические функции

Решение произвольных треугольников

Таблица 27

Теорема синусов

Стороны треугольника пропорциональны синусам противоположных углов:

sina α = sinb β = sinc γ .

Теорема косинусов

Квадрат произвольной стороны треугольника равен суммеквадратовдвухдругихсторонбезудвоенногопроизведения этих сторон на косинус угла между ними:

c 2 = a 2 + b 2 2 ab cos γ , b 2 = a 2 + c 2 2 ac cosβ , a 2 = b 2 + c 2 2 bc cosα .

Площадь треугольника равна половине произведения двух его сторон и синуса угла между ними:

S = 1 2 ab sin γ = 1 2 ac sin β = 1 2 bc sin α .

Основные тригонометрические тождества

Таблица 28

0 ° ≤ α ≤ 180°

sin2 α + cos2 α = 1

0 ° ≤ α ≤ 180°, α ≠ 90°

1 + tg α = cos 2 α

Дан треугольник АВС , С = 90°, ВС = 3 , АВ = 2. Чему рав-

В?

Б. 45 °.

В. 60 °.

А. 30 °.

Г. Невозможно вычислить без вычислительных средств.

Дан треугольник

АВС, С

ВС = 3,

В = 60°. Чему рав-

АВ?

А. 3

Б. 6.

3 .

По данным сторонам прямоугольного треугольника найдите

косинус меньшего его угла: а = 3, b = 4, c

А. 0,8.

Какое из приведенных значений не может принимать коси-

нус острого угла?

7 1

7 2

А.

5. Сравните сумму синусов острых углов произвольного прямоугольного треугольника (обозначим ее через А ) с единицей.

< 1. Б. А = 1.

> 1. Г. Сравнить невозможно. Расположите по возрастанию числа: а = sin 30°, b = cos 30°,

= tg 30°.

< b < c . Б. a < c < b . В. c < a < b . Г. b < a < c .

Сравните без вычислительных средств острые углы α и β,7.

если: co sα =

,co sβ =

2 .

А. α < β.

Для каких острых углов синус меньше косинуса?

Для всех.

Для меньших 45°.

Для больших 45°.

Г. Ни для каких.

Чему равен cos

α, если α - острый угол прямоугольного тре-

угольника и sin α =

12 .

Длина тени дерева равна 15 м. Лучи Солнца образуют угол

30° с поверхностью Земли. Чему приближенно равна высота

дерева? Выберите наиболее точный результат.

Б. 13 м.

В. 7м.

Чему равно значение выражения

1 x 2

при х = – 0,8?

Б. –0,6.

Г. ≈ 1,34.

Из формулы a 2 +b 2 = 4 выразите b < 0 через a .

А. b = 4 a 2 .

Б. b = a 2 4 .

b = − a 2

4 .

b = − 4 a 2 .

Точка А

расположена в ІІІ четверти на расстоянии 3 от оси х и

на расстоянии

10 от начала координат. Какие координаты

имеет точка А ?

Б. (−1; 3).

В. (−1; −3).

Г. (−3; −1).

следующих точек

принадлежит

окружности

x 2 + y 2

= 1?

Б. (0,5; 0,5).

. Г.

15. Укажите координаты точки А , лежащей на окружности радиуса 1 (см. рис.).

(−1; 0). Б. (1; 0).

(0; − 1). Г. (0; 1).А. В.

Любая технологическая операция может быть выполнена с определенной точностью, а значит размеры полученной в результате обработки детали не будут идеальными, они могут колебаться в некотором диапазоне. Для того, чтобы выполнить условия собираемости и обеспечить надежную работу детали в заданных условиях необходимо задать допустимый интервал, в который должен попасть итоговый размер. Этот интервал может регламентировать не только линейные или диаметральные размеры, но и форму или взаимное расположение поверхностей.

Допуски формы и расположения назначаются конструктором исходя из условий сборки и особенностей работы детали в механизме.

Виды допусков формы

Допуском формы называют максимальное допускаемое значение отклонения формы.

Поле допуска формы - это область на плоскости или в пространстве, внутри которой должны находиться все точки рассматриваемого элемента в пределах нормируемого участка, ширина или диаметр которой определяется значением допуска, а расположение относительно реального элемента прилегающим элементом.

