Энциклопедия пожаробезопасности

Воздух в операционных блоках и чистых помещениях. Тион. Проектирование медицинских учреждений Оборудование для определения чистоты воздуха в операционной

«Чистые» помещения предназначены для больных, нуждающихся в изоляции от неблагоприятной окружающей среды, при снижении иммунитета, при лечении обширных раневых поверхностей, при проведении медицинских манипуляций, для которых требуется соблюдение особенных показателей чистоты воздуха, т.е. счетная концентрация аэрозольных частиц и количество микроорганизмов в воздухе поддерживается в определенных пределах.

Такими помещениями могут быть оснащены: операционные, пред- и послеоперационные палаты, ожоговые отделения, палаты интенсивной терапии, боксы для инфекционных больных, микробиологические, вирусологические или иные медицинские лаборатории, помещения фармацевтических производств и многие другие помещения медицинского назначения.

В настоящее время технология чистоты в медицинских учреждениях стала неотъемлемой частью цивилизованного здравоохранения и является залогом успеха всего лечебного процесса.

Технология чистых помещений

Качество продукции и применяемые нормативы для микроэлектроники, оптики и фармацевтических производств зависят от класса чистоты преобладающего в каждой отрасли.

Часто используются подвесные полы. Пустое пространство под полом может использоваться для обеспечения циркуляции воздуха и размещения труб и кабеля в зависимости от конструкции помещения.

Оптимальные производственные условия могут быть созданы только с применением высокоточной технологии. Эта технология включает в себя эффективное кондиционирование воздуха и его фильтрацию.

Тем не менее, одним из основных факторов, определяющих эффективность чистого помещения, является качество потолка, стен, пола, из которых построено помещение. В зависимости от класса чистоты применяется или чистый потолок с применением фильтров для ламинарного потока (класс чистоты = =10000).

Стены должны отделять область чистых помещений от других производственных и офисных помещений (внешние прилегающие стены), и в тоже время разделять помещения с разным классом чистоты. Различные требования к чистоте воздуха включают в себя различные рабочие параметры.

Стены внутренних перегородок должны быть легко адаптируемы к изменению производственных требований (циклы в производстве полупроводников меняются каждые 3-4 года) в условиях чистых помещений.

С самого начала технология чистых помещений развивалась в США вместе с компьютерной технологией. С тех пор чистые помещения подразделяются на классы чистоты. Таким образом, используется английская терминология в технологии чистых помещений.

Классы чистых помещений.

Класс Размер частиц (измеряется в 28л воздуха микрометром)
0.1 0.2 0.3 0.5 5.0
1 35 7.5 3 1 НП
10 350 75 30 10 НП
100 НП 750 300 100 НП
1000 НП НП НП 1000 7
10000 НП НП НП 10000 70
100000 НП НП НП 100000 700

(НП -не применяется)
Согласно Федеральному стандарту США 209 d

Согласно VDI 2083

Федеральный стандарт США является сегодня основой для определения технических требований. Руководство VDI используется реже.

В течение последних десяти лет за рубежом и в нашей стране возросло количество гнойно-воспалительных заболеваний вследствие инфекций, которые приобрели название «внутрибольничные» (ВБИ) – так определила Всемирная организация здравоохранения (ВОЗ). По анализу заболеваний, вызванных ВБИ, можно сказать, что их продолжительность и частота напрямую зависят от состояния воздушной среды больничных помещений. Для того, чтобы обеспечить требуемые параметры микроклимата в операционных залах (и производственных чистых помещениях), используются воздухораспределители однонаправленного потока. Как показали результаты контроля окружающей среды и анализа движения воздушных потоков, работа таких распределителей может обеспечить требуемые параметры микроклимата, однако отрицательно влияет на бактериологический состав воздуха. Для достижения необходимой степени защиты критической зоны нужно чтобы поток воздуха, который выходит из устройства, не терял форму границ и сохранял прямолинейность движения, другими словами, поток воздуха не должен сужаться или расширяться над выбранной для защиты зоной, в которой находится хирургический стол.

