Энциклопедия пожаробезопасности

Осцилляторы и импульсные возбудители дуги. Стабилизаторы горения дуги Специальные функции импульсных стабилизаторов напряжения

Стабилизатор горения дуги является необходимым элементом оборудования для дуговой сварки неплавящимся электродом на переменном токе промышленной частоты. Его задача - обеспечение повторного возбуждения дуги при смене полярности с прямой на обратную. Стабилизатор должен генерировать импульсы достаточной энергии и длительности, чтобы обеспечить повторное возбуждение дуги. Обычно амплитуда импульса напряжения стабилизатора достигает 400-600В.

Активными называют стабилизаторы, в которых энергия импульса накоплена в каком-либо накопителе (индуктивном или емкостном) и вводится в цепь дуги по команде управляющего устройства. В пассивных стабилизаторах импульс генерируется за счет процессов, происходящих в цепи дуги. Практическое распространение получили лишь стабилизаторы активного типа.

Важнейшей частью стабилизатора является схема управления моментом генерации импульса. Импульс стабилизатора должен генерироваться после смены полярности дугового напряжения с некоторой задержкой, определяемой временем развития тлеющего разряда. Возможны два пути генерации импульса: потенциальный и дифференциальный. В первом случае импульс генерируется при достижении напряжения дуги некоторого уровня, во втором - при резком изменении напряжения дуги. В случае если запаздывание схемы невелико, не более 1-2мкс, целесообразно применять потенциальный метод. Он позволяет выделить импульс тогда, когда он необходим, т.е. при формировании аномального тлеющего разряда. При значительном запаздывании, входной сигнал схемы управления должен быть выделен в начальной стадии процесса восстановления напряжения. Здесь целесообразно применение дифференциальных схем.

Стабилизаторы являются частью установок для сварки на переменном токе и отдельно не выпускаются. На рис. 5.7 показана принципиальная схема стабилизатора горения дуги.

Рис. 5.7. Принципиальная электрическая схема стабилизатора горения дуги.

Конденсатор С заряжается от повышающего трансформатора ЗТ через диод Д. В нужный момент, при смене питающего напряжения (сварочный трансформатор СТ) с прямой полярности на обратную, на управляющий электрод тиристора Т подается импульс тока. Тиристор отпирается и конденсатор С разряжается на дуговой промежуток. Возникает короткий, но мощный импульс тока и дуга хорошо возбуждается при переходе сварочного тока через ноль.

Цикл сварки

Блок цикла сварки обеспечивает:

Включение цикла по команде оператора;

Включение подачи защитного газа;

Запрет на включение сварочного тока до момента, пока газ не поступит в зону сварки и не вытеснит имеющийся там воздух;

Включение устройства для зажигания дуги;

Нарастание тока до рабочего;

Отключение устройства для возбуждения дуги;

Включение движения сварочной горелки и подачи присадочной проволоки;

По команде оператора-снижение сварочного тока в течение установленного оператором времени;

Отключение источника сварочного тока;

отключение подачи газа в течение заданного времени и возврат схемы в исходное состояние.

