Энциклопедия пожаробезопасности

Большие настенные часы своими руками ардуино. Светодиодные часы своими руками. Готовые часы на Arduino

На фото прототип, собранный мной для отладки программы, которая будет управлять всем этим хозяйством. Вторая arduino nano в верхнем правом углу макетки не относится к проекту и торчит там просто так, внимание на нее можно не обращать.

Немного о принципе работы: ардуино берет данные у таймера DS323, перерабатывает их, определяет уровень освещенности с помощью фоторезистора, затем все посылает на MAX7219, а она в свою очередь зажигает нужные сегменты с нужной яркостью. Так же с помощью трех кнопок можно выставить год, месяц, день, и время по желанию. На фото индикаторы отображают время и температуру, которая взята с цифрового термодатчика

Основная сложность в моем случае - это то, что 2.7 дюймовые индикаторы с общим анодом, и их надо было во первых как то подружить с max7219, которая заточена под индикаторы с общим катодом, а во вторых решить проблему с их питанием, так как им нужно 7,2 вольта для свечения, чего одна max7219 обеспечить не может. Попросив помощи на одном форуме я получил таки ответ.

Решение на скриншоте:


К выходам сегментов из max7219 цепляется микросхемка , которая инвертирует сигнал, а к каждому выводу, который должен подключаться к общему катоду дисплея цепляется схемка из трех транзисторов, которые так же инвертируют его сигнал и повышают напряжение. Таким образом мы получаем возможность подключить к max7219 дисплеи с общим анодом и напряжением питания более 5 вольт

Для теста подключил один индикатор, все работает, ничего не дымит

Начинаем собирать.

Схему решил разделить на 2 части из-за огромного количества перемычек в разведенном моими кривыми лапками варианте, где все было на одной плате. Часы будут состоять из блока дисплея и блока питания и управления. Последний было решено собрать первым. Эстетов и бывалых радиолюбителей прошу не падать в обморок из-за жестокого обращения с деталями. Покупать принтер ради ЛУТа нет никакого желания, поэтому делаю по старинке - тренируюсь на бумажке, сверлю отверстия по шаблону, рисую маркером дорожки, затем травлю.

Принцип крепления индикаторов оставил тот же, как и на .

Размечаем положение индикаторов и компонентов, с помощью шаблона из оргстекла, сделанного для удобства.

Процесс разметки







Затем с помощью шаблона сверлим отверстия в нужных местах и примеряем все компоненты. Все встало безупречно.

Рисуем дорожки и травим.




купание в хлорном железе

Готово!
плата управления:


плата индикации:


Плата управления получилась отлично, на плате индикации не критично сожрало дорожку, это поправимо, настало время паять. В этот раз я лишился SMD-девственности, и включил 0805 компоненты в схему. Худо-бедно первые резисторы и конденсаторы были припаяны на места. Думаю дальше набью руку, будет легче.
Для пайки использовал флюс, который купил . Паять с ним одно удовольствие, спиртоканифоль использую теперь только для лужения.

Вот готовые платы. На плате управления имеется посадочное место для ардуино нано, часов, а так же выходы для подключения к плате дисплея и датчики (фоторезистор для автояркости и цифровой термометр ds18s20) и блок питания на с регулировкой выходного напряжения (для больших семисегментников) и для питания часов и ардуино, на плате индикации находятся посадочные гнезда для дисплеев, панельки для max2719 и uln2003a, решение для питания четырех больших семисегментников и куча перемычек.




плата управления сзади

Плата индикации сзади:

Ужасный монтаж смд:


Запуск

После припаивания всех шлейфов, кнопок и датчиков пришло время все это включить. Первый запуск выявил несколько проблем. Не светился последний большой индикатор, а остальные светились тускло. С первой проблемой расправился пропаиванием ножки смд-транзистора, со второй - регулировкой напряжения, выдаваемого lm317.
ОНО ЖИВОЕ!

