Энциклопедия пожаробезопасности

Защитное отключение в электроустановках. Защитное отключение электроустановок. Область применения, основные требования, предъявляемые к УЗО, их типы Какие требования предъявляются к защитного отключения и какие функции оно выполняет

Защитным отключением называется устройство, быстро (не более 0,2 с) автоматически отключающее участок электрической сети при возникновении в нем опасности поражения человека током.

Такая опасность может возникнуть, в частности, при замыкании фазы на корпус электрооборудования; при снижении сопротивления изоляции фаз относительно земли ниже определенного предела; при появлении в сети более высокого напряжения; при прикосновении человека к токоведущей части, находящейся под напряжением. В этих случаях в сети происходит изменение некоторых электрических параметров; например, могут измениться напряжение корпуса относительно земли, ток замыкания на землю, напряжение фаз относительно земли, напряжение нулевой последовательности и др. Любой из этих параметров, а точнее говоря — изменение его до определенного предела, при котором возникает опасность поражения человека током, может служить импульсом, вызывающим срабатывание защитно-отключающего устройства, т. е. автоматическое отключение опасного участка сети.

Основными частями устройства защитного отключения являются прибор защитного отключения и автоматический выключатель.

Прибор защитного отключения — совокупность отдельных элементов, которые реагируют на изменение какого-либо параметра электрической сети и дают сигнал на отключение автоматического выключателя. Этими элементами являются: датчик — устройство, воспринимающее изменение параметра и преобразующее его в соответствующий сигнал. Как правило, датчиками служат реле соответствующих типов; усилитель, предназначенный для усиления сигнала датчика, если он оказывается недостаточно мощным; цепи контроля, служащие для периодической проверки исправности схемы защитно-отключающего устройства; вспомогательные элементы — сигнальные лампы, измерительные приборы (например, омметр), характеризующие состояние электроустановки и т. п.

Автоматический выключатель — устройство, служащее для включения и отключения цепей, находящихся под нагрузкой, и при коротких замыканиях. Он должен отключать цепь автоматически при поступлении сигнала от прибора защитного отключения.

Типы устройств. Каждое защитно-отключающее устройство в зависимости от параметра, на который оно реагирует, может быть отнесено к тому или иному типу, в том числе к типам устройств, реагирующих на напряжение корпуса относительно земли, ток замыкания на землю, напряжение фазы относительно земли, напряжение нулевой последовательности, ток нулевой последовательности, оперативный ток и др. Ниже в качестве примера рассмотрено два типа таких устройств.

Защити отключающие устройства, реагирующие на напряжение корпуса относительно земли, имеют назначение устранить опасность поражения током при возникновении на заземленном или запуленном корпусе повышенного напряжения. Эти устройства являются дополнительной мерой защиты к заземлению или занулению.

Принцип действия — быстрое отключение от сети установки, если напряжение ее корпуса относительно земли окажется выше некоторого предельно допустимого значения Uк.доп, вследствие чего прикосновение к корпусу становится опасным.

Принципиальная схема такого устройства приведена на рис. 76. Здесь в качестве датчика служит реле максимального напряжения, включенное между защищаемым корпусом и вспомогательным заземлителем RB непосредственно или через трансформатор напряжения. Электроды вспомогательного заземлителя размещаются в зоне нулевого потенциала, т. е. не ближе 15—20 м от заземлителя корпуса R3 или заземлителей нулевого провода.

При пробое фазы на заземленный или зануленный корпус вначале проявится защитное свойство заземления (или зануления), благодаря которому напряжение корпуса будет ограничено некоторым пределом UK. Затем, если UK окажется выше заранее установленного предельно допустимого напряжения Uк.доп, срабатывает защитно-отключающее устройство, т. е. реле максимального напряжения, замкнув контакты, подаст питание на отключающую катушку и вызовет тем самым отключение установки от сети.