Отклонения и допуски формы

Различают следующие допуски на отклонения формы:

  • Отклонение от прямолинейности в плоскости
    • выпуклость
    • вогнутость
  • Отклонение от плоскости и допус плоскостности
    • Выпуклость
    • Вогнутость
  • Отклонение от круглости и допуск круглости
    • Овальность
    • Огранка
  • Отклонение от цилиндричности и допуск цилиндричности
  • Отклонение и допуск профиля продольного сечения цилиндрической поверхности
  • Отклонение профиля продольного сечения
    • Конусообразность
    • Бочкообразность
    • Седлообразность

Допустимые отклонения обозначаются специальными символами.

Виды допусков расположения

Допуск расположения - предел, ограничивающий допускаемое значение отклонения расположения.

Различают допуски месторасположения и допуски ориентации.

Поле допуска расположения - область на плоскости или в пространстве, внутри которой должен находиться прилегающий элемент или плоскость симметрии, ось, центр в пределах нормируемого участка, диаметр или ширина которой определяется значение допуска, а расположение относительно - номинальным расположением рассматриваемого элемента.

Отклонения и допуски расположения

Различают следующие виды допусков расположения:

  • Отклонение от параллельности и допуск параллельности
  • Отклонение и допуск перпендикулярности
  • Отклонение и допуск наклона
  • Отклонение и допуск соосности
    • Допуск в радиусном выражении
  • Отклонение и допуск симметричности
  • Позиционное отклонение и позиционный допуск
    • Допуск в диаметральном выражении
    • Допуск в радиусном выражении
  • Отклонение от пересечения и допуск пересечения осей
    • Допуск в диаметральном выражении
    • Допуск в радиусном выражении

Суммарные допуски

Существует несколько видов суммарных допусков формы и расположения.

  • Радиальное биение
  • Полное радиальное биение
  • Торцовое биение
  • Полное торцовое биение
  • Биение в заданном направлении
  • Отклонение и допуск формы заданного профиля
  • Отклонение и допуск формы заданной поверхности

Эти допуски обозначаются символами.

Обозначение допусков формы и расположения на чертежах

Допуски формы и расположения изображают на чертежах в виде рамки, которая поделена на несколько частей. В первой части изображают графическое обозначение допуска, во второй части - числовое значение допуска, в третей и последующий - буквенное обозначение одной или нескольких баз.

В случае отсутствия базы допуска рамка состоит только из двух частей. Примеры рамок допусков формы и расположения показаны на рисунке.

На рисунке слева показана рамка с допуском формы (допустимое отклонение от прямолинейности), справа с допуском расположения (допустимое отклонение от параллельности).

Рамку выполняют тонкими линиями. Высота текста в рамке должна равняться размеру шрифта размерных чисел. От рамки допуска до поверхности или до выноски проводится линия, оканчивающаяся стрелкой.

Перед числовым значение допуска могут указываться знаки:

  • ф - если цилиндрическое или круговое поле допуска указываются диаметром
  • R - если цилиндрическое или круговое поле указываются радиусом
  • Т - если поле допуска пересечения осей, симметричности, ограничены двумя параллельными прямыми или плоскостями в диаметральном выражении.
  • Т/2 - в том же случае, что и Т, только в радиусном выражении
  • Сфера - для шарового поля допуска.

Если допуск должен применяться не ко всей поверхности, а только к некоторому участку, то он обозначается штрих пунктирной линией.

Для одного элемента может быть указано несколько допусков, этом случае рамки изображаются одна над другой.

Дополнительная информация может быть указана над рамкой или под ней.

Информация о допусках формы и расположения может быть указана в .

Неуказанные допуски соосности по ГОСТ 25069-81.

Зависимые допуски

Зависимые допуски расположения обозначают следующим символом .

Этот символ может быть размещен после числового значения допуска, если зависимый допуск связан с действительными размерами рассматриваемого элемента. Также символ может быть размещен после буквенного обозначение (если оно отсутствует то в третьем поле рамки) в том случае, если зависимый допуск связан с действительными размерами базового элемента.


