Энциклопедия пожаробезопасности

Электробезопасность. С. Защитное отключение С. Защитное отключение

Защитное отключение

Зануление

Зануление - преднамеренное электрическое соединœение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Нулевой защитный проводник - проводник, соединяющий зануляемые части с нейтральной точкой обмотки источника тока или ее эквивалентом.

Зануление применяется в сетях напряжением до 1000 В с заземленной нейтралью. В случае пробоя фазы на металлический корпус электрооборудования возникает однофазное короткое замыкание, что приводит к быстрому срабатыванию защиты и тем самым автоматическому отключению поврежденной установки от питающей сети. Такой защитой являются: плавкие предохранители или максимальные автоматы, установленные для защиты от токов коротких замыканий; автоматы с комбинированными расцепителями.

При замыкании фазы на зануленный корпус электроустановка автоматически отключается, в случае если ток однофазного короткого замыкания I З удовлетворяет условию I З >= к ∙I Н, где I Н - номинальный ток плавкой вставки предохранителя или ток срабатывания автоматического выключателя, А; к - коэффициент кратности тока.

Для автоматов к = 1,25 - 1,4. Для предохранителœей к = 3.

Проводимость нулевого защитного проводника должна быть не менее 50 % проводимости фазного провода.

Расчет зануления на безопасность прикосновения к корпусу при замыкании фазы на землю или корпус сводится к расчету заземления нейтральной точки трансформатора и повторных заземлителœей нулевого защитного проводника. Согласно ПУЭ сопротивление заземления нейтрали должно быть не более 8 Ом при 220/127 В; 4 ОМ при 380/220 В; 2 Ом при 660/380 В.

Защитное отключение - это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное отключение применяется тогда, когда трудно выполнить заземление или зануление, а также в дополнение к нему в некоторых случаях.

Учитывая зависимость оттого, что является входной величиной, на изменение которой реагирует защитное отключение, выделяют схемы защитного отключения: на напряжение корпуса относительно земли; на ток замыкания на землю; на напряжение или ток нулевой последовательности; на напряжение фазы относительно земли; на постоянный и переменный оперативные токи; комбинированные.

Принцип действия УЗО как защитного выключателя, реагирующего на ток утечки.

Рис. 14. Схема электроустановки с УЗО

Устройства, реагирующие на напряжение нулевой последовательности, применяются в трехпроводных сетях напряжением до 1000 В с изолированной нейтралью и малой протяженностью. Устройства защитного отключения, реагирующие на ток замыкания, применяются для установок, корпуса которых изолированы от земли (ручной электроинструмент, передвижные установки и т.д.).

Устройство, реагирующее на ток нулевой последовательности, применяется в сетях с заземленной и изолированной нейтралью.

Защитное отключение - понятие и виды. Классификация и особенности категории "Защитное отключение" 2017, 2018.

  • - ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

    Защитное отключение - быстродействующая защита, обеспечиваю­щая автоматическое отключение электроустановки при возникновении в ней опасности поражения током, которая может возникнуть при: замыкании фалы на корпус электрооборудования: снижении сопротивле­ния... .


  • - Защитное отключение

    Защитное отключение – это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное... .


  • - Защитное отключение

    Защитное заземление Под защитным заземлением понимается преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Заземление частей электроустановки и корпусов... .


  • - Защитное отключение

    Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током, которая может возникнуть: - при замыкании фазы на корпус электрооборудования; - при снижении... .


  • - ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

    РАЗДЕЛ 6.12 Защитное отключение (ЗО) – система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижение сопротивления изоляции, неисправности заземления) ЗО применяются... .


  • - Защитное отключение

    Защитное отключение - система защиты, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Схема защитного отключения приведена на рис. 2.13.3. Эта схема осуществляет защиту от глухих замыканий на... [читать подробнее] .


  • - Защитное отключение: назначение, область применения, сущность защиты, требования.

    Защитное отключение представляет собой быстро­действующую защиту, обеспечивающую автоматическое отключение электроустановки при возникновении в ней опасности поражения током. Такая опасность может воз­никнуть при нарушении изоляции токоведущих частей и пробое на... .


  • Систему защиты, обеспечивающую автоматическое отключение всех фаз или полюсов аварийного участка сети за полное время отключения не более 0,2 с, называют защитным отключением .
    Независимо от состояния нейтрали питающей системы любое однофазное замыкание на корпус приводит к появлению напряжения относительно земли на корпусах электрооборудования. Это обстоятельство используют при построении универсальной защиты, которая обеспечивает отключение автоматами поврежденного электрооборудования при появлении некоторой заданной разности потенциалов между корпусом и землей. Такая система идентична заземлению и основана на автоматическом отключении электроприемника, если на его металлических частях, нормально не находящихся под напряжением, последнее появляется. Защитное отключение применяют для систем с изолированной и глухозаземленной нейтралью.