Часы со светодиодной подсветкой и пульсирующей минутной стрелкой на микроконтроллере Arduino
Эти уникальные часы со светодиодной подсветкой и пульсирующей минутной стрелкой удалось изготовить благодаря использованию микросхемы ШИМ-контроллера TLC5940. Его главной задачей является расширить количество контактов с ШИМ-модуляцией. Еще одной особенностью данных часов является переделанный аналоговый вольтметр в прибор измеряющий минуты. Для этого на стандартном принтере была распечатана новая шкала и наклеена поверх старой. Как таковая, 5-я минута не отсчитывается, просто в течение пятой минуты счетчик времени показывает стрелку, упершуюся в конец шкалы (зашкаливает). Основное управление реализовано на микроконтроллере Arduino Uno.

Для того чтобы подсветка часов не светилась слишком ярко в темной комнате, была реализована схема автоматической подстройки яркости в зависимости от освещенности (использовался фоторезистор).

Шаг 1: Необходимые компоненты



Вот что потребуется:

  • Модуль аналогового вольтметра на 5V DC;
  • Микроконтроллер Arduino UNO или другой подходящий Arduino;
  • Монтажная плата Arduino (прото плата);
  • Модуль часов реального времени DS1307 (RTC);
  • Модуль с ШИМ-контроллером TLC5940;
  • Лепестковые светодиоды подсветки – 12 шт.;
  • Компоненты для сборки схемы автоматического регулирования яркости (LDR).

Также, для изготовления некоторых других компонентов проекта желательно иметь доступ к 3D-принтеру и станку лазерной резки. Предполагается, что этот доступ у вас есть, поэтому в инструкции на соответствующих этапах будут прилагаться чертежи для изготовления.

Шаг 2: Циферблат




Циферблат состоит из трех деталей (слоев) вырезанных на станке лазерной резки из 3 мм листа МДФ, которые скрепляются между собой с помощью болтов. Пластина без прорезей (внизу справа на картинке) помещается под другой пластиной для позиционирования светодиодов (внизу слева). Затем, отдельные светодиоды помещаются в соответствующие пазы, и сверху одевается лицевая панель (сверху на рисунке). По краю циферблата просверлены четыре отверстия, через которые все три детали скрепляются вместе с помощью болтов.

  • Для проверки работоспособности светодиодов на этом этапе, использовалась плоская батарейка CR2032;
  • Для фиксации светодиодов использовались небольшие полоски липкой ленты, которые приклеивались с задней стороны светодиодов;
  • Все ножки светодиодов были предварительно согнуты соответствующим образом;
  • Отверстия по краям были просверлены заново, через которые и выполнялось скрепление болтами. Оказалось, что это намного удобнее.

Технический чертеж деталей для циферблата доступен по :

Шаг 3: Разработка схемы



На этом этапе была разработана электрическая схема. Для этого использовались различные учебники и руководства. Не будем сильно углубляться в этот процесс, в двух файлах ниже представлена готовая электрическая схема, которая была использована в этом проекте.

Шаг 4: Подключение монтажной платы Arduino





  1. Первым делом надо распаять все игольчатые контакты на монтажных и секционных платах;
  2. Далее, ввиду того, что питание 5V и GND используют очень много плат и периферийных устройств, для надежности, было припаяно по два провода на 5V и GND на монтажной плате;
  3. Далее был установлен ШИМ-контроллер TLC5940 рядом с используемыми контактами;
  4. После выполняется подключение контроллера TLC5940, согласно схеме подключения;
  5. Для того чтобы была возможность использовать батарею, был установлен модуль RTC на краю монтажной платы. Если припаять его посередине платы, то не будет видно обозначение контактов;
  6. Выполнено подключение модуля RTC, согласно схеме подключения;
  7. Собрана схема автоматического контроля яркости (LDR), ознакомиться можно по ссылке
  8. Выполнено подключение проводов для вольтметра, путем подключения проводов к выводу 6 и GND.
  9. В конце были припаяны 13 проводов для светодиодов (На практике оказалось, что это было лучше сделать до того, как приступать к шагу 3).