Рис. 76. Принципиальная схема защитно-отключающего устройства, реагирующего на напряжение корпуса относительно земли:
1 — корпус; 2 — автоматический выключатель; НО — катушка отключающая; H — реле напряжения максимальное; R3 — сопротивление защитного заземления; RB — сопротивление вспомогательного заземления

Применение этого типа защитно-отключающих устройств ограничивается установками с индивидуальными заземлениями.

Защитно-отключающие устройства, реагирующие на оперативный постоянный ток, предназначены для непрерывного автоматического контроля изоляции сети, а также для защиты человека, прикоснувшегося к токоведущей части, от поражения током.

В этих устройствах сопротивление изоляции проводов относительно земли оценивается величиной постоянного тока, проходящего через эти сопротивления и получаемого от постороннего источника.

При снижении сопротивления изоляции проводов ниже некоторого заранее установленного предела в результате повреждения или прикосновения человека к проводу постоянный ток возрастет и вызовет отключение соответствующего участка.

Принципиальная схема этого устройства показана на рис. 77. Датчиком служит реле тока Т с малым током срабатывания (несколько миллиампер). Трехфазный дроссель — трансформатор ДТ предназначен для получения нулевой точки сети. Однофазный дроссель Д ограничивает утечку переменного тока в землю, которому он оказывает большое индуктивное сопротивление.


Рис. 77. Принципиальная схема защитно-отключающего устройства, реагирующего на оперативный постоянный ток: *
1 — автоматический выключатель;
2 — источник постоянного тока; КО — катушка отключения выключателя; ДТ — дроссель трехфазный; Д — дроссель однофазный; Т — реле тока; R1, R2, R3 — сопротивления изоляции фаз относительно земли; Ram - сопротивление замыкания фазы на землю

Постоянный ток Iр, получаемый от постороннего источника, протекает по замкнутой цепи: источник — земля — сопротивление изоляции всех проводов относительно земли — провода — трехфазный дроссель ДТ — однофазный дроссель Д — обмотка реле тока Т — источник тока.

Величина этого тока (А) зависит от напряжения источника постоянного тока Uист и общего сопротивления цепи:

где Rд — суммарное сопротивление реле и дросселей, Ом;

Ra — суммарное сопротивление изоляции проводов R1, R2, R3 и замыкания фазы на землю R3M.

При нормальном режиме работы сети сопротивление Rd велико, и поэтому ток Iр незначителен. В случае же снижения сопротивления изоляции одной (или двух, трех фаз) в результате замыкания фазы на землю или на корпус, либо в результате прикосновения к фазе человека сопротивление Rэ уменьшится, а ток Iр возрастет и, если он превысит ток срабатывания реле, произойдет отключение сети от источника питания.

Область применения этих устройств — сети небольшой протяженности напряжением до 1000 В с изолированной нейтралью.

УЗО (Устройство Защитного Отключения) — это коммутационный аппарат предназначенный для защиты электрической цепи от токов утечки, то есть токов протекающих по нежелательным, в нормальных условиях эксплуатации, проводящим путям, что в свою очередь обеспечивает защиту от пожаров (возгорания электропроводки) и от поражения человека электрическим током.

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

УЗО так же имеет другие варианты названий, например: дифференциальный выключатель, выключатель дифференциального тока, (сокращенно выключатель диф тока) и т.п.

  1. Устройство и принцип работы УЗО

И так для наглядности представим простейшую схему подключения через УЗО лампочки:

Из схемы видно, что при нормальном режиме работы УЗО, когда его подвижные контакты замкнуты, ток I 1 величиной, к примеру, 5 Ампер от фазного провода проходит через магнитопровод УЗО, затем через лампочку, и возвращается в сеть по нулевому проводнику, так же через магнитопровод УЗО, при этом величина тока I 2 равна величине тока I 1 и составляет 5 Ампер.

В такой ситуации часть тока электрической цепи поступающая от фазного провода не будет возвращаться в сеть, а проходя через тело человека будет уходить в землю следовательно ток I 2 который будет возвращаться в сеть через магнитопровод УЗО по нулевому проводу будет меньше тока I 1 поступающего в сеть, соответственно и величина магнитного потока Ф 1 станет больше величины магнитного потока Ф 2 , в результате чего в магнитопроводе УЗО суммарный магнитный поток уже не будет равен нулю.