А напрасно. Разговор ведь только начинается. Может у человека нет паспорта и он просто не понимает, что хочет от своего стабилизатора. А ведь хотеть и мочь - это разное. А теперь что, по разным темам прыгать - читать?
Для поддержания устойчивого горения дуги при ручной дуговой сварке плавящимися электродами совместно с серийно выпускаемыми трансформаторами применяют импульсный стабилизатор сварочной дуги типа СД-3.
При монтаже систем автоматизации стабилизатор может использоваться для ручной аргонодуговой сварки трубных проводок и металлоконструкций из алюминия и его сплавов не плавящимся электродом, а также для ручной дуговой сварки стальных трубных проводок и металлоконструкций плавящимися электродами. В последнем случае можно использовать электроды, предназначенные для сварки на переменном токе (типа МР-3) и постоянном токе (типа УОНИ-13/45).
Действие стабилизатора основано на поддержании устойчивого горения дуги за счет подачи на нее в начале каждого полупериода импульсов напряжения обратной полярности. Принцип стабилизации сварочной дуги заключается в следующем. При сварке на переменном токе сварочная дуга обрывается, когда сварочный ток проходит через нуль. Таким образом при частоте сети 50 Гц дуга гаснет и вновь зажигается с удвоенной частотой сети. Повторное зажигание дуги происходит от "всплеска" напряжения холостого хода сварочного трансформатора, значение которого может достигать 90-100 В. Однако этого напряжения бывает недостаточно для повторного зажигания и стабильного горения дуги. Для надежного зажигания дуги стабилизатор в начале каждой полуволны подает на вторичную обмотку импульсы напряжения, амплитудное значение которых достигает 200 В. Эти импульсы способствуют устойчивому горению дуги. Полярность стабилизирующих импульсов - обратная, т. е. при нарастании положительной полуволны между электродом и изделием от сварочного трансформатора в дуговой промежуток посылается импульс, передний фронт которого имеет отрицательную полярность.
Конструктивно стабилизатор дуги представляет собой приставку, которая может устанавливаться непосредственно на сварочном трансформаторе. Перед его подключением сварочный трансформатор необходимо отключить от сети. После подачи питания на сварочный трансформатор и кратковременного касания электродом изделия стабилизатор должен включиться, о чем сигнализирует лампочка на его лицевой панели. Если этого не произошло, необходимо поменять местами провода питания от сети. При исправных стабилизаторе и сварочном трансформаторе стабилизатор дуги работает только во время сварки и отключается не позднее 1 с после прекращения сварки. Одним из признаков работы стабилизатора является изменение характерного звучка сварочного трансформатора. Этот звук наиболее слышен после прекращения сварки в течении 1 сек.
Питание стабилизатора сварочной дуги СД-3 осуществляется от сети переменного тока напряжением 380 В, частотой 50 Гц. Допустимое отклонение напряжения от номинального +10 и -15%. Потребляемая мощность не более 50 В-А.чение 1 с.
При аргонодуговой сварке алюминия и его сплавов неплавящимися электродами стабилизатор дуги может работать совместно со сварочными трансформаторами; имеющими напряжение холостого хода 80 В и ток от 50 до 800 А. При ручной дуговой сварке плавящимися электродами стабилизатор может использоваться с трансформаторами, имеющими напряжение холостого хода 45-80 В и ток от 80 до 300 А. Стабилизатор СД-3 имеет габариты 334*208х 152 мм и массу 7 кг.

А теперь скажите, что получится? , прочитает моё предыдущее сообщение во флудилке, ещё больше на меня обидится, а то, что я хочу ему просто помочь, он так и не поймёт. Право Ваше, конечно.

Импульсный стабилизатор горения дуги (ИСГД) представляет собой генератор пиковых импульсов высокого напряжения, подаваемых на дугу в момент перехода тока через нуль. Благодаря этому обеспечива­ется надежное повторное зажигание дуги, что и гарантирует высокую устойчивость горения дуги переменного тока.

Рассмотрим схему стабилизатора СД-3 (рисунок. 5.31). Его основными частями являются трансформатор питания Г, коммутирующий конден­сатор С и тиристорный коммутатор VS 1, VS 2с системой управления А. Стабилизатор питает дугу параллельно основному источнику G - сварочному трансформатору. Сначала проанализируем его работу при хо­лостом ходе сварочного трансформатора. В начале полупериода откры­вается тиристор VS 1, в результате по цепи, показанной тонкой линией, пройдет импульс тока. При этом согласно действующие ЭДС трансфор­матора T источника G создают на конденсаторе заряд с полярностью, указанной на рисунке. Ток заряда конденсатора нарастает до тех пор, пока напряжение на нем не сравняется с суммарным напряжением транс­форматора Г и источника G. После этого ток начинает спадать, что вы­зовет появление в цепи ЭДС самоиндукции, стремящейся сохранить ток неизменным. Поэтому заряд конденсатора С будет продолжаться и да­лее, пока напряжение на конденсаторе не достигнет двойного напряже­ния питания. Напряжение заряда конденсатора, приложенное к VS 1в обратном направлении, закроет тиристор. Во втором полупериоде от­крывается тиристор VS 2, и импульсный ток пойдет в противоположном направлении. В этом случае импульс будет уже мощнее, поскольку он вызывается согласным действием ЭДС трансформаторов T и G , а также заряда конденсатора С. В результате произойдет перезаряд конденсатора до еще более высокого уровня. Такой резонансный характер перезаряда позволяет получить на межэлектродном промежутке стабилизирующие импульсы напряжения с амплитудой около 200 В при сравнительно низком напряжении трансформатора питания около 40 В (рисунок. 5.31, б). Частота генерирования импульсов - 100 Гц. На межэлектродный проме­жуток подается также напряжение от основного источника (рисунок. 5.31, г). При указанной на рисунок. 5.31,афазировке трансформаторов T и G поляр­ности напряжений, подаваемых на межэлектродный промежуток от ос­новного источника (показано пунктирной линией) и от стабилизатора (тонкая линия), противоположны. Такое включение стабилизатора названо встречным. На рисунок. 5.31, в показано напряжение на межэлектродном промежутке при совместном действии стабилизатора и основного источника.