Шаг 5: Программный код

Программный код, приложенный ниже, был собран из различных кусков для компонентов часов, найденных в интернете. Он был полностью отлажен и в настоящее время полностью работоспособен, к тому же были добавлены довольно подробные комментарии. Но перед загрузкой в микроконтроллер учтите следующие пункты:

  • Перед прошивкой Arduino, нужно раскомментировать строку, которая устанавливает время:
    rtc.adjust(DateTime(__DATE__, __TIME__))
    После прошивки контроллера с этой строкой (время задано), нужно опять ее закомментировать и прошить контроллер заново. Это позволяет модулю RTC использовать батарею, для запоминания времени, если пропадет основное питание.
  • Каждый раз, когда вы используете "Tlc.set ()", вам нужно использовать "Tlc.update"

Шаг 6: Внешнее кольцо

Внешнее кольцо для часов было напечатано на 3D-принтере Replicator Z18. Оно прикрепляется к часам с помощью винтов на лицевой стороне часов. Ниже прилагается файл с 3D-моделью кольца для печати на 3D-принтере.

Шаг 7: Сборка часов


Микроконтроллер Arduino со всей остальной электроникой был закреплен на задней стороне часов с помощью саморезов и гаек в качестве распорок. Затем подключены все светодиоды, аналоговый вольтметр и LDR к проводам, которые ранее были подпаяны к монтажной плате. Все светодиоды соединены между собой одной ножкой и подключены к контакту VCC на контроллере TLC5940 (по кругу просто припаян кусок проволоки).

Пока все это не очень хорошо изолировано от коротких замыканий, но работа над этим будет продолжена в следующих версиях.

Решил сделать самодельные электронные часы на светодиодной ленте на ардуино с модулем реального времени, фото изготовления и подробное описание прилагается.

Использованы материалы:

  • - Диодная лента на микросхемах ws2811 (RGB, питание 12в) 5 метров - 700 рублей;
  • - ардуино нано - 200 рублей;
  • - датчик освещенности - 28 рублей;
  • - модуль реального времени RTC DS1307 AT24C32 - 37 рублей;
  • - преобразователь питания LM2596 - 41 рубль;
  • - блок питания 12 в 1А;
  • - датчик температуры DALLAS DS18B20 - 48 рублей;
  • - кусок макетной платы, две таковые кнопки, провода.
  • - картон жесткий.
  • - ватман (2 шт).
  • - двусторонний скотч (3М).
  • - обычный скотч.
  • - листы вспененного полиэтилена (взял из защитных упаковок оборудования).

1. Установка шрифта в MS Officce, и печать символа 8 на весь размер листа А4. Я сделал это в Visio. Внутренние полосы - границы для разметки под куски диодной ленты. Внешние границы - контуры цифр.

2. Нанесение границ кусков диодной ленты на картон

3. По следующему шаблону делаем разметку на вспененном полиэтилене, толщина 15 мм, и далее по разметке вырезаем.

Для резки использовал самодельный станок из трех деревяшек, листа ДСП и натянутой вертикально нихромовой проволоки. Запитал регулируемым блоком питания.

4. По размеченным на картоне границам приклеиваем куски диодной ленты и соединяем пайкой по цепочке.

Основную схему вынес в отдельную коробочку, так как такой корпус хлипковат.

В итоге к часам подходит кабель, в котором:

  • +12В - на питание диодной ленты;
  • +5В - на питание модуля освещенности;
  • 0 - общий провод (минус);
  • выход данных с ардуино на диодную ленту;
  • выход сигнала с датчика освещенности на ардуино;

Схема подключения ардуино.

Преобразователь питания, ардуино нано и модуль часов реального времени.