В структуре здания больницы помещения операционных требуют наибольшей ответственности из-за важности хирургического процесса и обеспечения необходимых условий микроклимата для того, чтобы этот процесс был удачно проведен и завершен. Основным источником выделения различных бактериальных частиц является непосредственно медицинский персонал, который генерирует частицы и выделяет микроорганизмы во время движения по помещению. Интенсивность появления новых частиц в воздушном пространстве помещения зависит от температуры, степени подвижности людей, скорости движения воздуха. ВБИ, как правило, перемещается по помещению операционного зала с воздушными потоками, и никогда не падает вероятность ее проникновения в уязвимую полость раны оперируемого больного. Как показали наблюдения, неправильная организация работы систем вентиляции обычно приводит к настолько быстрому накоплению инфекции в помещении, что ее уровень может превысить допустимую норму .

Уже несколько десятков лет зарубежные специалисты пытаются разработать системные решения по обеспечению необходимых условий воздушной среды операционных палат. Поток воздуха, который поступает в помещение, должен не только поддерживать параметры микроклимата, ассимилировать вредные факторы (тепло, запах, влажность, вредные вещества), но и поддерживать защиту выбранных зон от возможности попадания в них инфекции, а значит - обеспечивать требуемую чистоту воздуха операционных. Зона, в которой проводят инвазивные операции (проникновение в организм человека), называется «критической» или операционной зоной . Стандартом такая зона определяется как «операционная санитарно-защитная зона», под этим понятием подразумевается пространство, в котором размещены операционный стол, аппаратура, столики для инструментов, и находится медицинский персонал. В есть такое понятие, как «технологическое ядро». Оно относится к зоне, в которой ведутся производственные процессы в условиях стерильности, эту зону можно по смыслу соотнести с операционной.

Для того, чтобы предотвратить проникновение бактериального загрязнения в самые критические области, широкое применение получили способы экранирования, в основе которого лежит использование вытеснения воздушного потока. С этой целью были разработаны воздухораспределители ламинарного потока воздуха, имеющие различную конструкцию. Позже «ламинарный» стал называться «однонаправленным» потоком. Сегодня можно встретить самые разные варианты названия воздухораспределяющих устройств для чистоты помещений, например, «ламинарный потолок», «ламинар», «операционная система чистого воздуха», «операционный потолок» и прочие, но от этого их суть не меняется. Распределитель воздуха встраивается в конструкцию потолка над защищаемой зоной помещения. Он может быть различных размеров, это зависит от расхода воздуха. Оптимальная площадь такого потолка не должна быть менее 9 м 2 , для того чтобы он мог полностью перекрыть зону со столами, персоналом и оборудованием. Вытесняющий поток воздуха малыми порциями медленно поступает сверху вниз, отделяя, таким образом, асептическое поле зоны операционного воздействия, зону, где передается стерильный материал от зоны окружающей среды. Воздух удаляется из нижней и верхней зон защищаемого помещения одновременно. В потолок встраиваются HEPA-фильтры (класс Н по ), которые пропускают через себя приток воздуха. Фильтры только задерживают живые частицы, не обеззараживая их.

В последнее время на мировом уровне возросло внимание к вопросам обеззараживания воздушной среды больничных помещений и других учреждений, в которых присутствуют источники бактериальных загрязнений. В документах изложены требования о том, что необходимо обеззараживать воздух операционных помещений с эффективностью деактивации частиц от 95% и выше. Обеззараживанию подлежат также оборудование климатических систем и воздуховод . Бактерии и частицы, которые выделяет хирургический персонал, поступают в воздушную среду помещения непрерывно и накапливаются в ней. Для того, чтобы не дать концентрации вредных веществ в помещении достичь предельно допустимого уровня , необходимо постоянно контролировать воздушную среду. Этот контроль проводится в обязательном порядке после монтажа климатической системы, ремонта или технического обслуживания, то есть в то время, когда используется чистое помещение.

Для проектировщиков уже стало привычным применение в операционных помещениях воздухораспределителей однонаправленного потока сверхтонкой очистки со встроенными фильтрами потолочного типа.

Потоки воздуха, имеющие большие объемы, медленно движутся вниз помещения, отделяя, таким образом, защищаемую зону от окружающего воздуха. Однако многие специалисты не переживают о том, что одними только этими решениями для поддержания необходимого уровня обеззараживания воздушной среды во время проведения хирургических операций не обойтись.

Предложено большое количество вариантов конструкций воздухораспределительных устройств, каждый из них получил свое применение в определенной области. Специальные операционные помещения между собой внутри своего класса делятся на подклассы в зависимости от назначения по степени чистоты. Например, операционные кардиохирургические, общего профиля, ортопедические и т.д. Для каждого класса определены свои требования к обеспечению чистоты.