Рисунок. 5.31 – Импульсный стабилизатор горения дуги

Если сменить фазировку основного трансформатора G или стаби­лизатора, то полярности напряжений на дуге от основного источника и от стабилизатора будут совпадать (рисунок. 5.31, а). Такое соединение на­зывается согласным, оно используется в конструкции других стабили­заторов. Повторное зажигание происходит в момент подачи стабили­зирующего импульса, обычно время зажигания не превышает 0,1 мс.



При встречном включении стабилизирующий импульс, хоть и не совпадает по направлению с напряжением трансформатора G, также способствует повторному зажиганию (см. рисунок. 5.31, в). В то же время на рисунок. 5.31, а видно, что часть импульсного тока, проходящая по вто­ричной обмотке G (тонкая линия), совпадает с собственным током этой обмотки (пунктирная линия) и поэтому не препятствует быстро­му нарастанию ее тока до необходимой для повторного зажигания ве­личины.

Стабилизатор СД-3 может быть использован как при ручной сварке покрытым электродом, так и при сварке алюминия неплавящимся элек­тродом. Система управления запускает стабилизатор только после зажи­гания дуги. После обрыва дуги он работает не более 1 секунды, что по­вышает безопасность труда.

Описанный автономный стабилизатор может использоваться в ком­плекте с любым трансформатором для ручной сварки с напряжением холостого хода не ниже 60 В, при этом устойчивость дуги повышается настолько, что становится возможна сварка на переменном токе элек­тродами с фтористо-кальциевым покрытием, у которого стабилизирую­щие свойства считаются низкими.

Более эффективно использование стабилизаторов, встроенных в кор­пус источника. Со встроенными стабилизаторами выпускаются трансформаторы Разряд-160, Разряд-250 и ТДК-315, они имеют реактивную обмотку из трех секций. Переключатель диапазонов, обеспечивающий сначала согласное, а затем встречное соединение реактивной обмотки с первичной, позволяет увеличивать ток семью ступенями. Благодаря использованию импульсного стабилизатора стало возможным снижение напряжения холостого хода трансформаторов до 45 В. А это в свою очередь резко снизило потребляемый из сети ток и массу трансформаторов. В отличие от автономных встроенный стабилизатор запускается с помощью двойного управления - не только за счет обратной связи по напряжению, но еще и по току. Это повышает надежность его работы, в частности предотвращает ложные срабатывания при коротких замы­каниях каплями электродного металла. Со встроенным стабилизатором выпускаются трансформаторы ТДМ-402 с подвижными обмотками и ТДМ-201 с магнитным шунтом.

1.7.4. Схема импульсного стабилизатора

Схема импульсного стабилизатора ненамного сложней обычного (рис. 1.9), но она более сложная в настройке. Поэтому недостаточно опытным радиолюбителям, не знающим правил работы с высоким напряжением (в частности, никогда не работать в одиночку и никогда не настраивать включенное устройство двумя руками - только одной!), не рекомендую повторять эту схему.

На рис. 1.9 представлена электрическая схема импульсного стабилизатора напряжения для зарядки сотовых телефонов.

Схема представляет собой блокинг-генератор, реализованный на транзисторе VT1 и трансформаторе Т1. Диодный мост VD1 выпрямляет переменное сетевое напряжение, резистор R1 ограничивает импульс тока при включении, а также выполняет функцию предохранителя. Конденсатор С1 необязателен, но благодаря ему блокинг-генератор работает более стабильно, а нагрев транзистора VT1 чуть меньше (чем без С1).