    Рис. 1. Принципиальная схема защитного отключения:
    1 - корпус электроприемника; 2 - отключающая пружина; 3 - контакты сетевого контактора; 4 - защелка; 5 - сердечник катушки; б - отключающая катушка; 7, 8 - заземлители; 9 контакт

    Рассмотрим действие защитного отключения при возникновении напряжения на корпусе одиночного электроприемника в результате повреждения его изоляции. Здесь возможны два случая: электроприемник не заземлен и электроприемник имеет заземление.
    Первому случаю соответствует разомкнутое положение контакта 9 (рис. 1). На некотором расстоянии от защищаемого электроприемника забивают в землю заземлитель 7 (в том случае, если нет естественных заземлителей, которые не должны иметь электрической связи с корпусом / электроприемника). Защитный отключатель позволяет произвести разрыв цепи электроснабжения контактами сетевого контактора при подаче напряжения на катушку 6.
    При обесточенном состоянии катушки 6 ее сердечник 5 удерживает защелку 4, не позволяя пружине 2 разомкнуть контакты 3 (на схеме контакты показаны разомкнутыми, хотя сердечник удерживает защелку). Один конец обмотки катушки присоединен к корпусу 7 электроприемника, второй - к выносному заземлителю 7. В случае повреждения изоляции между корпусом электроприемника и выносным заземлителем 7 появится фазное напряжение. Отключающая катушка 6 окажется под напряжением, и по ее обмотке потечет ток. Сердечник 5 втянется и освободит удерживающую защелку 4. Пружина 2 разомкнет контакты 3 сетевого контактора, и цепь питания электроустановки разорвется. Напряжение прикосновения на корпусе электроприемника исчезнет, соприкосновение с ним станет безопасным.
    Второму случаю, когда корпус электроприемника заземлен, соответствует замкнутое положение контакта 9. При возникновении повреждения изоляции на корпусе электроприемника появится напряжение, значение которого будет определять падение напряжения в заземлителе, равное току замыкания на землю, умноженному на сопротивление заземления заземлителя. Принципиальной разницы в действии защиты в первом и втором случаях нет.
    Основой защиты с помощью защитного отключения является быстрое отключение поврежденного электроприемника.


    Рис. 2. Схема защитного отключения при изолированной нейтрали

    Согласно ПУЭ, защитное отключение рекомендуется применять в следующих установках: электроустановки с изолированной нейтралью, к которым предъявляются повышенные требования в отношении безопасности (в дополнение к устройству заземлений). Схема такого защитного отключения показана на рис. 2. При появлении в катушке реле КА тока замыкания на землю его размыкающий контакт в цепи катушки контактора КМ размыкается и контактор своими главными контактами отключает электродвигатель М от сети;
    электроустановки с глухозаземленной нейтралью напряжением до 1000 В, корпуса которых не имеют присоединения к заземленному нейтральному проводу, поскольку выполнение такого присоединения затруднено;
    передвижные установки, если заземление их не может быть выполнено в соответствии с требованиями ПУЭ.
    Защитное отключение отличается универсальностью и быстродействием, поэтому его использование в сетях как с глухозаземленной, гак и с изолированной нейтралью весьма перспективно. Особенно целесообразно использовать его в сетях напряжением 380/220 В.
    Недостатком защитного отключения является возможность отказа отключения в случае пригоралия контактов коммутационного устройства или обрыва проводов.

    Защитное автоматическое отключение питания от сети (далее – питания) осуществляется посредством автоматического размыкания цепи одного или нескольких фазных проводников (и, если необходимо, то и нулевого рабочего проводника), выполняемого в целях защиты от поражения электрическим током. Этот способ защиты реализуется, например, в рассмотренной системе защитного заземления, а также в системе зануления и в устройствах защитного отключения. Характеристики защитных аппаратов автоматического отключения и параметры проводников должны быть согласованы, чтобы обеспечивалось нормированное время отключения поврежденной цепи защитно-коммутационным аппаратом, указанное в ПУЭ, в соответствии с номинальным напряжением питающей сети. Защитно-коммутационные аппараты могут реагировать на токи короткого замыкания (например, в системе зануления) или на дифференциальный ток (устройства защитного отключения). В электроустановках, где применено автоматическое отключение питания, выполняют уравнивание потенциалов в целях снижения напряжения прикосновения в период времени от момента возникновения аварийной ситуации до момента отключения питания.

    Зануление применяется в электроустановках напряжением до 1 кВ и представляет собой преднамеренное соединение открытых проводящих частей электроустановок (в том числе их корпусов) с глухозаземленной нейтралью генератора или трансформатора.

    Это соединение выполняют посредством нулевого защитного проводника (РЕ-проводника). Согласно указаниям главы 1.7. ПУЭ, такую систему обозначают TN (Т – «terra» (англ.) – нейтраль источника глухо заземлена, N – «neutral» – открытые проводящие части присоединены к этой нейтрали). Нулевой РЕ-проводник («protection earth») следует отличать от нулевого рабочего проводника (N), который тоже присоединен к глухозаземленной нейтрали источника, но предназначен для питания однофазных электроприемников. Проводники РЕ и N могут быть разделены на всем своем протяжении, образуя совместно с фазными пятипроводную систему, обозначаемую TN-S (S – «separated» – «разделенный»). Если же они совмещены в одном PEN-проводнике на всем протяжении, то это – четырехпроводная система TN-C (C – «combination» – «совмещенный»). Применяется также промежуточная система TN-C-S, в которой, начиная от источника питания, прокладывается PEN-проводник, а затем он разделяется на отдельные N и РЕ-проводники в зоне размещения электроприемников, предназначенных для подключения к системе TN-S. С позиций безопасности система TN-S предпочтительнее системы TN-C, поскольку в нормальном режиме рабочий ток не протекает по РЕ-проводнику. Поэтому потенциалы зануленных открытых проводящих частей электроустановок практически одинаковы и равны потенциалу земли. Система TN-S, впервые предложенная с 70-х годах XX века, начиная с 1995 года широко внедряется в отечественной промышленности и в быту, однако область применения системы TN-C (используемой с 1910 года) все еще превалирует.