Впервые воздухораспределители для чистых помещений были применены в середине 50-х годов прошлого столетия. С того времени распределение воздуха в производственных помещениях стало традиционным в тех случаях, когда необходимо обеспечить сниженные концентрации микроорганизмов или частиц, производится все это через перфорированный потолок . Поток воздуха движется в одном направлении через весь объем помещения, скорость при этом остается равномерной - примерно 0,3 – 0,5 м/с. Подача воздуха производится через группу воздушных фильтров, обладающих высокой эффективностью, которые размещены на потолке чистого помещения. Воздушный поток подается по принципу воздушного поршня, который стремительно движется вниз через все помещение, удаляя вредные вещества и загрязнения. Удаляется воздух через пол. Такое движение воздуха способно удалить аэрозольные загрязнения, источниками которых служат процессы и персонал. Организация такой вентиляции нацелена на обеспечение необходимой чистоты воздуха операционного помещения. Ее минус в том, что она требует большого расхода воздуха, что не экономично. Для чистых помещений класса ISO 6 (по классификации ISO) или класса 1 000 допускается воздухообмен 70-160 крат/ч. Уже позже на смену пришли более эффективные устройства модульного типа, имеющие меньшие размеры и низкие расходы, что позволяет выбирать приточное устройство, отталкиваясь от размеров зоны защиты и необходимых кратностей обмена воздуха в помещении в зависимости от его назначения.

Эксплуатация ламинарных воздухораспределителей

Ламинарные устройства предназначены для применения в чистых производственных помещениях для раздачи воздуха больших объемов. Для реализации необходимы специально спроектированные потолки, регулирование давления в помещении и напольные вытяжки. При соблюдении этих условий распределители ламинарного потока обязательно создадут необходимый однонаправленный поток, имеющий параллельные линии тока. Благодаря высокой кратности воздухообмена, в приточном потоке воздуха поддерживаются условия, близкие к изотермическим. Спроектированные для распределения воздуха при обширных воздухообменах, потолки обеспечивают низкую стартовую скорость потока за счет своей большой площади. Контроль изменения давления воздуха в помещении и результат работы вытяжных устройств обеспечивают минимальные размеры зон рециркуляции воздуха, здесь срабатывает принцип «один проход и один выход». Взвешенные частицы падают на пол и удаляются, поэтому их рециркуляция практически невозможна.

Однако в условиях операционного помещения такие воздухонагреватели работают несколько иначе. Чтобы не превысить допустимые уровни бактериологической чистоты воздушной среды в операционных помещениях, по расчетам значения воздухообмена составляют около 25 крат/ч, а бывает и меньше. Другими словами, эти значения не сопоставимы со значениями, рассчитанными для производственных помещений. Чтобы поддерживать стабильное движение воздушных потоков между операционной и соседними помещениями, в операционной поддерживается избыточное давление. Воздух удаляется через вытяжные устройства, которые установлены симметрично в стенах нижней зоны. Для раздачи меньших объемов воздуха используются ламинарные устройства меньшей площади, устанавливаются они непосредственно над критической зоной помещения как островок посередине комнаты, а не занимают весь потолок.

По результатам наблюдений такие ламинарные воздухораспределители не всегда смогут обеспечить однонаправленный поток. Поскольку разница между температурой в приточной струе воздуха и температурой окружающей воздушной среды в 5-7 °С неизбежна, воздух более холодный, выходящий из приточного устройства, опустится гораздо быстрее, чем однонаправленный изотермический поток. Это привычное явление для работы потолочных диффузоров, установленных в общественных помещениях. Мнение о том, что ламинары обеспечивают однонаправленный стабильный воздушный поток в любом случае, независимо от того, где и как их применяют, ошибочно. Ведь в реальных условиях скорость вертикального низкотемпературного ламинарного потока будет расти по мере опускания к полу.

С увеличением объема приточного воздуха и снижением его температуры по отношению к воздуху помещения увеличивается ускорение его потока. Как показано в таблице, благодаря применению ламинарной системы, площадь которой 3 м 2 , а температурный перепад 9 °С, скорость воздуха на расстоянии 1,8 м от выхода увеличивается в три раза. На выходе из ламинарного устройства скорость воздуха составляет 0,15 м/с, а в районе операционного стола - 0,46 м/с, что превышает допустимый уровень . Многие исследования уже давно доказали, что при повышенной скорости приточного потока его «однонаправленность» не сохраняется.