При включении питания транзистор VT1 слегка приоткрывается через резистор R2, и через обмотку I трансформатора T1 начинает течь небольшой ток. Благодаря индуктивной связи, через остальные обмотки также начинает протекать ток. На верхнем (по схеме) выводе обмотки II положительное напряжение небольшой величины, оно через разряженный конденсатор С2 приоткрывает транзистор еще сильней, ток в обмотках трансформатора нарастает, и в итоге транзистор открывается полностью, до состояния насыщения.

Через некоторое время ток в обмотках перестает нарастать и начинает снижаться (транзистор VT1 все это время полностью открыт). Уменьшается напряжение на обмотке II, и через конденсатор С2 уменьшается напряжение на базе транзистора VT1. Он начинает закрываться, амплитуда напряжения в обмотках уменьшается еще сильней и меняет полярность на отрицательную. Затем транзистор полностью закрывается. Напряжение на его коллекторе увеличивается и становится в несколько раз больше напряжения питания (индуктивный выброс), однако благодаря цепочке R5, C5, VD4 оно ограничивается на безопасном уровне 400…450 В. Благодаря элементам R5, C5 генерация нейтрализуется не полностью, и через некоторое время полярность напряжения в обмотках снова меняется (по принципу действия типичного колебательного контура). Транзистор снова начинает открываться. Так продолжается до бесконечности в цикличном режиме.

На остальных элементах высоковольтной части схемы собраны регулятор напряжения и узел защиты транзистора VT1 от перегрузок по току. Резистор R4 в рассматриваемой схеме выполняет роль датчика тока. Как только падение напряжения на нем превысит 1…1,5 В, транзистор VT2 откроется и замкнет на общий провод базу транзистора VT1 (принудительно закроет его). Конденсатор С3 ускоряет реакцию VT2. Диод VD3 необходим для нормальной работы стабилизатора напряжения.

Стабилизатор напряжения собран на одной микросхеме - регулируемом стабилитроне DA1.

Для гальванической развязки выходного напряжения от сетевого используется оптрон VO1. Рабочее напряжение для транзисторной части оптрона берется от обмотки II трансформатора T1 и сглаживается конденсатором С4. Как только напряжение на выходе устройства станет больше номинального, через стабилитрон DA1 начнет течь ток, светодиод оптрона загорится, сопротивление коллектор-эмиттер фототранзистора VO 1.2 уменьшится, транзистор VT2 приоткроется и уменьшит амплитуду напряжения на базе VT1. Он будет слабее открываться, и напряжение на обмотках трансформатора уменьшится. Если же выходное напряжение, наоборот, станет меньше номинального, то фототранзистор будет полностью закрыт и транзистор VT1 будет «раскачиваться» в полную силу. Для защиты стабилитрона и светодиода от перегрузок по току, последовательно с ними желательно включить резистор сопротивлением 100…330 Ом.

Налаживание

Первый этап: первый раз включать устройство в сеть рекомендуется через лампу 25 Вт, 220 В, и без конденсатора С1. Движок резистора R6 устанавливают в нижнее (по схеме) положение. Устройство включают и сразу отключают, после чего как можно быстрей измеряют напряжения на конденсаторах С4 и С6. Если на них есть небольшое напряжение (согласно полярности!), значит, генератор запустился, если нет - генератор не работает, требуется поиск ошибки на плате и монтаже. Кроме того, желательно проверить транзистор VT1 и резисторы R1, R4.

Если все правильно и ошибок нет, но генератор не запускается, меняют местами выводы обмотки II (или I, только не обоих сразу!) и снова проверяют работоспособность.

Второй этап : включают устройство и контролируют пальцем (только не за металлическую площадку для теплоотвода) нагрев транзистора VT1, он не должен нагреваться, лампочка 25 Вт не должна светиться (падение напряжения на ней не должно превышать пары Вольт).

Подключают к выходу устройства какую-нибудь маленькую низковольтную лампу, например, рассчитанную на напряжение 13,5 В. Если она не светится, меняют местами выводы обмотки III.

И в самом конце, если все нормально работает, проверяют работоспособность регулятора напряжения, вращая движок подстроечного резистора R6. После этого можно впаивать конденсатор С1 и включать устройство без лампы-токоограничителя.

Минимальное выходное напряжение составляет около 3 В (минимальное падение напряжения на выводах DA1 превышает 1,25 В, на выводах светодиода - 1,5 В).