    Монтаж и эксплуатация трехфазных сетей невозможны без четкой (на дистанции) идентификации фазных и нулевых проводников. Это возможно с помощью цветовой маркировки. Шины фазы A (на схемах обозначается L1), B (L2), и C (L2) окрашиваются соответственно в желтый, зеленый и красный цвета. Обозначения A, B, C – прямая последовательность букв латинского алфавита; прямая последовательность букв русского алфавита, соответственно – Ж, З, К (буква И пропущена). Рабочий нулевой проводник (N) окрашивается в голубой цвет, защитный (PE) – в желто-зеленый цвет (поскольку проводник обозначается двумя буквами, то и цвета два). Совмещенный PEN-проводник окрашивается в голубой цвет с нанесенными через одинаковые промежутки поперечными (наклонными) чередующимися полосами желтого и зеленого цветов. Если используется сеть постоянного тока, то шина «+» окрашивается в красный цвет, «–» – в синий , нулевой (нейтральный) проводник – в голубой . В электроустановках ближайшая к человеку шина (например, при открытии дверцы силовой сборки или при подъеме на опору ВЛ) всегда должна быть шина PE. Далее следует шина N, а далее – фазные, причем непосредственно после шины N следует шина фазы C (красный цвет – цвет опасности), затем – B и, наконец, самой удаленной шиной является шина фазы A. В сетях постоянного тока ближайшей к человеку шиной должна быть нейтральная, далее следует шина «+» (красный цвет), а далее – шина «–».



    Ознакомившись с цветовой маркировкой проводников, рассмотрим принцип действия зануления в трехфазной сети на примере системы TN-C (рисунок 5.26).

    Рисунок 5.26 – Схема защитного зануления (система TN-C)

    Зануление превращает пробой фазы на корпус в короткое замыкание (КЗ) между фазными и нулевым защитным проводниками и способствует протеканию тока I к (рисунок 5.26) большой величины. Эта величина тока обеспечивает срабатывание аппарата защиты (A3), автоматически отключающего поврежденную установку от сети. Такой защитой могут быть плавкие предохранители или автоматические выключатели. Ток короткого замыкания должен быть такой величины, чтобы вызвать перегорание плавкой вставки предохранителя или срабатывание автоматического выключателя за время, не превышающее допустимое.

    Согласно ПУЭ наибольшее допустимое время защитного автоматического отключения в системе TN равно 0,8; 0,4; 0,2 и 0,1 с в зависимости от номинального фазного напряжения сети: 127, 220, 380 и более 380 В, соответственно. Регламентированы также наименьшие площади поперечного сечения нулевых защитных проводников. Если защитные проводники изготовлены из того же материала, что и фазные проводники, то их наименьшее сечение зависит от сечения фазных проводников следующим образом:

    Если сечение фазных проводников меньше или равно 16 мм 2 , то наименьшее сечение защитных проводников равно сечению фазных;

    Если сечение фазных проводников больше 16 мм 2 , но меньше 35 мм 2 , то сечение защитных проводников должно быть не менее 16 мм 2 ;

    Если сечение фазных проводников более 35 мм 2 , то сечение защитных проводников равно половине сечения фазных при условии соблюдения времени срабатывания защиты (0,4 с при фазном напряжении 220 В).

    Сечения нулевых защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

    Нулевой защитный проводник не должен содержать предохранителей и других разъединяющих устройств. Допустимо применение выключателей, которые отключают одновременно нулевой и фазные провода.

    Ток однофазного короткого замыкания I к протекает по петле «фаза–нуль» (рисунок 5.26). Она состоит из фазного проводника (участка от силового трансформатора до поврежденного участка), металлического корпуса электроустановки, соединенного с проводником PEN, самого проводника PEN (участка от корпуса электроустановки до нулевой точки силового трансформатора), а также фазной обмотки силового трансформатора (в данном случае – обмотки фазы А). Если сопротивление петли «фаза–нуль» будет большим, время срабатывания защиты превысит наибольшее допустимое время защитного автоматического отключения. Поэтому сопротивление данной петли измеряют не реже одного раза в три года с помощью приборов М417, ЭСО202 и подобных им. При недопустимой величине сопротивления проводят ревизию соединений металлических корпусов электроустановок с нулевым проводником (проверяют затяжку болтовых и целостность сварных контактных соединений, удаляют окалину, зачищают контакты от ржавчины). После ревизии проверяют переходное сопротивление контактов – оно должно быть не более 0,05 Ом.

