Энциклопедия пожаробезопасности

Автоматические установки поддержания давления производства фирмы Anton Eder GmbH в современных системах отопления. Бустерные насосные станции повышения давления аупд на базе насосов boosta для автоматического водоснабжения, пожаротушения Аупд для поддержа

А. Бондаренко

Применение автоматических установок поддержания давления (АУПД) для систем отопления и охлаждения получило широкое распространение в связи с активным ростом объемов высотного строительства.

АУПД выполняют функции поддержания постоянного давления, компенсации температурных расширений, деаэрации системы и компенсации потерь теплоносителя.

Но поскольку это достаточно новое для российского рынка оборудование, у многих специалистов данной области возникают вопросы: что представляют собой стандартные АУПД, каковы принцип их действия и методика подбора?

Начнем с описания стандартных установок. На сегодня наиболее распространенный тип АУПД - это установки с блоком управления на основе насосов. Подобная система состоит из безнапорного расширительного бака и блока управления, которые соединены между собой. Основными элементами блока управления являются насосы, соленоидные клапаны, датчик давления и расходомер, а контроллер, в свою очередь, обеспечивает управление АУПД в целом.

Принцип действия данных АУПД заключается в следующем: при нагреве теплоноситель в системе расширяется, что приводит к росту давления. Датчик давления фиксирует это повышение и посылает калиброванный сигнал на блок управления. Блок управления (с помощью датчика веса (наполнения) постоянно фиксирующий значения уровня жидкости в баке) открывает соленоидный клапан на линии перепуска. И через него излишки теплоносителя перетекают из системы в мембранный расширительный бак, давление в котором равно атмосферному.

По достижению заданного значения давления в системе соленоидный клапан закрывается и перекрывает поток жидкости из системы в расширительный бак. При охлаждении теплоносителя в системе его объем уменьшается, и давление падает. Если давление падает ниже установленного уровня, то блок управления включает насос. Насос работает до тех пор, пока давление в системе не поднимется до заданного значения. Постоянный контроль уровня воды в баке защищает насос от «сухого» хода, а также предохраняет бак от переполнения. Если давление в системе выходит за рамки максимального или минимального, срабатывает один из насосов или соленоидных клапанов соответственно. Если производительности одного насоса в напорной линии не хватает, задействуется второй насос. Важно, чтобы АУПД такого типа имела систему безопасности: при выходе одного из насосов или соленоидов из строя должен автоматически включаться второй.

Методику подбора АУПД на основе насосов имеет смысл рассмотреть на примере из практики. Один из недавно реализованных проектов - «Жилой дом на Мосфильмовской» (объект компании «ДОН-Строй»), в центральном тепловом пункте которого применена подобная насосная установка. Высота здания составляет 208 м. Его ЦТП состоит из трех функциональных частей, отвечающих, соответственно, за отопление, вентиляцию и горячее водоснабжение. Система отопления высотного корпуса поделена на три зоны. Общая расчетная тепловая мощность системы отопления - 4,25 Гкал/ч.

Представляем пример подбора АУПД для 3-й зоны отопления.

Исходные данные , необходимые для расчета:

1) тепловая мощность системы (зоны) N сист, кВт. В нашем случае (для 3-й зоны отопления) этот параметр равен 1740 кВт (исходные данные проекта);

2) статическая высота Н ст (м) или статическое давление Р ст (бар) - это высота столба жидкости между точкой подсоединения установки и наивысшей точкой системы (1 м столба жидкости = 0,1 бар). В нашем случае этот параметр составляет 208 м;

3) объем теплоносителя (воды) в системе V , л. Для корректного подбора АУПД необходимо располагать данными об объеме системы. Если точное значение неизвестно, среднее значение водяного объема можно вычислить по коэффициентам, приведенным в табл . По данным проекта водяной объем 3-й зоны отопления V сист равен 24 350 л.

4) температурный график: 90/70 °C.

Первый этап. Расчет объема расширительного бака к АУПД:

1. Расчет коэффициента расширения К расш (%), выражающего прирост объема теплоносителя при его нагреве от начальной до средней температуры, где Т ср = (90 + 70)/2 = 80 °С. При данной температуре коэффициент расширения будет составлять 2,89 %.

2. Вычисление объема расширения V расш (л), т.е. объема теплоносителя, вытесняемого из системы при его нагреве до средней температуры:

V расш = V сист. K расш /100 = 24350 . 2,89 /100 = 704 л.

3. Вычисление расчетного объема расширительного бака V б:

V б = V расш. К зап = 704 . 1,3 = 915 л.
где К зап - коэффициент запаса.