К примеру ток I 1 =6А, ток I 2 =5,5А, т.е. 0,5 Ампера протекает через тело человека в землю (т.е. 0,5 Ампера — ток утечки), тогда магнитный поток Ф 1 будет равен 6 условных единиц, а магнитный поток Ф 2 — 5,5 условных единиц тогда суммарный магнитный поток будет равен:

Ф сумм = Ф 1 + Ф 2 =6+(-5,5)=0,5 усл. ед.

Возникший суммарный магнитный магнитный поток индуктирует электрический ток во вторичной обмотке который проходя через магнитоэлектрическое реле приводит его в работу, а оно, в свою очередь, размыкает подвижные контакты отключая электрическую цепь.

Проверка работоспособности УЗО осуществляется нажатием кнопки «ТЕСТ». Нажатие данной кнопки искусственно создает в УЗО утечку тока, что должно привести к отключению УЗО.

  1. Схема подключения УЗО.

ВАЖНО! Так как в УЗО отсутствует защита от сверхтоков, при любой схеме его подключения должна быть предусмотрена так же установка , для защиты УЗО от токов перегрузки и короткого замыкания.

Подключение УЗО осуществляется по одной из следующих схем, в зависимости от типа сети:

Подключение УЗО без заземления:

Такая схема применяется, как правило, в зданиях со старой электропроводкой (двухпроводной), в который отсутствует заземляющий провод.

Подключение УЗО с заземлением:

N- C- S (когда нулевой проводник разделяется на нулевой рабочий и нулевой защитный):

Схема подключения УЗО в электросети (когда нулевой рабочий и нулевой защитный проводники разделены):

ВАЖНО! В зоне действия УЗО нельзя объединять нулевой защитный (провод заземления) и нулевой рабочий проводники! Другими словами нельзя в схеме, после установленного УЗО, соединять между собой рабочий ноль (синий провод на схеме) и провод заземления (зеленый провод на схеме).

  1. Ошибки в схемах подключения из-за которых выбивает УЗО.

Как было сказано выше УЗО срабатывает на токи утечки, т.е. если сработало УЗО — это значит, что произошло попадание человека под напряжение или по какой либо причине оказалась повреждена изоляция электропроводки или электрооборудования.

Но что если УЗО самопроизвольно срабатывает и при этом повреждений нигде нет, а подключенное электрооборудование исправно? Возможно все дело в одной из следующих ошибок в схеме сети защищаемой УЗО.

Одной из самых распространенных ошибок является объединение нулевого защитного и нулевого рабочего проводника в зоне действия УЗО:

В этом случае величина тока выходящего из сети через УЗО по фазному проводу будет больше чем величина тока возвращающегося в сеть по нулевому проводнику т.к. часть тока будет протекать мимо УЗО по проводнику заземления, что приведет к срабатыванию УЗО.

Так же, часто встречаются случаи использования в качестве нулевого рабочего проводника проводник заземления или стороннюю проводящую заземленную часть (например арматуру здания, систему отопления, водопроводную трубу). Такое, подключение как правило происходит при повреждении нулевого рабочего проводника:

Оба этих случая приводят к тому, что УЗО выбивает, т.к. ток выходящий из сети по фазному проводу ток через УЗО не возвращается обратно в сеть.

  1. Как выбрать УЗО? Типы и характеристики УЗО.

Что бы правильно подобрать УЗО и исключить возможность ошибки воспользуйтесь нашим .