    Нулевой защитный проводник соединен с землей посредством заземления нейтрали и повторных заземлителей, сопротивление растеканию тока которых обозначено соответственно r 0 и r п (рисунок 5.26). Повторное заземление выполняют на концах воздушных линий (или ответвлений от них длиной более 200 м), а также на трехфазных (однофазных) вводах в здания, где имеются электроустановки, подлежащие занулению. Сопротивление заземления нейтрали, общее сопротивление повторных заземлителей и каждого из них в отдельности не должны превышать установленных наименьших значений, например, в сети 380/220 В соответственно 4, 10 и 30 Ом (таблица 5.8). Зануленные части электроустановок оказываются заземленными через нулевой защитный проводник. Поэтому в аварийный период (до автоматического отключения поврежденной установки от сети) проявляется защитное действие этого заземления, т. е. снижается напряжение зануленных частей относительно земли. Причем это особенно существенно в случае обрыва PEN-проводника и замыканий фазы на корпус за местом обрыва. Кроме того, за счет заземления нейтрали источника, даже при отсутствии повторного заземления, значительно снижается потенциал на корпусах электрооборудования с поврежденной изоляцией. На воздушных линиях повторное заземление нулевого провода используется также в целях молниезащиты. В качестве нулевых защитных проводников можно использовать стальные полосы, металлические оплетки кабелей, металлоконструкции зданий, подкрановые пути и др.

    В тех случаях, когда электробезопасность не может быть обеспечена в системе TN с помощью защитного зануления, в сети до 1 кВ с глухозаземленной нейтралью допускается заземление открытых проводящих частей при помощи заземлителя, электрически независимого от глухозаземленной нейтрали источника (система ТТ). При этом для защиты при косвенном прикосновении предусматривается автоматическое отключение питания с обязательным применением УЗО и соблюдением условия:

    где I з – ток срабатывания защитного устройства; R з – суммарное сопротивление заземлителя и заземляющего проводника наиболее удаленного от УЗО электроприемника. Кроме того, выполняется система уравнивания потенциалов.

    Защитное отключение – это система быстродействующей защиты, автоматически (за 0,2 с и менее) отключающая электроустановку при возникновении в ней опасности поражения человека электрическим током. Защитное отключение применяется в тех случаях, когда невозможно или трудно осуществить защитное заземление или зануление, либо когда высока вероятность прикосновения людей к неизолированным токоведущим частям электроустановок. Поэтому защитное отключение целесообразно применять для обеспечения защиты при использовании ручного электроинструмента, передвижных электроустановок, а также в быту.

    При замыкании фазы на корпус, при снижении сопротивления изоляции фаз относительно земли ниже определенного предела, при прикосновении человека к токоведущей части, находящейся под напряжением, происходит изменение электрических параметров сети, которое может служить импульсом для срабатывания устройства защитного отключения (УЗО), основными частями которого являются прибор защитного отключения и автоматический выключатель.

    Прибор защитного отключения реагирует на изменение параметров электрической сети и подает сигнал на срабатывание автоматического выключателя, который отключает защищаемую электроустановку от сети.

    Устройства защитного отключения предназначены не только для защиты человека от поражения электрическим током при прикосновении к открытой проводке или к электрооборудованию, оказавшемуся под напряжением, но и для предотвращения возгорания, возникающего вследствие длительного протекания токов утечки и развивающихся из них токов короткого замыкания.

    Таким образом, основное назначение У3О: защита от токов утечки; защита от токов повреждения на землю; защита от возгорания.

    В зависимости от входного сигнала известны УЗО, реагирующие на напряжение корпуса относительно земли, на ток замыкания на землю, на напряжение нулевой последовательности, на дифференциальный ток, на оперативный ток и т.п.

    Устройство защитного отключения, реагирующее на напряжение корпуса относительно земли (рисунок 5.27), устраняет опасность поражения током при возникновении на заземленном или зануленном корпусе повышенного напряжения, например, в случае повреждения изоляции.

    Рисунок 5.27 – Принципиальная схема УЗО, реагирующего на напряжение корпуса относительно земли

    Принцип действия – быстрое отключение от сети установки, если напряжение на корпусе относительно земли окажется выше заданного значения, при котором прикосновение к корпусу становится опасным. Такое УЗО реагирует не только на полный пробой изоляции, но и на частичное уменьшение ее сопротивления.

    Устройство защитного отключения, работающее на постоянном оперативном токе, предназначено для непрерывного автоматического контроля изоляции фаз относительно земли, а также для защиты человека, прикоснувшегося к токоведущим проводам (рисунок 5.28). В этих устройствах активное сопротивление изоляции трехфазных проводов r относительно земли оценивается получаемым от постороннего источника оперативным током I оп, проходящим через эти сопротивления. При снижении r ниже установленного предела в результате повреждения изоляции и замыкания провода на землю через малое сопротивление r зм или прикосновения человека к фазному проводу возрастает ток I оп, вызывающий отключение защищаемой сети от источника питания.

    Устройство защитного отключения, реагирующее на дифференциальный ток, обеспечивает защиту в случае прикосновения человека к заземленному или зануленному корпусу электроустановки при замыкании на него фазы, а также при контакте человека с токоведущей частью, находящейся под напряжением. УЗО этого типа нашли широкое применение в агропромышленном комплексе и в быту.