Плата коммутации с кнопками коррекции.

Алгоритм работы следующий:
Часы показывают время, дату и температуру в помещении: первые 15 секунд - время, затем 3 секунды - дату, еще 3 секунды - температуру, затем снова время. С 45-й секунды вновь дата 3 секунды, температура 3 секунды и снова время.
Когда в помещении светло - яркость отображения высокая, когда темно - снижается до минимального.

Итак, после небольшого технического перерыва, продолжаем наше знакомство с семейством МК ARDUINO. В этом уроке мы попробуем сделать часы работающие от внутреннего генератора МК (с внешним генератором будет один из следующих уроков) и выводящего информацию на ЖК индикатор типа 1602 (что означает 16 символов в 2 строки, есть еще тип 1604- 16 символов в 4 строки, вы уже поняли что первые 2 цифры указывают на количество символов индикатора а вторые- на количество строк). Не будем затягивать вступление, переходим к работе.

Для проекта нам понадобится:

  1. Arduino Uno
  2. ЖК индикатор 1602
  3. Макетная плата
  4. Провода
  5. Подстроечный резистор на 10 кОм

Для особо ленивых советую опустится в низ страницы и скачать готовый скетч, для тех кто хочет научится делать скетчи самостоятельно опишу более подробно все шаги проекта. Для правильной и быстрой работы над проектом необходим алгоритм работы. Практически любой проект лучше накидать на бумаге и потом следовать по алгоритму шаг за шагом. Мы поступим абсолютно так же. Итак составляем алгоритм. У нас есть несколько условий, выпишем их в порядке возрастания:

  1. Секунды, работают в пределе от 0 до 59 по циклу с секундным интервалом (это понятно).
  2. Минуты, работают в пределе от 0 до 59 по циклу, переключение происходит при достижении значения секундами значения 0.
  3. Часы, работают в пределе от 0 до 24 (здесь вы можете выбрать отображение как в зарубежном стиле от 0 до 12 со значениями AM и PM, это как вам больше нравится) по циклу, переключение происходит по достижении значения минутами 0.
  4. Вывести всю необходимую информацию на дисплей (например вы можете решить не выводить секунды а сделать просто мигающую точку между часами и минутами)

Собираем наши часы по вот такой схеме:

Подключение ЖК индикатора 1602 к ARDUINO

Советы по сборке. Индикатор 1602 обычно приходит из Китая в «голом» виде, т.е. никаких выводов не подпаяно, советую для этих целей использовать двухрядные компьютерные гнезда от материнских плат, один вывод гнезда вставляется в 1602, второй вывод оказывается за краем платы, запаиваете оба вывода на один контакт- так повышается механическая и электрическая прочность. На данной схеме не указана схема подключения подсветки, это следующие 2 вывода справа от D7. Вы можете их подключить к питанию 3,3В на ARDUINO, можете сделать плавное загорание/затухание если подключите плюсовой вывод (он подписан как А- анод) к выходу ARDUINO и будете управлять питание через этот вывод, это уже второстепенная задача, пока просто подключите вывод А на 1602 к 3,3V на ARDUINO, а вывод К 1602 к GND ARDUINO.

Теперь приступаем собственно к разработке часов. Запускаем оболочку ARDUINO на компьютере. Попробуем поиграться с 1602 для проверки правильности соединений схемы. Заходим Файл-Примеры-LiqidCrystal и выбираем любой из файлов. Заливаем скетч в ARDUINO и наблюдаем что происходит. Если вместо символов вы видите черные квадратики- подкрутите подстроечный резистор, это регулятор контрастности (так же поступите если вообще ничего не отображается). Информация должна отображаться корректно и никаких «кракозябров» быть просто не должно. Если они появились- проверьте схему соединений, где то собрали неправильно. Можете сразу посмотреть в скетчах как обращаться к ЖК- индикатору и поразится простоте работы с ним! Если все у вас заработало правильно переходим непосредственно к программированию.