УЗО выбирается по его основным характеристикам. К ним относятся:

  1. Номинальный ток — максимальный ток при котором УЗО способно длительно работать не теряя свою работоспособность;
  2. Дифференциальный ток — минимальный ток утечки при котором УЗО произведет отключение электрической цепи;
  3. Номинальное напряжение — напряжение при котором УЗО способно длительно работать не теряя свою работоспособность
  4. Тип тока —постоянный (обозначается «-«) или переменный (обозначается «~»);
  5. Условный ток короткого замыкания — ток который кратковременно может выдержать УЗО до момента пока не сработает защитная аппаратура (предохранитель или автоматический выключатель).

Выбор УЗО основывается на следующих критериях:

— По номинальному напряжению и типу сети: Номинальное напряжение УЗО должно быть больше либо равно номинальному напряжению защищаемой им цепи:

U ном. УЗО U ном. сети

При однофазной сети требуется двухполюсное УЗО , при трехфазной сети четырехполюсное .

— По номинальному току: согласно пункта 7.1.76. ПУЭ использование УЗО в групповых линиях, не имеющих защиты от , без дополнительного аппарата, обеспечивающего эту защиту не допускается, при этом необходима расчетная проверка УЗО в режимах сверхтока с учетом защитных характеристик вышестоящего аппарата, обеспечивающего защиту от сверхтока.

Из сказанного выше следует, что перед УЗО должен стоять аппарат защиты ( или ) именно по току этого вышестоящего аппарата защиты необходимо выбирать номинальный ток УЗО исходя из условия, что номинальный ток УЗО должен быть больше либо равен номинальному току установленного до него аппарата защиты:

I ном. УЗО ⩾ I ном. аппарата защиты

При этом рекомендуется что бы номинальный ток УЗО был на ступень больше номинального тока вышестоящего аппарата защиты (например если перед УЗО установлен автомат на 25 Ампер УЗО рекомендуется ставить с номинальным током 32 Ампера)

Справочно — стандартные значения номинальных токов УЗО: 4А, 5А, 6А, 8А, 10А, 13А, 16А, 20А, 25А, 32А, 40А, 50А, 63А и т.д.,

— По дифференциальному току:

Дифференциальный ток — это одна из главных характеристик УЗО которая показывает при какой величине тока утечки УЗО отключит цепь.

В соответствии с пунктом 7.1.83. ПУЭ: Суммарный ток утечки сети с учетом присоединяемых стационарных и переносных электроприемников в нормальном режиме работы не должен превосходить 1/3 номинального тока УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки сети - из расчета 10 мкА на 1 м длины фазного проводника. Т.е. дифференциальный ток сети можно рассчитать по следующей формуле:

Δ I сети =((0.4*I сети)+(0.01*L провода))*3, миллиАмпер

где: I сети — ток сети (рассчитанный по формуле выше), в Амперах; L провода — общая длина проводки защищаемой электросети в метрах.

Рассчитав Δ I сети принимаем ближайшее большее стандартное значение дифференциального тока УЗО Δ I УЗО :

Δ I УЗО ⩾ Δ I сети

Стандартными величинами дифференциального тока УЗО являются : 6, 10, 30, 100, 300, 500мА

Дифференциальные токи: 100, 300 и 500мА применяются для защиты от пожаров, а токи: 6, 10, 30мА — для защиты от поражения человека электрическим током. При этом токи 6 и 10мА применяются, как правило, для защиты отдельных потребителей и , а дифференциальный ток 30мА подходит для общей защиты электросети.

В случае если УЗО необходимо для защиты от поражения электрическим током, а по произведенному расчету ток утечки составил более 30мА необходимо предусмотреть установку нескольких УЗО на разные группы линий, например одно УЗО для защиты розеток в комнатах, а второе для защиты розеток в кухне, снизив тем самым мощность проходящую через каждое УЗО и как следствие снизив ток утечки сети, т.е. в таком случае расчет необходимо будет производить для двух или более УЗО которые будут установлены на разные линии.

— По типу УЗО:

УЗО бывают двух типов: электромеханическое и электронное . Принцип работы электромеханического УЗО мы рассматривали выше, его основным рабочим органом является дифференциальный трансформатор (магнитопровод с обмоткой) который сравнивает величины уходящего в сеть тока и тока возвращающегося из сети, а в электронном эту функцию выполняет электронная плата для работы которой необходимо напряжение.