    Рисунок 5.28 – Принципиальная схема УЗО, работающего на постоянном оперативном токе (исходное состояние)

    Принципиальная схема такого устройства защитного отключения приведена на рисунке 5.29. Датчиком служит трансформатор тока (ТТ) (рисунок 5.30).

    Рисунок 5.29 – Принципиальная схема УЗО, реагирующего на дифференциальный ток (исходное состояние)

    Рисунок 5.30 – Кольцеобразный магнитопровод с вторичной обмоткой трансформатора

    Если токи в фазных проводах I 1 , I 2 , I 3 равны и сдвинуты по фазе на 120° относительно друг друга, то создаваемый ими суммарный магнитный поток в магнитопроводе ТТ равен нулю. Когда возникает асимметрия проводимостей фаз относительно земли, например, в результате замыкания фазы на землю или прикосновения человека к фазе в зоне защиты, то равенство токов в фазах нарушается. Появляется дифференциальный ток, равный векторной сумме этих токов, который в соответствии с коэффициентом трансформации передается во вторичную обмотку трансформатора на вход обмотки реле тока (РТ). Если этот ток достигнет (или превысит) значения тока срабатывания реле, то его нормально замкнутые контакты разомкнутся, отсоединив электроприемник от питающей сети. Реле отключится, даже если оператор удерживает рукоятку управления во взведенном положении. При необходимости усиления сигнала с ТТ между ним и реле РТ помещают усилитель тока (на рисунке 5.29 не показан).

    Этот тип устройства защитного отключения может применяться как в сети с изолированной, так и в сети с заземленной нейтралью. Однако данное отключающее устройство наиболее эффективно в сети с заземленной нейтралью, в которой ТТ может надеваться также на проводник, заземляющий нейтральную точку силового трансформатора, в результате чего будет защищена вся питающаяся от него сеть.

    При защите однофазного электроприемника сквозь кольцеобразный магнитопровод пропускают фазный и нулевой рабочий проводники, с помощью которых он присоединяется к питающей сети. В нормальном режиме работы токи в этих проводниках равны и противоположно направлены, поэтому их суммарный магнитный поток в магнитопроводе равен нулю. В случае появления утечки на землю равенство токов нарушается и появляется дифференциальный ток. Последующая работа УЗО до отключения электроприемника от сети аналогична описанному выше устройству применительно к трехфазным объектам защиты.

    Устройства защитного отключения могут служить дополнительной защитой к заземлению и занулению, а также самостоятельной защитой (взамен их) и не зависят от сопротивления заземления и сопротивления нулевого проводника при занулении. Недостатком УЗО этого типа является нечувствительность к симметричному снижению сопротивления изоляции фаз в защищаемом электрооборудовании, что возникает весьма редко.

    Известна следующая классификация устройств защитного отключения, срабатывающих от дифференциального тока: АС – реагирующие на переменный синусоидальный ток; А – реагирующие на переменный, а также пульсирующий постоянный ток; В – реагирующие на переменный, постоянный и выпрямленный токи; S – селективные (с выдержкой времени отключения); О – то же, что и типа S, но с меньшей выдержкой времени отключения.

    Наличие УЗО типа А и В вызвано тем, что дифференциальные токи утечки могут становиться пульсирующими или принимать вид сглаженного постоянного тока в связи с применением электронных устройств, например, выпрямителей или частотных преобразователей. Устройства защитного отключения типа S и G предназначены для обеспечения селективности отключения объектов защиты. Так, при многоступенчатой схеме защиты УЗО, расположенное ближе к источнику питания, должно иметь время срабатывания не менее чем в три раза больше, чем время срабатывания УЗО, размещенного ближе к потребителю.

    Устройства защитного отключения выпускаются с номинальными отключающими токами утечки 10, 30, 100, 300, 500, 1000 мА. Причем УЗО с уставками 100 мА и более применяются обычно для обеспечения селективности защиты, а с уставкой 300 мА также для защиты от возникновения пожара при замыкании на землю.

    Устройства защитного отключения бывают электромеханическими и электронными. Первые не зависят от напряжения питания, так как энергии входного сигнала (дифференциального тока) достаточно для их работы. Вторые зависят, так как питаются от контролируемой сети или от внешнего источника (маломощный сигнал от дифференциального трансформатора поступает на электронный усилитель, который подает на механизм расцепителя главных контактов УЗО мощный импульс – десятки и даже сотни ватт, достаточный для срабатывания простого расцепителя). С этой точки зрения электронные УЗО менее надежны, нежели электромеханические. Кроме того, при обрыве нулевого провода до места установки электронного УЗО оно, не имея питания, не сработает, и фазный провод в защищаемом объекте будет представлять опасность поражения током. Для устранения этого недостатка электронные УЗО оснащают электромагнитным реле, работающим в режиме удержания, которое защищает отключаемый объект при исчезновении питания аппарата защиты. Ряд отечественных предприятий выпускают электронные устройства защитного отключения, в то время как в Германии, Франции, Австрии и некоторых других европейских странах допускается применять только УЗО, не зависящие от напряжения питания. Электромеханические УЗО производят ведущие западные фирмы – Siemens, ABB, GF POWER, Legrand, Merlin Gerin и др. Известны отечественные электромеханические аппараты – АСТРО-УЗО, ДЭК, ИЭК.