Если нужно меньшее напряжение, заменяют стабилитрон DA1 резистором сопротивлением 100…680 Ом. Следующим шагом настройки требуется установка на выходе устройства напряжения 3,9…4,0 В (для литиевого аккумулятора). Данное устройство заряжает аккумулятор экспоненциально уменьшающимся током (от примерно 0,5 А в начале заряда до нуля в конце (для литиевого аккумулятора емкостью около 1 А/ч это допустимо)). За пару часов режима зарядки аккумулятор набирает до 80 % своей емкости.

О деталях

Особый элемент конструкции - трансформатор.

Трансформатор в этой схеме можно использовать только с разрезным ферритовым сердечником. Рабочая частота преобразователя довольно велика, поэтому для трансформаторного железа нужен только феррит. А сам преобразователь - однотактный, с постоянным подмагничиванием, поэтому сердечник должен быть разрезным, с диэлектрическим зазором (между его половинками прокладывают один-два слоя тонкой трансформаторной бумаги).

Лучше всего взять трансформатор от ненужного или неисправного аналогичного устройства. В крайнем случае его можно намотать самому: сечение сердечника 3…5 мм 2 , обмотка I - 450 витков проводом диаметром 0, 1 мм, обмотка II - 20 витков тем же проводом, обмотка III - 15 витков проводом диаметром 0, 6…0, 8 мм (для выходного напряжения 4…5 В). При намотке требуется строгое соблюдение направления намотки, иначе устройство будет плохо работать, или не заработает совсем (придется прикладывать усилия при налаживании - см. выше). Начало каждой обмотки (на схеме) вверху.

Транзистор VT1 - любой мощностью 1 Вт и больше, током коллектора не менее 0,1 А, напряжением не менее 400 В. Коэффициент усиления по току Ь 2 1 э должен быть больше 30. Идеально подходят транзисторы MJE13003, KSE13003 и все остальные типа 13003 любой фирмы. В крайнем случае, применяют отечественные транзисторы КТ940, КТ969. К сожалению, эти транзисторы рассчитаны на предельное напряжение 300 В, и при малейшем повышении сетевого напряжения выше 220 В они будут пробиваться. Кроме того, они боятся перегрева, т. е. требуется их установка на теплоотвод. Для транзисторов KSE13003 и MJE13003 теплоотвод не нужен (в большинстве случаев цоколевка - как у отечественных транзисторов КТ817).

Транзистор VT2 может быть любым маломощным кремниевым, напряжение на нем не должно превышать 3 В; это же относится и к диодам VD2, VD3. Конденсатор С5 и диод VD4 должны быть рассчитаны на напряжение 400…600 В, диод VD5 должен быть рассчитан на максимальный ток нагрузки. Диодный мост VD1 должен быть рассчитан на ток 1 А, хотя потребляемый схемой ток не превышает сотни миллиампер - потому что при включении происходит довольно мощный бросок тока, а увеличивать сопротивление резистора Я1для ограничения амплитуды этого броска нельзя - он будет сильно нагреваться.

Вместо моста VD1 можно поставить 4 диода типа 1N4004…4007 или КД221 с любым буквенным индексом. Стабилизатор DA1 и резистор R6 можно заменить на стабилитрон, напряжение на выходе схемы будет на 1,5 В больше напряжения стабилизации стабилитрона.

«Общий» провод показан на схеме только для упрощения графики, его нельзя заземлять и (или) соединять с корпусом устройства. Высоковольтная часть устройства должна быть хорошо изолирована.

Из книги Высокочастотный автомобиль автора Бабат Георгий

ПРИНЦИПИАЛЬНАЯ СХЕМА ВЫСОКОЧАСТОТНОГО ТРАНСПОРТА Трехфазный ток с частотой 50 герц из силовой сети (1) через выключатель (2) поступает в трансформатор (3). Выпрямитель (4) преобразует переменный ток высокого напряжения в постоянный. Отрицательный полюс выпрямленного тока

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Проект 2: Схема интерфейса Основой схемы интерфейса является дешифратор 4028. ИС 4028 считывает двоично-десятичный код логики низкого уровня с выхода ИС 74LS373, расположенной на плате УРР, и выдает соответствующие сигналы высокого уровня (см. таблицу соответствий

Из книги Show/Observer МАКС 2011 автора Автор неизвестен

Проект 3: общая схема интерфейса УРР Интерфейс УРР для робота-передвижки является специализированной схемой, предназначенной для конкретной цели. Следующая схема интерфейса (см. рис. 7.8) представляет собой более универсальное устройство, дающее возможность управлять

Из книги Электронные самоделки автора Кашкаров А. П.