10

С. Защитное отключение

Назначение, принцип действия, область применения. Защитным отключением называется автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, недопустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения.

Назначение защитного отключения - обеспечение электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека. Защита осуществляется специальным устройством защитного отключения (УЗО), которое, работая в дежурном режиме, постоянно контролирует условия поражения человека электрическим током.

Область применения: электроустановки в сетях с любым напряжением и любым режимом нейтрали.

Наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с наперед заданной величиной (устав-кой). Если входной сигнал превышает уставку, то устройство срабатывает и отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

Все УЗО по виду входного сигнала классифицируют на несколько типов (рис. 4.11).

Рис.4.11. Классификация УЗО по виду входного сигнала

Кроме того УЗО могут классифицироваться по другим критериям, например, по конструктивному исполнению.

Основными элементами любого устройства защитного отключения являются датчик, преобразователь и исполнительный орган.

Основными параметрами, по которым подбирается то или иное УЗО являются: номинальный ток нагрузки т.е. рабочий ток электроустановки, который протекает через нормально замкнутые контакты УЗО в дежурном режиме; номинальное напряжение; уставка; время срабатывания устройства.

Рассмотрим более подробно

УЗО, реагирующее на потенциал корпуса относительно земли , предназначенное для обеспечения безопасности при возникновении на заземленном (или зануленном) корпусе электроустановки повышенного потенциала. Датчиком в этом устройстве (рис.4.12) служит реле Р, обмотка которого включена между корпусом электроустановки и вспомогательным заземлителем R в. Электроды вспомогательного заземлителя R в располагаются вне зоны растекания токов заземлителя R з .

Рис.4.12. Схема УЗО, реагирующего на потенциал корпуса

При замыкании на корпус защитное заземление

R з снизит потенциал корпуса относительно земли до величины j з =I з R з. Если по каким-либо причинам окажется, что j з > j здоп , где j здоп - потенциал корпуса, при котором напряжение прикосновения не превышает допустимого, то срабатывает реле Р, которое своими контактами замкнет цепь питания катушки коммутационного аппарата и произойдет отключение поврежденной электроустановки от сети.

Фактически данный тип УЗО дублирует защитные свойства заземления или зануления и применяется в качестве дополнительной защиты, повышая надежность заземления или зануления.

Данный тип УЗО может применяться в сетях с любым режимом нейтрали, когда заземление или зануление неэффективно.

УЗО, реагирующее на дифференциальный (остаточный) ток, находят широкое применение во всех отраслях промышленности. Характерной их особенностью является многофункциональность. Такие УЗО могут осуществлять защиту человека от поражения электрическим током при прямом прикосновении, при косвенном прикосновении, при несимметричном снижении изоляции проводов относительно земли в зоне защиты устройства, при замыканиях на землю и в других ситуациях.

Принцип действия УЗО дифференциального типа заключается в том, что оно постоянно контролирует дифференциальный ток и сравнивает его с уставкой. При превышении значения дифференциального тока уставки УЗО срабатывает и отключает аварийный потребитель электроэнергии от сети. Входным сигналом для трехфазных УЗО является ток нулевой последовательности. Входной сигнал УЗО функционально связан с током, протекающим через тело человека

I h .

Область применения УЗО дифференциального типа – сети с заземленной нейтралью напряжением до 1 кВ (система TN - S).

Схема включения УЗО, реагирующего на дифференциальный ток в сети с заземленной нейтралью типа

TN - S представлена на рис 4.13.

Рис.4.13. Схема подключения к сети УЗО (система TN – S), реагирующего на дифференциальный ток

Датчиком такого устройства является трансформатор тока нулевой последовательности (ТТНП), на выходных обмотках которого формируется сигнал, пропорциональный току через тело человека I h . Преобразователь УЗО (П) сравнивает значение входного сигнала с уставкой, значение которой определяется допустимым током через человека, усиливает входной сигнал до уровня, необходимого для управления исполнительным органом (ИО). Исполнительный орган, например, контактор, отключает электроустановку от сети в случае возникновения опасности поражения электрическим током в зоне защиты УЗО.