Далее выбираем типоразмер расширительного бака из условия, что его объем должен быть не меньше расчетного. При необходимости (например, когда существуют ограничения по габаритам) АУПД можно дополнить дополнительным баком, разбив общий расчетный объем пополам.

В нашем случае объем бака будет составлять 1000 л.

Второй этап . Подбор блока управления:

1. Определение номинального рабочего давления:

Р сист = Н сист /10 + 0,5 = 208/10 + 0,5 = 21,3 бар.

2. В зависимости от значений Р сист и N сист выбираем блок управления по специальным таблицам или диаграммам, представленным поставщиками или производителями. В состав всех моделей блоков управления могут быть включены как один насос, так и два. В АУПД с двумя насосами в программе установки можно по желанию выбрать режим работы насосов: «Основной/резервный», «Поочередная работа насосов», «Параллельная работа насосов».

На этом расчет АУПД заканчивается, а в проекте прописываются объем бака и маркировка блока управления.

В нашем случае АУПД для 3-й зоны отопления должна включать безнапорный бак объемом 1000 л и блок управления, который обеспечит поддержание давления в системе не менее 21,3 бар.

К примеру, для данного проекта была выбрана АУПД MPR-S/2.7 на два насоса, Ру 25 бар и бак MP-G 1000 фирмы Flamco (Нидерланды).

В заключение стоит упомянуть, что существуют также установки на основе компрессоров. Но это уже совсем другая история…

Статья предоставлена Компанией АДЛ

Развитие крупных городов неизбежно ведет к необходимости строительства высотных многофункциональных офисно-торговых комплексов. Такие высотные здания предъявляют особые требования к системам водяного отопления.

Многолетний опыт проектирования и эксплуатации многофункциональных зданий позволяет сформулировать следующий вывод: основой надежности и эффективности в целом работы системы отопления является соблюдение следующих технических требований:

  1. Постоянство давления теплоносителя во всех режимах эксплуатации.
  2. Постоянство химического состава теплоносителя.
  3. Отсутствие газов в свободном и растворенном виде.

Невыполнение хотя бы одного из этих требований приводит к повышенному износу теплотехнического оборудования (радиаторов, вентилей, термостатов, и т.д.) Кроме того, увеличивается расход тепловой энергии, и соответственно, возрастают материальные затраты.

Обеспечить выполнение этих требований позволяют установки поддержания давления, автоматической подпитки и удаления газов фирмы Anton Eder GmbH.

Рис. 1. Схема установки поддержания давления производства Eder

Оборудование «Эдер» (EDER) состоит из отдельных модулей, обеспечивающих поддержание давления, подпитку и дегазацию теплоносителя. Модуль А поддержания давления теплоносителя состоит из расширительного бака 1, в котором находится эластичная камера 2, препятствующая контакту теплоносителя с воздухом и непосредственно со стенками бака, что выгодно отличает расширительные установки «Эдер» от расширителей мембранного типа, в которых стенки бака подвержены коррозии из-за контакта с водой. При увеличении давления в системе, вызванным расширением воды при нагреве, открывается клапан 3, и избыток воды из системы поступает в расширительный бак. При охлаждении и соответственно уменьшении объема воды в системе срабатывает датчик давления 4, включающий насос 5, перекачивающий теплоноситель из бака в систему до тех пор, пока давление в системе не становится равным заданному.
Модуль подпитки В позволяет компенсировать потери теплоносителя в системе, возникающие в результате различного вида утечек. При уменьшении уровня воды в баке 1 и достижении заданного минимального значения открывается клапан 6 и в расширительный бак поступает вода из системы холодного водоснабжения. При достижении заданного пользователем уровня клапан отключается и подпитка прекращается.

При эксплуатации систем отопления в высотных зданиях наиболее остро стоит вопрос дегазации теплоносителя. Существующие воздухоотводчики позволяют избавиться от «завоздушенности» системы, но не решают проблему очистки воды от растворенных в ней газов, в первую очередь атомарного кислорода и водорода, вызывающих не только коррозию, но и при высоких скоростях и давлениях теплоносителя кавитацию, разрушающую устройства системы: насосы, вентили и фитинги. При использовании современных алюминиевых радиаторов за счет химической реакции в воде образуется водород, накапливание которого способно привести к разрыву корпуса радиатора, со всеми вытекающими из этого «последствиями».