Начальная схема управления На рис. 10.10 показан первый тестовый вариант схемы управления ШД. Для буферизации выходных сигналов с шин PIC 16F84 использованы шестнадцатеричные буферы типа 4050. Сигнал с выхода каждого буфера подается на транзистор NPN типа. В качестве таких

Из книги Импульсные блоки питания для IBM PC автора Куличков Александр Васильевич

Электрическая схема Электрическая схема представляет собой электронный ключ, управляемый интенсивностью светового потока. Когда уровень средней окружающей освещенности мал (возможна подстройка порогового значения), то схема отключает питание двигателя редуктора.

Из книги Грузовые автомобили. Кривошипно-шатунный и газораспределительный механизмы автора Мельников Илья

«Фрегат Экоджет»: новая схема самолета и новая бизнес-схема Авиасалон МАКС традиционно выступает смотровой площадкой новых идей в самолетостроении. ФПГ «Росавиаконсорциум» по собственной инициативе разрабатывает программу создания широкофюзеляжного

Из книги Грузовые автомобили. Электрооборудование автора Мельников Илья

3.1.1. Электрическая схема электронных часов на ЖКИ Жидкокристаллический индикатор представляет собой две плоские пластинки из стекла, склеенные по периметру таким образом, чтобы между стеклами оставался промежуток, его заполняют специальными жидкими кристаллами.На

Из книги Системы видеонаблюдения [Практикум] автора Кашкаров Андрей Петрович

3.5.3. Расширенная схема акустического датчика Регулировка усиления слабых сигналов с микрофона ВМ1 осуществляется переменным резистором R6 (см. рис. 3.9). Чем меньше сопротивление данного резистора, тем больше усиление транзисторного каскада на транзисторе VT1. При

Из книги автора

4.4.2. Электрическая схема таймера При подключении ЭМТ к сети 220 В через ограничительный резистор R1 напряжение поступает на катушку К1 (имеющую сопротивление 3,9 кОм). С помощью системы шестеренок и приложенного к этой катушке напряжения (с помощью электромагнитной индукции)

Из книги автора

2.3. Структурная схема Структурная схема импульсного блока питания персонального компьютера конструктива ATX приведена на рис. 2.1. Рис. 2.1. Структурная схема импульсного блока питания фирмы DTK конструктива ATXВходное переменное напряжение 220 В, 50 Гц поступает на входной

Из книги автора

2.4. Принципиальная схема Полная принципиальная схема бестрансформаторного источника питания с максимальной вторичной мощностью 200 Вт фирмы DTK представлена на рис. 2.2. Рис. 2.2. Принципиальная схема бестрансформаторного источника питания на 200 Вт фирмы DTKВсе элементы на

Из книги автора

3.3. Структурная схема Структурная схема импульсного блока питания для компьютеров типа AT/XT, содержащая типовой набор функциональных узлов, представлена на рис. 3.1. Модификации блоков питания могут иметь различия только в схемотехнической реализации узлов с сохранением

Из книги автора

3.4. Принципиальная схема Импульсные источники питания данного класса имеют несколько различных модификаций схемотехнической реализации отдельных вспомогательных узлов. Принципиальных различий в их рабочих характеристиках нет, а разнообразие объясняется множеством

Из книги автора

Схема, устройство работа В механизм газораспределения входят: распределительный вал и его привод. Передаточные детали – толкатели с направляющими втулками, а при верхнем расположении клапанов еще штанги и коромысла, клапаны, их направляющие втулки и пружины, опорные

Из книги автора

Общая схема электрооборудования Электрооборудование автомобилей представляет собой сложную систему соединенных между собой электроприборово сигнализации, зажигания, предохранителей, контрольно – измерительных приборов, соединительных проводов. Рис.

Из книги автора

2.6. Схема чувствительного видеоусилителя Тем, кто занимается применением схем видеоконтроля на ограниченном участке, будет полезен этот материал. Касаясь возможных вариантов обеспечения охраны в замкнутых помещениях, еще раз хочу отметить, что не всегда рентабельно

Похожие публикации