    Известны также комбинированные УЗО, оснащенные дополнительно встроенной защитой от токов коротких замыканий и перегрузок – так называемые дифференциальные автоматические выключатели.

    При выборе УЗО необходимо руководствоваться условием, что суммарный ток утечки стационарных и переносных электроприемников не должен превышать 1/3 номинального тока отключения УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на каждый ампер тока нагрузки, а ток утечки сети – из расчета 10 мкА на 1 м длины фазного проводника. Исходя из последнего условия, в старых домах и производственных корпусах с изношенной проводкой устанавливают УЗО с номинальным током отключения 30, а не 10 мА. В новых домах, во вновь сооруженных производственных помещениях, а также в сантехнических помещениях с высокой влажностью для защиты человека и животных от поражения током применяют УЗО с номинальным током отключения 10 мА (ток утечки сети не будет вызывать ложных срабатываний).

    Устройство защитного отключения подключается последовательно с автоматическим выключателем, при этом номинальный ток выключателя рекомендуется выбирать на ступень ниже номинального тока УЗО. При подключении рекомендуется применять специальные кабельные наконечники для предотвращения перегрева в месте контакта.

    Для нормального функционирования УЗО необходимо ежемесячно проверять его работоспособность путем нажатия на кнопку «Тест». Отключение УЗО свидетельствует о том, что устройство исправно. В животноводческих комплексах и производственных помещениях проверка работоспособности осуществляется не реже одного раза в квартал.

    УЗО не применяется, если защищаемая сеть питает автоматические системы пожаротушения, вентиляции, аварийного освещения, а также потребителей первой группы надежности электроснабжения .

    Электроприемники первой группы (категории) – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения. Данные электроприемники обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания (вторым может быть местная дизель-электростанция), а перерыв в электроснабжении может быть допущен только на время автоматического восстановления питания. В агропромышленном производстве электроприемниками первой категории являются птицеводческие фабрики.

    УЗО допускается применять для защиты электроприемников второй и третьей категорий надежности электроснабжения. Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. Электроприемники второй категории обеспечиваются электроэнергией от двух независимых взаимно резервирующих источников питания. При нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады. В сельскохозяйственном производстве электроприемниками второй категории являются животноводческие комплексы и теплицы.

    Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта, не превышают 1 суток. Питание электроприемники получают от единственного источника. Все жилые дома, гаражи, ремонтные мастерские и т.д. относятся к электроприемникам третьей категории надежности электроснабжения.

    При выборе дифференциальных автоматических выключателей (автоматов) необходимо помнить, что их основными назначениями являются: защита от токов перегрузки; защита от токов короткого замыкания; защита от токов утечки; защита от перенапряжения; защита от возгорания.

    Дифференциальные автоматические выключатели могут применяться в широком диапазоне температур окружающего воздуха, позволяют подсоединять как медные, так и алюминиевые проводники, не требуют обслуживания при эксплуатации. Дифференциальные выключатели соответствуют современным требованиям пожарной безопасности, их корпусные детали выполнены из материалов, выдерживающих испытание на огнестойкость при температуре до 960 °С. Дифференциальные автоматы выпускаются в двух и четырехполюсном исполнении. Монтаж устройства производится на 35 мм DIN-рейку.

    Так же, как и у УЗО, работоспособность проверяется нажатием кнопки «Тест» – при ее нажатии устройство мгновенно отключается. Чтобы включить после этой проверки устройство, необходимо нажать кнопку «Возврат» и взвести рукоятку выключателя.

    Под защитным отключением понимают быстрое, за время не более 200 мс, автоматическое отсоединение от источника питания всех фаз потребителя или части электропроводки в случае если повреждена изоляция или имеет место иная аварийная ситуация, угрожающая человеку поражением электрическим током.

    Защитное автоматическое отключение питания – автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

    Защитное отключение может быть как единственной и главной мерой защиты, так и дополнительной мерой к сетям заземления и зануления применительно к электроустановкам с рабочим напряжением до 1000 вольт.

    Назначение защитного отключения – обеспечение электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека.

    Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током. Такая опасность может возникнуть при:

      замыкании фазы на корпус электрооборудования;

      при снижении сопротивления изоляции фаз относительно земли ниже определенного предела;

      появлении в сети более высокого напряжения;

      прикосновении человека к токоведущей части, находящейся под напряжением.

    В этих случаях в сети происходит изменение некоторых электрических параметров: например, могут измениться напряжение корпуса относительно земли, напряжение фаз относительно земли, напряжение нулевой последовательности и др. Любой из этих параметров, а точнее говоря – изменение его до определенного предела, при котором возникает опасность поражения человека током, может служить импульсом, вызывающим срабатывание защитно-отключающегося устройства, т. е. автоматическое отключение опасного участка сети.