В модуле дегазации С фирмы «Эдер» используется физический способ непрерывного удаления растворенных газов за счет резкого снижения давления. При кратковременном открытии клапана 9 в заданном объеме (прибл. 200 л) 8 в течение долей секунды давление воды, превышающее 5 бар, падает до атмосферного. При этом происходит резкое выделение растворенных в воде газов (эффект открывания бутылки шампанского). Смесь воды и пузырьков газа подается в расширительный бак 1. Подпитка бака дегазации 8 осуществляется из расширительного бака 1 уже очищенной от газа водой. Постепенно весь объем теплоносителя в системе будет полностью очищен от примесей и газов. Чем выше статическая высота системы отопления, тем выше требования к дегазации и постоянству давления теплоносителя. Все эти модули управляются микропроцессорным блоком D, имеющим функции диагностики и возможность включения в состав автоматизированных систем диспетчеризации.

Применение установок «Эдер» не ограничивается высотными зданиями. Целесообразно их использование в сооружениях с разветвленной системой отопления. Компактные установки ЕАС, в которых расширительный бак объемом до 500 л сочленен со шкафом управления, успешно могут использоваться в качестве дополнения к автономным системам отопления в индивидуальном строительстве.

Установки фирмы, успешно работающие во всех высотных зданиях Германии, - это выбор в пользу современной инженерной системы отопления.

Установки повышения давления представляют собой насосные станции, в состав которых входят от 2-х до 4-х многоступенчатых вертикальных насосов Boosta.

Насосы Boosta установлены на общей раме и соединены между собой всасывающими и напорными трубопроводами. Подсоединение насосов к коллекторам выполняется с использованием запорной арматуры и обратных клапанов.

Шкаф управления закреплён на стойке, установленной на раме.

Установки повышения давления имеют различные способы регулирования:

  • АУПД … Boosta … ЧР с несколькими преобразователями частоты.
    Установки повышения давления с 2÷4 насосами Boosta, к каждому насосу подключен отдельный преобразователь частоты. Все насосы работают с регулируемой частотой вращения, на одинаковых оборотах.
  • АУПД … Boosta ... КЧР с каскадно-частотным управлением.
    Установки повышения давления с 2÷4 насосами Boosta, только один насос оснащён преобразователем частоты. Остальные насосы включаются в зависимости от требований системы и работают на постоянных оборотах.

Поддержание постоянного давления обеспечивается регулированием частоты вращения насоса, к которому подключен преобразователь частоты.

Автоматическая установка поддержания давления Flamcomat (управление с помощью насосов)

Область применения
АУПД Flamcomat используется для поддержания постоянного давления, компенсации температурных расширений, деаэрации и компенсации потерь теплоносителя в закрытых системах отопления или охлаждения.

*Если температура системы в месте подключения установки превышает 70 °С, необходимо использовать промежуточную емкость Flexcon VSV, которая обеспечивает охлаждение рабочей жидкости перед установкой (см. гл. «Промежуточная емкость VSV»).

Назначение установки Flamcomat

Поддержание давления
АУПД Flamcomat поддерживает требуемое давление в
системе в узком диапазоне (± 0,1 бар) во всех режимах эксплуатации, а также компенсирует тепловые расширения
теплоносителя в системах отопления или охлаждения.
В стандартном исполнении установка АУПД Flamcomat
состоит из следующих частей:
. мембранный расширительный бак;
. блок управления;
. подсоединение к баку.
Вода и воздушная среда в баке разделены заменяемой мембраной из высококачественной бутиловой резины, которая характеризуется очень низкой газовой проницаемостью.

Принцип действия
При нагреве теплоноситель в системе расширяется, что приводит к росту давления. Датчик давления фиксирует это повышение и посылает калиброванный сигнал на
блок управления. Блок управления, который с помощью датчика веса (наполнения, рис. 1) постоянно фиксирует значения уровня жидкости в баке, открывает соленоидный клапан на линии перепуска, через который излишки теплоносителя перетекают из системы в мембранный расширительный бак (давление в котором равно атмосферному).
По достижению заданного значения давления в системе соленоидный клапан закрывается и перекрывает поток жидкости из системы в расширительный бак.

При охлаждении теплоносителя в системе его объем уменьшается и давление падает. Если давление падает ниже установленного уровня, то блок управления включает

насос. Насос работает до тех пор, пока давление в системе не поднимется до установленного уровня.
Постоянный контроль уровня воды в баке защищает насос от «сухого» хода, а также предохраняет бак от переполнения.
Если давление в системе выходит за рамки максимального или минимального, то, соответственно, срабатывает один из насосов или один из соленоидных клапанов.
В случае если не хватает производительности 1 насоса в напорной линии, то будет задействован 2-ой насос (блок управления D10, D20, D60 (D30), D80, D100, D130). АУПД Flamcomat с двумя насосами имеет систему безопасности: если один из насосов или соленоидов выходит из строя, автоматически включается второй.
Чтобы выровнять время наработки насосов и соленоидов во время работы установки и увеличить время службы установки в целом, в двунасосных установках используется
система переключения«рабочий-резервный» между насосами и соленоидными клапанами (ежедневно).
Сигналы об ошибках, касающиеся значения давления, уровня заполнения бака, работы насоса и соленоидного клапана отображаются на панели управления SDS-модуля.