Определимся что таймер у нас будет работать без оператора delay как написано . Поэтому вводим такой код:




#include

// Variables will change:


void setup () {
lcd.begin(16, 2);

void loop ()
{

if (currentMillis — previousMillis >= interval) {


Данный код уже будет работать но ничего отображать не будет. К переменной s каждую секунду будет добавляться 1. Т.е. мы уже получили точный интервал в 1 секунду! Теперь, следуя алгоритму, нам необходим предел переменной между 0 и 59. Делаем.

if (s>
{


}

Добавляем этот код к программе. По описанию все понятно- если значение s больше 59 то присваиваем ей 0 и прибавляем 1 минуту в переменной m. На данный момент имеем полностью работающий секундный таймер и бесконечный (до 32768- максимальное значение типа integer) счетчик минут. Теперь нужно таким же образом рассчитать минуты. Пишем следующее:

if (m>59) // если значения m больше 59
{


}

Добавляем строки к программе. Она уже должна выглядеть так:

int h,m,s; // переменные для часов, минут, секунд
boolean z; // переменная для отображения точки
// подключаем библиотеку индикатора
#include

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// Variables will change:
int ledState = LOW; // ledState used to set the LED
unsigned long previousMillis = 0; // will store last time LED was updated
const long interval = 1000; // interval at which to blink (milliseconds)

void setup () {
lcd.begin(16, 2);

void loop ()
{

Unsigned long currentMillis = millis();

if (currentMillis — previousMillis >= interval) {
// save the last time you blinked the LED
previousMillis = currentMillis;
s++; // добавляем единицу, равносильно записи s=s+1;

// секция подсчета секунд

if (s>59) // если значение s больше 59
{
s=0; // присваиваем значение 0 переменной s
m++; // добавляем 1 к переменной m отвечающей за минуты
}

// секция подсчета минут

if (m>
{
m=0; // присваиваем значение 0 переменной m
h++; // добавляем 1 к переменной h отвечающей за часы
}

В принципе все понятно. Осталось сделать обработку часов. Делаем. Дописываем после секции подсчета минут:

if (h>
{

}

Все, часы готовы! Заливаем скетч и часы будут ходить как надо! Хочу обратить ваше внимание что считать они будут в 24- часовом формате. Попробуйте сами сделать 12- часовой формат. Осталось вывести информацию на ЖК- индикатор. Существует 2 пути по написания кода на вывод информации.

  1. Посчитать одни данные и сразу вывести
  2. Посчитать все данные и вывести все сразу.

Тут уж вы сами определитесь по какому пути вы пойдете. Если пойдете по первому пути то писать отображение информации надо сразу в секциях подсчета, если по второму- пишется блок после всех вычислений. Давайте пойдем по второму пути т.к. он более предпочтителен и более логичен (хотя, если честно сказать, мой тестовый скетч написан по первому пути). Итак, для передачи данных на индикатор 1602 применяются всего 2 команды:

lcd.setCursor (3, 0); // устанавливает курсор на 3 символ 0 строки (счет строк и символов идет от 0)
lcd.print (0); // печатаем (print- печать, учите аглицкий) 0

Есть еще команда lcd.clear ; означающая очистку экрана но здесь мы ее можем не использовать.

Начинаем выводить информацию. Начнем с секунд (можете начать с любого значения, делайте как вам будет удобно). Устанавливаем курсор на 0 строку в 6 позицию и выводим значение секунд. Почему в 6 позицию спросите вы? Давайте представим следующее: формат отображения часов- 2 символа(часы), разделитель (допустим:), 2 символа (минуты), разделитель (:) и, наконец, секунды. Считаем с нулевой позиции: 0+2+1+2+1=6. Так как счет начинается с 0 то вычитаем из данных единицу (ноль тоже является числом), выходит 6-1=5. Столько занимает отображение часов и минут с разделителями, следующая позиция- секундная и она равна 5+1=6. Немного запутано но напишу следующее hh:mm:ss и посчитаем координаты сначала начиная от 0. Вот так и высчитываются координаты на индикаторах семейства 16хх. При данных условиях часы будут отображаться в верхнем левом углу, вы можете сменить расположение как вам удобно, можете даже ввести переменную и подбирая её подбирать нужное вам положение индикации. Ладно, пишем такие строки:

lcd.setCursor (6, 0); // устанавливает курсор на 6 символ 0 строки (счет строк идет от 0)

Программа будет выглядеть так:

int h,m,s; // переменные для часов, минут, секунд
boolean z; // переменная для отображения точки
// подключаем библиотеку индикатора
#include

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// Variables will change:
int ledState = LOW; // ledState used to set the LED
unsigned long previousMillis = 0; // will store last time LED was updated
const long interval = 1000; // interval at which to blink (milliseconds)

void setup () {
lcd.begin(16, 2);

void loop ()
{

Unsigned long currentMillis = millis();

if (currentMillis — previousMillis >= interval) {
// save the last time you blinked the LED
previousMillis = currentMillis;
s++; // добавляем единицу, равносильно записи s=s+1;

// секция подсчета секунд

if (s>59) // если значение s больше 59
{
s=0; // присваиваем значение 0 переменной s
m++; // добавляем 1 к переменной m отвечающей за минуты
}

// секция подсчета минут

if (m>59) // если значение m больше 59
{
m=0; // присваиваем значение 0 переменной m
h++; // добавляем 1 к переменной h отвечающей за часы
}

// секция подсчета часов

if (h>23) // если значение h больше 23
{
h=0; // присваиваем значение 0 переменной h
}

// секция вывода информации

lcd.setCursor (6, 0);
lcd.print (s); // печатаем данные из переменной s

Заливаем скетч и…. секунды начали отображаться!!! Только обратите внимание, при счете от 0 до 59- все нормально, но как только начинается следующая минута- начинают меняться десятки секунд вместо единиц секунд, т.е. время отображается некорректно. Давайте разберемся с этим. Мы указали программе жестко позицию 6,0 , и она выводит данные точно в этой позиции не затирая то что находится после этой позиции. Выхода 2. Применить lcd.clear или описать отображение корректно, тем более при первом варианте будет довольно трудно привыкнуть к прыгающим разрядам секунд (далее минут и часов). Напишем обработчик корректного отображения. Какие условия будут в этой обработке? Давайте подумаем. Если секунд меньше 10 то пишем их значение в 7 позиции (6+1=7) и в 6 позиции пишем 0, если больше или равно 10- пишем в 6 позиции. Все довольно просто. Условие будет иметь следующий вид:

if (s<10) //если секунд меньше 10
{

lcd.print (0); //печатаем 0


}
else
{


}

Вставляем данный код вместо

lcd.setCursor (6, 0); // устанавливает курсор на 7 символ 0 строки (счет строк идет от 0)
lcd.print (s); // печатаем данные из переменной s

и радуемся уже полученному результату! Все отображается корректно! Кроме того перед секундами появился разделитель «:»! Таким же образом пишем обработчик для минут и часов с соответствующими координатами курсора. Это может выглядеть так для минут:

If (m<10)
{
lcd.setCursor (3, 0);
lcd.print (0);
lcd.setCursor (4, 0);
lcd.print (m);
}
else
{
lcd.setCursor (3, 0);
lcd.print (m);
}

и так для часов:

If (h<10)
{
lcd.setCursor (0, 0);
lcd.print (0);
lcd.setCursor (1, 0);
lcd.print (h);
}
else
{
lcd.setCursor (0, 0);
lcd.print (h);
}

Наша программа примет следующий вид:

int h,m,s; // переменные для часов, минут, секунд
boolean z; // переменная для отображения точки
// подключаем библиотеку индикатора
#include