Назначение допусков формы и расположения

Чем точнее изготовлена деталь, тем более точные инструменты потребуются для ее изготовления и контроля размеров. Это автоматически увеличит ее стоимость. Получается, что цена изготовления детали во многом зависит от требуемой точности при ее изготовлении. Это означает, что конструктор должен указать лишь те допуски, которые действительно необходимы для сборки и надежной работы механизма. Допустимые интервалы также должны быть назначены исходя из условий собираемости и работоспособности.

Числовые значения допусков формы

В зависимости от класса точности устанавливаются стандартные значения допусков формы.

Допуски плоскостности и прямолинейности


Номинальным размеров в данном случае считается номинальная длина нормированного участка.

Допуски круглости, цилиндричности, профиля продольного сечения


Данные допуски назначаются в тех случаях, когда они должны быть меньше, чем допуск размера.

Номинальным размером считается номинальный диаметр поверхности.

Допуски перпендикулярности, параллельности, наклона, торцевого биения


Номинальным размером при назначении допусков на параллельность, перпендикулярность, наклон понимается номинальная нормируемого участка или номинальная длина всей контролируемой поверхности.

Допуски радиального биения, симметричности, соосности пересечения осей в диаметральном выражении


При назначении допусков радиального биения номинальным размером считается номинальный диаметр рассматриваемой поверхности.

В случае назначения допусков симметричности, пересечения осе соосности номинальным размером считается номинальный диаметр поверхности или номинальный размер между поверхностями, которые образуют рассматриваемый элемент.

Всем, кто когда-либо учился или сейчас учится в школе, приходилось сталкиваться с различными трудностями при изучении дисциплин, которые включены в программу, разработанную Министерством образования.

С какими трудностями приходится сталкиваться

Изучение языков сопровождается зазубриванием имеющихся грамматических правил и основных исключений из них. Физкультура требует от учеников большой выкладки, хорошей физической формы и огромного терпения.

Однако ни с чем нельзя сравнить те сложности, которые возникают при изучении точных дисциплин. Алгебра, содержащая в себе запутанные способы решения элементарных задач. Физика с богатым набором формул физических законов. Геометрия и ее разделы, в основе которых лежат сложные теоремы и аксиомы.

Примером могут служить аксиомы, объясняющие теорию параллельности плоскостей, которые необходимо обязательно запомнить, так как они лежат в основе всего курса школьной программы по стереометрии. Давайте попробуем разобраться, как проще и быстрее это можно сделать.

Параллельные плоскости на примерах

Аксиома, указывающая на параллельность плоскостей, звучит следующим образом: «Любые две плоскости считаются параллельными только в том случае, если они не содержат общих точек », то есть не пересекаются друг с другом. Чтобы более детально представить себе данную картину, в качестве элементарного примера можно привести отношение потолка и пола или противоположных стен в здании. Становится сразу понятно, что имеется в виду, а также подтверждается тот факт, что эти плоскости в обычном случае никогда не пересекутся.

Другим примером может служить оконный стеклопакет, где в качестве плоскостей выступают полотна стекол. Они также ни при каких условиях не будут образовывать точек пересечения между собой. Дополнительно к этому можно добавить книжные полки, кубик Рубика, где плоскостями являются его противоположные грани, и прочие элементы быта.

Обозначаются рассматриваемые плоскости специальным знаком в виде двух прямых «||», которые наглядно иллюстрируют параллельность плоскостей. Таким образом, применяя реальные примеры, можно сформировать более четкое восприятие темы, а, следовательно, можно переходить далее к рассмотрению более сложных понятий.

Где и как применяется теория параллельных плоскостей

При изучении школьного курса геометрии ученикам приходится сталкиваться с разносторонними задачами, где зачастую необходимо определить параллельность прямых, прямой и плоскости между собой или зависимость плоскостей друг от друга. Анализируя имеющееся условие, каждую задачу можно соотнести к четырем основным классам стереометрии.

К первому классу относят задачи, в условии которых необходимо определить параллельность прямой и плоскостимежду собой. Ее решение сводится к доказательству одноименной теоремы. Для этого нужно определить, имеется ли для прямой, не принадлежащей рассматриваемой плоскости, параллельная прямая, лежащая в этой плоскости.

Ко второму классу задач относятся те, в которых задействуют признак параллельности плоскостей. Его применяют для того, чтобы упростить процесс доказательства, тем самым значительно сокращая время на поиск решения.