По условиям функционирования дифференциальные УЗО подразделяются на следующие типы: АС, А, В,

S, G.

УЗО типа АС – устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток, возникающий внезапно, либо медленно возрастающий.

УЗО типа А – устройство защитного отключения, реагирующее на переменный синусоидальный дифференциальный ток и пульсирующий постоянный дифференциальный ток, возникающие внезапно, либо медленно возрастающие.

УЗО типа В – устройство защитного отключения, реагирующее на переменный, постоянный и выпрямленный дифференциальные токи.

S – устройство защитного отключения, селективное (с выдержкой времени отключения). G – то же, что и типа S ,но с меньшей выдержкой времени

Конструктивно дифференциальные УЗО разделяются на два типа:

  • Электромеханические УЗО, функционально не зависящие от напряжения питания. Источником энергии, необходимой для функционирования таких УЗО – выполнения защитных функций, включая операцию отключения, является сам входной сигнал – дифференциальный ток, на который оно реагирует.

  • Электронные УЗО, функционально зависящие от напряжения питания . Их механизм для выполнения операции отключения нуждается в энергии, получаемой либо от контролируемой сети, либо от внешнего источника.

Защитное отключение - это быстродействующая защи­та, обеспечивающая автоматическое отключение электро­установки при возникновении в ней опасности поражения человека электрическим током.

настоящее время защитное отключение является наиболее эффективным электрозащитным средством. Опыт развитых зарубежных стран показывает, что массовое применение устройств защитного отключения (УЗО) обес­печило резкое снижение электротравматизма.

Защитное отключение находит все более широкое при­менение в нашей стране. Оно рекомендовано к использо­ванию в качестве одного из средств по обеспечению электробезопасности нормативными документами (НТД): ГОСТ 12.1.019-79, ГОСТ Р 50571.3-94 ПУЭ и др. В ряде случаев требуется обязательное применение УЗО в элек­троустановках зданий (см. ГОСТ Р 5066.9-94). К объектам, подлежащим оснащению УЭО, относятся: вновь стро­ящиеся, реконструируемые, капитально ремонтируемые жилые дома, общественные здания, промышленные соору­жения независимо от форм собственности и принадлеж­ности. Не допускается применение УЗО в тех случаях, когда внезапное отключение может привести по техноло­гическим причинам к возникновению ситуаций, опасных для персонала, к отключению пожарной, охранной сигна­лизации и т.п.

Основными элементами УЗО являются прибор защитного отключения и исполнительное устройство - автоматиче­ский выключатель. Прибор защитного отключения - это совокупность отдельных элементов, которые восприни­мают входной сигнал, реагируют на его изменение и при заданном значении сигнала воздействую на выключатель. Исполнительное устройство - автоматический выключа­тель, обеспечивающий отключение соответствующего участка электроустановки (электрической сети) при по­лучении сигнала от прибора защитного отключения.

Основные требования, предъявляемые к УЗО:

1) Быстродействие - время отключения (),скла­дываемое из времени действия прибора (t п) и времени действия выключателя (t в) , должно отвечать условию

Существующие конструкции приборов и аппаратов, применяемых в схемах защитного отключения, обеспечи­вают время отключения t o ткл = 0,05 - 0,2 с.

2) Высокая чувствительность - способность реагиро­вать на малые значения входных сигналов. Высокочув­ствительные устройства УЗО позволяют задавать уставки выключателям (значения входных сигналов, при которых выключатели срабатывают), обеспечивающие безопасность прикосновения человека к фазе.

3) Селективность - избирательность действия УЗО, т.е. способность отключать от сети тот участок, в котором возникла опасность поражения человека током.

4) Самоконтроль - способность реагировать на соб­ственные неисправности путем отключения защищаемого объекта является желательным свойством для УЗО.