Деаэрация

Деаэрация в АУПД Flamcomat основывается на принципе понижения давления (дросселирования, рис. 2). Когда теплоноситель под давлением входит в расширительный бак установки (безнапорный или атмосферный), способность газов растворяться в воде уменьшается. Воздух выделяется из воды и выводится через воздухоотводчик, установленный в верхней части бака (рис. 3). Чтобы удалить из воды как можно больше воздуха, на входе теплоносителя в расширительный бак установлен специальный отсек с
кольцами PALL: это повышает деаэрационную способность в 2-3 раза по сравнению с обычными установками.

Для того чтобы удалить из системы как можно больше избыточных газов, повышенное число циклов так же, как и повышенное время циклов (оба значения зависят от размеров бака), заранее введены в программу установки на заводе. После 24-40 часов этот режим турбо-деаэрации переходит в режим обычной деаэрации.

При необходимости можно запустить, либо остановить режим турбо-деаэрации вручную (при наличии SDS-модуля 32).

Подпитка

Автоматическая подпитка компенсирует потери объема теплоносителя, происходящие из-за утечек и деаэрации.
Система контроля уровня автоматически активирует функцию подпитки, когда требуется, и теплоноситель в соответствии с программой поступает в бак (рис. 4).
Когда достигается минимальный уровень теплоносителя в баке (обычно = 6 %), соленоид на линии подпитки открывается.
Объем теплоносителя в баке будет увеличен до необходимого уровня (обычно = 12 %). Это предотвратит «сухую» работу насоса.
При использовании стандартного расходомера количество воды может быть ограничено временем подпитки в программе. Когда это время превышено, необходимо предпринять действия к устранению проблемы. После этого, если время подпитки не изменялось, такой же объем воды может быть добавлен в систему.
В установках, где используются импульсные расходомеры (опция), подпитка отключится при достижении запрограм

мированного объема воды. Если линия подпитки
АУПД Flamcomat будет подключаться непосредственно к системе питьевого водоснабжения, то необходимо установить фильтр и защиту от обратного потока (гидравлический отсекатель - опция).

Основные элементы АУПД Flamcomat

1. Основной расширительный бак GB (безнапорный или атмосферный)
1.1 Шильдик бака
1.2 Воздухоотводчик
1.3 Связь с атмосферой для выравнивания давления в воздушной камере с атмосферным
1.4 Рым-болт
1.5 Нижний фланец бака
1.6 Регулятор высоты ножки бака
1.7 Датчик веса (наполнения)
1.8 Сигнальный провод датчика веса
1.9 Слив конденсата из бака
1.10 Маркировка соединения насос/клапан
2 Присоединения
2.1 Колпачковый шаровой кран
2.2 Гибкие соединительные шланги
2.3 J- образные трубы для подсоединения к баку
3 Блок управления
3.1 Напорная линия (колпачковый шаровой кран)
3.2 Датчик давления
рррр 3.3 Насос 1 со спускной пробкой
3.4 Насос 2 со спускной пробкой
3.5 Насос 1 с автоматическим воздушником
3.6 Насос 2 с автоматическим воздушником
3.7 Линия перепуска (колпачковый шаровой кран)
3.8 Фильтр
3.9 Обратный клапан
3.10 Flowmat, автоматический ограничитель объема потока (только для блока управления MО)
3.11 Клапан ручной регулировки 1 (для M10, M20, M60, D10, D20, D60, D80, D100, D130)
3.12 Клапан ручной регулировки 2 (для D10, D20, D60, D80, D100, D130)
3.13 Соленоидный клапан 1
3.14 Соленоидный клапан 2
3.15 Линия подпитки состоящая из соленоидного клапана 3, расходомера, обратного клапана, гибкого шланга и шарового крана
3.16 Клапан для слива и заполнения (KFE-клапан)
3.17 Предохранительный клапан
3.18 Автоматический воздушник насоса (М60, D60)
3.19 Аксессуары (см. № 2)
3.20 Стандартный SDS-модуль
3.21 Модуль DirectSа

АУПД Flamcomat М0 GB 300

Похожие публикации