Следующий класс охватывает спектр задач о соответствии прямых основным свойствам параллельности плоскостей. Решение задач четвертого класса заключается в определении, выполняется ли условие параллельности плоскостей. Зная, как именно происходит доказательство той или иной задачи, ученикам становится проще ориентироваться при применении имеющегося арсенала геометрических аксиом.

Таким образом, задачи, условие которых требует определить и доказать параллельность прямых, прямой и плоскости или двух плоскостей между собой, сводятся к правильному подбору теоремы и решению согласно имеющемуся набору правил.

О параллельности прямой и плоскости

Параллельность прямой и плоскости - особая тема в стереометрии, так как именно она является базовым понятием, на которое опираются все последующие свойства параллельности геометрических фигур.

Согласно имеющимся аксиомам, в случае когда две точки прямой принадлежат некоторой плоскости, можно сделать вывод, что данная прямая также лежит в ней. В сложившейся ситуации становится ясно, что возможны три варианта расположения прямой относительно плоскости в пространстве:

  1. Прямая принадлежит плоскости.
  2. Для прямой и плоскости имеется одна общая точка пересечения.
  3. Для прямой и плоскости точки пересечения отсутствуют.

Нас, в частности, интересует последний вариант, когда отсутствуют какие-либо точки пересечения. Только тогда можно говорить о том, что прямая и плоскость относительно друг друга являются параллельными. Таким образом, подтверждается условие основной теоремы о признаке параллельности прямой и плоскости, которая гласит, что: «Если прямая, не принадлежащая рассматриваемой плоскости, параллельна любой прямой на этой плоскости, то рассматриваемая прямая также является параллельной данной плоскости».

Необходимость использования признака параллельности

Признак параллельности плоскостей, как правило, используется для поиска упрощенного решения задач о плоскостях. Суть данного признака состоит в следующем: «Если имеются две пересекающиеся прямые, лежащие в одной плоскости, параллельные двум прямым, принадлежащим другой плоскости, то такие плоскости можно назвать параллельными ».

Дополнительные теоремы

Помимо использования признака, доказывающего параллельность плоскостей, на практике можно встретиться с применением двух других дополнительных теорем. Первая представлена в следующей форме: «Если одна из двух параллельных плоскостей параллельна третьей, то и вторая плоскость либо тоже параллельна третьей, либо полностью совпадает с ней ».

Базируясь на использовании приводимых теорем, всегда можно доказать параллельность плоскостей относительно рассматриваемого пространства. Вторая теорема отображает зависимость плоскостей от перпендикулярной прямой и имеет вид: «Если две несовпадающие плоскости перпендикулярны по отношению к некоторой прямой, то они считаются параллельными друг другу ».

Понятие необходимого и достаточного условия

При неоднократном решении задач доказательства параллельности плоскостей было выведено необходимое и достаточное условие параллельности плоскостей. Известно, что любая плоскость задается параметрическим уравнением вида: А 1 х+ В 1 у+ C 1 z+D 1 =0. Наше условие базируется на использовании системы уравнений, задающих расположение плоскостей в пространстве, и представлено следующей формулировкой: «Для доказательства параллельности двух плоскостей необходимо и достаточно, чтобы система уравнений, описывающих эти плоскости, была несовместной, то есть не имела решения ».

Основные свойства

Однако при решении геометрических задач использования признака параллельности не всегда бывает достаточно. Иногда возникает ситуация, когда необходимо доказать параллельность двух и более прямых в различных плоскостях или равенство отрезков, заключенных на этих прямых. Для этого применяют свойства параллельности плоскостей. В геометрии их насчитывается всего два.

Первое свойство позволяет судить о параллельности прямых в определенных плоскостях и представлено в следующем виде: «Если две параллельные плоскости пересечь третьей, то прямые, образованные линиями пересечения, будут также параллельны друг другу ».

Смысл второго свойства состоит в том, чтобы доказать равенство отрезков, расположенных на параллельных прямых. Его трактовка представлена ниже. «Если рассматривать две параллельные плоскости и заключить между ними область, то можно утверждать, что длина образованных этой областью отрезков будет одинакова ».

Похожие публикации