5) Надежность - отсутствие отказов в работе, а также ложных срабатываний. Надежность должна быть до­статочно высокой, так как отказы УЗО могут создавать ситуации, связанные с поражением персонала током.

Область применения УЗО практически не ограничена: они могут применяться в сетях любого напряжения и с любым режимом нейтрали. Наибольшее распространение УЗО получили в сетях до 1000 В, где они обеспечивают безопасность при замыкании фазы на корпус, снижении сопротивления изоляции сети относительно земли ниже определенного предела, прикосновении человека к токоведущей части, находящейся под напряжением, в пере­движных электрических установках, в электроинстру­менте и др. Причем УЗО могут применятся как самостоятельные защитные устройства, так и в качестве дополнительной меры к занулению или защитному зазем­лению. Эти свойства определяются типом применяемого УЗО и параметрами защищаемой электроустановки.

Типы устройств защитного отключения. Работа элек­трической сети как в нормальном, так и в аварийном режиме сопровождается наличием определенных пара­метров, которые могут изменяться в зависимости от условий и режима работы. Степень опасности поражения человека определенным образом зависит от этих пара­метров. Следовательно, их можно использовать в ка­честве входных сигналов для УЗО.

На практике для создания УЗО используются следую­щие входные сигналы:

Потенциал корпуса относительно земли;

Ток замыкания на землю;

Напряжение нулевой последовательности;

Дифферинциальный ток (ток нулевой последователь­ности) ;

Напряжение фазы относительно земли;

Оперативный ток.

Кроме того, применяются и комбинированные уст­ройства, реагирующие на несколько входных сигналов.

Ниже рассмотрена схема и работа устройства защит­ного отключения, реагирующего на потенциал корпуса относительно земли.

Назначение УЗО данного типа - устранение опасности поражения людей током при возникновении на заземлен­ном или зануленном корпусе повышенного потенциала. Обычно эти устройства являются дополнительной мерой защиты к заземлению или занулению. Устройство сраба­тывает, если возникший на корпусе поврежденного обо­рудования потенциал φ к окажется выше потенциала φ кдоп, которое выбирается, исходя из наибольшего длительно допустимого напряжения прикосновения U пр.доп.

Датчиком в этой схеме служит реле напряжения РН,

Рис.28. Принципиальная схема УЗО, реагирующего на

потенциал корпуса, соединенного с землей с помощью вспомогательного заземлителя R воп

При замыкании фазы на заземленный (или зануленный) корпус вначале действует защитное заземление, обеспечивающее понижение напряжения на корпусе до значения U к = I з * R з,

где R з - сопротивление защитного заземления.

Если это напряжение превысит напряжение уставки реле РН U уст, то реле за счет тока I р сработает, ра­зомкнув своими контактами цепь питания магнитного пускателя МП. А силовые контакты магнитного пускате­ля, в свою очередь, обесточат поврежденное оборудова­ние, т.е. УЗО выполнит свою задачу.

Оперативное (рабочее) включение и выключение оборудо­вания осуществляется кнопками ПУСК, СТОП. Контакты БК магнитного пускателя обеспечивают его питание после отпускания кнопки ПУСК.

Достоинством этого типа УЗО является простота его схемы. К недостаткам относятся необходимость вспомогательного заземления, отсутствие самоконтроля ис­правности, неселективность отключения в случае при­соединения нескольких корпусов к одному защитному за­землителю, непостоянство уставки при изменении R воп.

Далее рассмотрим вторую схему, реагирующую на диф­ференциальный ток (или ток нулевой последователь­ности) – УЗО(Д). Эти устройства наиболее универсальны, и поэтому находят широкое применение на произ­водстве, в общественных зданиях, в жилых домах и т.д.

Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током.

Такая опасность может возникнуть при замыкании фазы на корпус, снижении сопротивления изоляции ниже определенного предела и в случае прикосновения человека непосредственно к токоведущим частям, находящимся под напряжением.