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

// Variables will change:
int ledState = LOW; // ledState used to set the LED
unsigned long previousMillis = 0; // will store last time LED was updated
const long interval = 1000; // interval at which to blink (milliseconds)

void setup () {
lcd.begin(16, 2);

void loop ()
{

Unsigned long currentMillis = millis();

if (currentMillis — previousMillis >= interval) {
// save the last time you blinked the LED
previousMillis = currentMillis;
s++; // добавляем единицу, равносильно записи s=s+1;

// секция подсчета секунд

if (s>59) // если значение s больше 59
{
s=0; // присваиваем значение 0 переменной s
m++; // добавляем 1 к переменной m отвечающей за минуты
}

// секция подсчета минут

if (m>59) // если значение m больше 59
{
m=0; // присваиваем значение 0 переменной m
h++; // добавляем 1 к переменной h отвечающей за часы
}

// секция подсчета часов

if (h>23) // если значение h больше 23
{
h=0; // присваиваем значение 0 переменной h
}

// секция вывода информации

// вывод секунд

if (s<10) //если секунд меньше 10
{
lcd.setCursor (6, 0); // курсор в 6 позицию 0 строки
lcd.print (0); //печатаем 0
lcd.setCursor (7, 0); //курсор в 7 позицию 0 строки
lcd.print (s); //печатаем значение переменной s
}
else
{
lcd.setCursor (6, 0); //иначе курсор в 6 позицию 0 строки
lcd.print (s); // печатаем значение переменной s
}
lcd.setCursor (5, 0); // курсор в 5 позицию 0 строки
lcd.print (‘:’); // печатаем разделитель между секундами и минутами

// вывод минут

if (m<10)
{
lcd.setCursor (3, 0);
lcd.print (0);
lcd.setCursor (4, 0);
lcd.print (m);
}
else
{
lcd.setCursor (3, 0);
lcd.print (m);
}
lcd.setCursor (2, 0); // курсор в 2 позицию 0 строки
lcd.print (‘:’); // печатаем разделитель между минутами и часами

// вывод часов

if (h<10)
{
lcd.setCursor (0, 0);
lcd.print (0);
lcd.setCursor (1, 0);
lcd.print (h);
}
else
{
lcd.setCursor (0, 0);
lcd.print (h);
}

Весь код уместился в каких то 3 с небольшим килоБайта! Из них бОльшую часть съела библиотека для ЖК индикатора. Сразу хочу заметить что этот код- только тело программы, нужно еще дописать функцию установки времени. Кроме того можно добавить фоторезистор и яркостью подсветки дисплея. Можно дописать функцию ввода будильника и работать со звуком. Так же можно выводить температуру в помещении, дату и т.д… Вобщем данный индикатор с соответствующими датчиками может превратить данные часы в уникальное устройство! Единственный минус данного аппарата- при отключении электричества настраивать часы придется заново. Поэтому в ближайшее время опишу работу с модулем RTC, при работе с ним, даже если электричество отключится, при подаче напряжения часы будут работать как будто ничего и не произошло. Для более дешевой версии часов можно использовать arduino pro mini, это такой же контроллер только не имеет USB разъема но стоит в несколько раз дешевле и имеет очень маленькие размеры. Можно также применить и arduino nano, тот же про но с USB разъемом. До следующего урока. Всем спасибо за внимание.

PS*. Кстати процедуру отображения значений можно написать в виде отдельной функции и передавать необходимые значения в нее. Попробуйте так сделать и сравните объем занимаемой памяти. Всегда стремитесь к наименьшему объему.


Такие часы очень оригинально будут смотреться на стене, они имеют в наличии светодиодные стрелки имитирующие стрелочные часы, LED часы по центру и красивую фоновую RGB-подсветку. Выполнение такой самоделки сложно назвать простым, но потраченное время и силы не будут упущены зря.