    По настоящее время устройства защитного отключения обычно применялись на электроустановках четырех видов:

      Передвижные установки с изолированной нейтралью (в таких условиях в принципе возведение полноценного заземляющего устройства проблематично). Защитное отключение применяется тогда либо совместно с заземлением, либо как самостоятельная защитная мера.

      Стационарные установки с изолированной нейтралью (где необходима защита электрических машин, с которыми работают люди).

      Мобильные и стационарные установки с нейтралью любого типа, когда имеет место высокая степень угрозы поражения электрическим током, или если установка функционирует во взрывоопасных условиях.

      Стационарные установки с глухозаземленной нейтралью на некоторых потребителях большой мощности и на удаленных потребителях, где зануления недостаточно для защиты или где оно в качестве защитной меры не вполне эффективно, не дает достаточной кратности тока замыкания фазы на землю.

    Для реализации функции защитного отключения применяли специальные устройства защитного отключения. Их схемы могут отличаться, конструкции зависят от особенностей защищаемой электроустановки, от характера нагрузки, от режима заземления нейтрали и т. д.

    Прибор защитного отключения – совокупность отдельных элементов, которые реагируют на изменение какого-либо параметра электрической сети и дают сигнал на отключение автоматического выключателя. Устройство защитного отключения в зависимости от параметра, на который оно реагирует, можно отнести к тому или иному типу, в том числе к типам устройств, реагирующих на напряжение корпуса относительно земли, ток замыкания на землю, напряжение фазы относительно земли, напряжение нулевой последовательности, ток нулевой последовательности, оперативный ток и др.

    Здесь может быть применено специально установленное реле защиты, которое устроено так же, как и высокочувствительные реле напряжения с размыкающимися контактами, которые включаются в цепь питания магнитного пускателя, скажем, электродвигателя.

    Назначение защитного отключения заключается в том, чтобы одним прибором осуществлять совокупность защиты либо некоторые из следующих ее видов:

      от однофазных замыканий на землю или на элементы электрооборудования, нормально изолированные от напряжения;

      от не полных замыканий, когда снижение изоляции одной из фаз создает опасность поражения человека;

      от поражения при прикосновении человека к одной из фаз электрооборудования, если прикосновение произошло в зоне действия защиты прибора.


    В качестве примера можно привести простое устройство защитного отключения на базе реле напряжения. Обмотка реле включается между корпусом защищаемого оборудования и заземлителем.

    В условиях, когда обмотка реле имеет сопротивление сильно превосходящее таковое у вспомогательного заземлителя, вынесенного за пределы зоны растекания заземления защиты, - обмотка реле К1 окажется под напряжением корпуса относительно земли.

    Тогда в момент аварийного пробоя на корпус, напряжение это будет больше напряжения срабатывания реле и реле сработает, замкнув цепь отключения автоматического выключателя Q1 или разомкнув своим срабатыванием цепь питания обмотки магнитного пускателя Q2.

    Другой вариант простого устройства защитного отключения для электроустановок - это (реле максимального тока). Его обмотка включается в разрыв провода зануления, благодаря чему контакты аналогичным образом разомкнут цепь питания обмотки магнитного пускателя если замкнут цепь питания обмотки автоматического выключателя. Вместо обмотки реле, кстати, иногда можно использовать обмотку выключателя - расцепителя в качестве реле максимального тока.

    Когда устройство защитного отключения вводится в эксплуатацию, его обязательно проверяют: проводятся плановые полные и частичные проверки, чтобы убедиться, что устройство работает надежно, что отключения когда нужно происходят.

    Раз в три года проводят полную плановую проверку, зачастую вместе с ремонтом сопряженных цепей электроустановок. В проверку входят также испытания изоляции, проверка уставок защиты, тесты устройств защиты и общий осмотр аппаратуры и всех соединений.

    Что касается частичных проверок, то их проводят время от времени в зависимости от частных условий, однако в них входят: проверка изоляции, общий осмотр, тесты защиты в действии. Если защитное устройство работает не вполне корректно, проводят более глубокую проверку по специальному алгоритму.

    В наше время наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

    Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью . Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания.

    При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ все открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания, если применена система TN, и заземлены, если применены системы IT или ТТ. При этом характеристики защитных аппаратов и параметры защитных проводников должны быть согласованы, чтобы обеспечивалось нормированное время отключения поврежденной цепи защитно-коммутационным аппаратом в соответствии с номинальным фазным напряжением питающей сети.

    Защита осуществляется , которое, работая в дежурном режиме, постоянно контролирует условия поражения человека электрическим током.


    УЗО применяют в электроустановках до 1 кВ:

      в передвижных эл. установках с изолированной нейтралью (особенно если затруднено создание заземляющего устройства. Может применяться как в виде самостоятельной защиты, так и в сочетании с заземлением);

      в стационарных электроустановках с изолированной нейтралью для защиты ручных электрических машин в качестве единственной защиты, и в дополнение к другим;

      в условиях повышенной опасности поражения электрическим то- ком и взрывоопасности в стационарных и передвижных электроустановках с различными режимами нейтрали;

      в стационарных электроустановках с глухозаземленной нейтралью на отдельных удаленных потребителях электрической энергии и потребителя большой номинальной мощности, на которых защита занулением не достаточно эффективна.

    Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с наперед заданной величиной (уставкой). Если входной сигнал превышает уставку, то устройство срабатывает и отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

    Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки (через 0,05–0,2 с) при возникновении в ней опасности поражения человека электрическим током.

    Защитная функция устройств защитного отключения (УЗО) заключается в ограничении не тока, проходящего через человека, а времени его протекания гак, чтобы выдерживались условия "ГОСТ 12.1.038-82. Система стандартов безопасности труда. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов" (утвержденного постановлением Госстандарта СССР от 30.06.1982 № 2987).

    Согласно этому ГОСТу, например, при токе, проходящем через человека, равном 500 мА, время его воздействия не должно превышать 0,1 с, при 250 мА – 0,2 с, при 165 мА – 0,3 с, при 100 мА – 0,5 с и т.д. Область применения УЗО весьма широка (электроустановки общественных и жилых зданий, административные и производственные помещения, мастерские, автозаправочные станции (АЗС), ангары, гаражи, складские помещения и т.д.).

    Принцип действия УЗО основан на изменении каких- либо электрических величин, происходящих при замыкании фазы на корпус, снижении сопротивления изоляции сети ниже определенного предела при непосредственном прикосновении человека к токоведущим частям электроустановки и в других опасных для него случаях, на которые реагирует исполнительный орган, подающий сигнал для срабатывания защитного отключения.

    Наиболее распространенным и совершенным является УЗО-Д, реагирующее на ток утечки (дифференциальный ток). Такие УЗО состоят из трех функциональных элементов: датчика, исполнительного органа и коммутационного (отключающего) устройства. Датчик улавливает токи утечки, стекающие с фазных проводов на землю в случае прикосновения человека к частям под напряжением. Сигнал о наличии тока утечки поступает в исполнительный орган, где усиливается и преобразуется в команду на отключение коммутационного устройства. Исполнительный орган УЗО может быть электронным или электромеханическим (с магнитоэлектрической защелкой). Второй вариант более надежный.

    На рис. 24.13 приведена схема УЗО-Д (УЗО с дифференциальной защитой). Важнейшим функциональным блоком УЗО является дифференциальный трансформатор тока с кольцевым магнитопроводом 1. При отсутствии тока утечки, т.е. тока, проходящего через человека, рабочие токи в прямом (фазном) и обратном (нулевом рабочем) проводах будут равны и наводят в дифференциальном трансформаторе тока 1 с кольцевым магнитопроводом равные, но противоположно направленные потоки. При этом результирующий магнитный поток равен нулю и ток во вторичной обмотке отсутствует, УЗО не срабатывает. При появлении тока утечки (например, при прикосновении человека к корпусу электроустановки, на которой произошел пробой изоляции и появилось напряжение) ток в прямом проводе будет превышать обратный ток на величину тока утечки (ток утечки на рисунке показан точечной линией). Неравенство тока вызывает небаланс магнитных потоков, в результате чего в магнитопроводе дифференциального трансформатора 1 возникает магнитный поток, а в его вторичной обмотке – дифференциальный ток. Этот ток поступает к пусковому органу 2, и если его величина превышает пороговое (заданное) значение, то он срабатывает и воздействует на исполнительный механизм 3 , который за счет своего пружинного привода, спускового механизма и группы контактов размыкает электрическую сеть. В результате защищаемая УЗО электроустановка обесточивается. Для периодического контроля исправности УЗО нажимают кнопку Т (тест), создается искусственный дифференциальный (разностный) ток. Срабатывание УЗО означает, что оно в целом исправно.

    Следует заметить, что из всех известных электрозащитных средств УЗО-Д – единственное, обеспечивающее защиту человека от поражения электрическим током при прямом прикосновении к токоведущим частям. Кроме того, оно осуществляет защиту электроустановок от возгораний, первопричиной которых являются утечки тока, вызванные повреждением изоляции, неисправной электропроводкой. Поэтому УЗО называют еще и "противопожарным сторожем".

    Устройство защитного отключения характеризуется номинальным рабочим током подключаемой нагрузки (16, 25, 40 А), номинальным дифференциальным отключающим током (10, 30 или 100 мА), быстродействием (20–30 мс) и другими параметрами.

    Согласно п. 1.7.80 ПУЭ не допускает применение УЗО, реагирующих на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). Но в случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный РЕ -проводник электроприемника должен быть подключен к PEN -проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата (УЗО).

    Рис. 24.13.

    Следует заметить, что в системах TN-C (без отдельного защитного проводника), в незаземленных электроприемниках, изолированных от земли (например, холодильник или стиральная машина на изолирующем основании), УЗО, включенное в цепь питания этого электроприемника, не сработает, поскольку не будет цепи протекания тока утечки, т.е. не будет разностного (дифференциального) тока. При этом на корпусе электроустановки образуется опасный потенциал относительно земли.

    Но если человек при этом коснется корпуса электроприемника и протекающий через него ток будет больше отключающего дифференциального тока УЗО (тока уставки), то

    УЗО сработает и отключит электроприемник от сети. Жизнь человека будет спасена. О тсюда следует, что применение УЗО в сетях TN-C все же оправданно.

    Похожие публикации