Основными элементами устройств защитного отключения (УЗО) является прибор защитного отключения исполнительный орган - автоматический отключатель.

Прибор защитного отключения (ПЗО) - это совокупность отдельных элементов, которые воспринимают входную величину, реагируют на ее изменения и дают сигнал на отключение выключателю. Этими элементами являются:

1 - датчик – устройство, воспринимающее изменение параметра и преобразующее его в соответствующий сигнал;

2 - усилитель (в случае слабого сигнала);

3 - цепи контроля – для проверки исправности схемы;

4 - вспомогательные элементы (сигнальные лампы и измерительные приборы).

Автоматический выключатель – служит для включения и выключения цепей, находящихся под нагрузкой. Он должен отключать цепь при поступления сигнала от прибора защитного отключения.

Основные требования к устройству защитного отключения (УЗО):

1 - высокая чувствительность;

2 - малое время отключения (0,05-0,2с)

3 - селективность действия, т.е. при наличии опасности;

4 - иметь самоконтроль исправность;

5 - достаточная надежность

Область применения - практически не ограничена. Наибольшее распространение УЗО получили в сетях напряжением до 1000В.

Различают типы УЗО, которые реагируют на:

1 - потенциал корпуса;

2 - ток замыкания на землю;

5 - ток нулевой последовательности;

6 - оперативный ток.

Есть устройства комбинированные, которые реагируют не на одну, а на несколько входных величин.

Рассмотрим схему УЗО, реагирующее на потенциал корпуса относительно земли (рисунок).

Электроустановка питается от 3-х фазной, 3-х проводной сети с изолированной нейтралью.

1 – контакты магнитного пускания;

2 – кнопка «пуск»;

3 – кнопка «стоп»;

4 – нормально замкнутые контакты (НЗК) реле напряжения 6;

5 – катушка магнитного пускателя(U раб = U л);

6 – реле напряжения;

7 – кнопка проверки работоспособности схемы;

8 – плавкие предохранители;

9 – электроустановка;

10 – защитное заземление;

11 вспомогательное заземление;

Рисунок 12.7. Схема защитного отключения, реагирующая на потенциал корпуса относительно земли



Рассмотрим 3 режима работы:

1. Нормальный режим работы.

При нажатии на кнопку «пуск» (2) на катушку пускателя (5) подается линейное напряжение через замкнутые контакты кнопки «стоп» (3), и нормально замкнутые контакты (4), реле напряжения (6). При протекании тока через катушку пускателя(5), в ней возникает магнитное поле, которое притягивает сердечник, на котором расположены контакты (1). Они замыкаются и на электроустановку (9) подается напряжение, а дополнительный контакт блокирует кнопку «пуск» (2) и ее можно отпустить. При нажатии на кнопку «стоп» (3) разрывается цепь питания катушки пускателя (5), магнитное поле исчезает и сердечник, на котором расположены контакты (1) под действием собственного веса (или пружины) возвращается в исходное положение. Происходит отключение электроустановки от сети.

2. Аварийный режим работы (замыкание фазы на корпус и обрыв цепи защитного заземления)

При включенной установке и наличии аварийного режима на корпусе установки(9)возникает напряжение относительно вспомогательного заземления (11) которое подается на реле напряжения (6) через замкнутые контакты кнопки (7). При достижении напряжения на корпусе установки (9) равного напряжению «уставки» реле напряжения (6) , оно срабатывает и размыкает свои нормально замкнутые контакты (4). Напряжение «уставки» реле напряжения (6) выбирается из условий безопасности. Электроустановка отключается от сети. При повторном включении электроустановки – цикл повторится.

3. Проверка работоспособности схемы.

При включенной электроустановке, находящейся в нормальном режиме при нажатии на кнопку (7) (размыкаются нормально замкнутые контакты, соединяющие заземленный корпус электроустановки (9) и реле напряжение (6) и на реле напряжения (6) подается фазное напряжение). Должно произойти отключение электроустановки от сети.

Похожие публикации