Материалы для корпуса:
- Чёрные акриловые пластины 300х300х3 мм 3шт
- Прозрачная акриловая подсветка 300х300х3 мм 1шт
- Средство полировки акриловых пластин
- Клей
- Распорные втулки 15 мм с резьбой м3 20 шт
- Винты м3 с шайбами 20 шт
- Картинная рамка 300х300 мм 1шт

Электронные материалы:
- Сдвиговый регистр CD74HC595 8шт
- LED драйвер TLC5940 1шт
- Часы реального времени (RTC) DS1307 1шт
- Линейный регулятор LM317 1шт
- Биполярный транзистор BD139 8шт
- Электролитический конденсатор 1 мкФ 2шт
- Конденсатор 0.1 мкФ 1шт
- Резисторы 120 Ом 60шт
- Резисторы 10 кОм 9шт
- Резистор 2 кОм 1шт
- Резисторы 1 кОм 9шт
- Резистор 330 Ом 1шт
- Светодиоды 480шт
- 4-х разрядный светодиодный цифровой индикатор (с общими анодами) 1шт
- Светодиодная RGB-лента (с общим анодом) 1шт (длинной под окружность циферблата)
- Модуль Arduino Mega ADK (Rev3) 1шт
- Батарея питания 12 В 1шт

Шаг первый. Изготовление корпуса.
Для начала в акриловые пластины разрезают и просверливают по чертежу. Далее, происходит склеивание корпусной передней чёрной пластины с соединительной частью (прозрачной), и с пластиной под светодиоды.

Шаг второй. Окончание работы над корпусом.
Для лучшей устойчивости автор приклеивает одну акриловую пластину к задней части картинной рамки, стекло с рамки при этом предварительно вынимается и больше не понадобится.
Четыре втулки 15 мм прикручивают к пластине как на фото. Теперь, появилась возможность приклеить втулки от рамки к передней пластине. Потом эти приклеенные втулки выкручиваются для использования в будущем.

Шаг третий. Вставка светодиодов.
В первую очередь светодиоды вставляют в первый ряд отверстий (на 1 ряд ушло 60 светодиодов). Катоды спаиваются между собой вокруг пластины с помощью медного провода 0,8мм, а аноды отгибаются в сторону. Эта процедура повторяется для 7 остальных рядов. Теперь когда аноды расположились в один столбец, они тоже спаиваются между собой. Таким образом, получилась матрица из 8 рядов и 60 столбцов.

Шаг четвёртый. Припаивание кабелей к матрице.
Для этого шага используются 8-проводные кабельные разъёмы один из них припаяли к катодам на матрице. Восемь таких разъёмов были припаяны к 60 столбцам анодов. Поскольку автор использовал 8-проводные разъёмы, он получил кабель с 64 проводами, это значит что 4 осталось, они были замотаны изолентой. Также автор рекомендует использовать семь 8-проводных и взять один 4-проводной разъем для того, чтобы получилось ровно 60.

Шаг пятый. Прикрепление индикатора.
В акриловой пластине в виде диска делают отверстие и приклеивают индикатор с заранее припаянными проводами для удобства.

Шаг шестой. Плата.
Из куска макетной платы большего размера чем требуется, отрезают 2 куска, так чтоб они входили в картинную рамку. Далее, самостоятельно изготавливают несколько коннекторов, как видно на фото ниже.

Шаг седьмой. Сборка часов.
Дальше происходит установка всех деталей в корпус согласно схеме, прикреплённой ниже. В часы автор установил заряжаемый аккумулятор 1000мА/ч чтобы они могли работать без внешнего кабеля. На Arduino устанавливают программный код, прикреплённый внизу статьи. Так, устанавливаются библиотеки для модуля часов реального времени и LED драйвер TLC5940, которые также прикреплены под статьёй. Схема с хорошим разрешением: (скачиваний: 302)

Похожие публикации