Расход воздуха, м 3 /(ч м 2) Давление, Па Скорость воздуха на расстоянии 2 м от панели, м/с
3 °С T 6 °С T 8 °С T 11 °С T NC
Одиночная панель 183 2 0,10 0,13 0,15 0,18 <20
366 8 0,18 0,20 0,23 0,28 <20
549 18 0,25 0,31 0,36 0,41 21
732 32 0,33 0,41 0,48 0,53 25
1,5 – 3,0 м 2 183 2 0,10 0,15 0,15 0,18 <20
366 8 0,18 0,23 0,25 0,31 22
549 18 0,25 0,33 0,41 0,46 26
732 32 0,36 0,46 0,53 30
Более 3 м 2 183 2 0,13 0,15 0,18 0,20 21
366 8 0,20 0,25 0,31 0,33 25
549 18 0,31 0,38 0,46 0,51 29
732 32 0,41 0,51 33

Результаты анализа контроля воздушной среды в помещениях операционных, проводимого Льюисом (Lewis, 1993) и Салвати (Salvati, 1982), выявили, что в некоторых случаях использование ламинарных установок с завышенными скоростями воздуха обуславливает рост уровня обсемененности воздуха в районе хирургического разреза, что может привести к его заражению.

Зависимость изменения скорости потока воздуха от температуры приточного воздуха и величины площади ламинарной панели отражена в таблице. При движении воздуха от начальной точки линии тока будут идти параллельно, затем границы потока поменяются, произойдет сужение в направлении к полу, а, следовательно, он уже не сможет защищать зону, которую определили размеры ламинарной установки. Имея скорость 0,46 м/с, поток воздуха захватит малоподвижный воздух помещения. А поскольку в помещение непрерывно поступают бактерии, в поток воздуха, выходящего из приточного устройства, будут попадать зараженные частицы. Этому содействует рециркуляция воздуха, которая возникает из-за подпора воздуха в помещении.

Для поддержания чистоты операционных помещений, согласно нормам , необходимо обеспечить дисбаланс воздуха за счет увеличения притока на 10% больше, чем вытяжка. Избыточный воздух поступает в смежные, не очищенные помещения. В современных операционных часто используются герметичные раздвижные двери, тогда избыточный воздух не может выйти и циркулирует по помещению, после чего забирается снова в приточное устройство с помощью встроенных вентиляторов, далее он проходит очистку в фильтрах и вторично подается в помещение. Циркулирующий поток воздуха собирает все загрязненные вещества из воздуха помещения (если он будет двигаться вблизи приточного потока, то может его загрязнить). Поскольку происходит нарушение границ потока, неизбежно подмешивание в него воздуха из пространства помещения, а, следовательно, и проникновение в защищаемую стерильную зону вредных частиц.

Повышенная подвижность воздуха влечет за собой интенсивное отслоение частиц отмершей кожи с открытых участков кожного покрова медицинского персонала, после чего они попадают в хирургический разрез. Однако, с другой стороны, развитие инфекционных заболеваний в период реабилитации после операции является следствием гипотермического состояния больного, которое усугубляется при воздействии на него подвижных потоков холодного воздуха. Итак, рационально работающий традиционный воздухораспределитель ламинарного потока в чистом производственном помещении может принести не только пользу, но и вред в процессе операции, проводимой в обычной операционной.

Такая особенность характерна для ламинарных устройств со средней площадью около 3 м 2 – оптимальной для защиты операционной зоны. По американским требованиям , скорость потока воздуха на выходе из ламинарного устройства не должна быть выше 0,15 м/с, то есть с площади 0,09 м 2 в помещение должно приходить 14 л/с воздуха. В данном случае будет поступать 466 л/с (1677,6 м 3 /ч) или около 17 крат/ч. Поскольку согласно нормативная величина воздухообмена в операционных помещениях должна составлять 20 крат/ч, согласно – 25 крат/ч, то 17 крат/ч вполне соответствует требуемым нормам. Выходит, что значение 20 крат/ч подходит для помещения, имеющего объем 64 м 3 .

По нынешним нормам площадь общехирургического профиля (стандартной операционной) должна быть не менее 36 м 2 . Однако к операционным, предназначенным для проведения более сложных операций (ортопедических, кардиологических и т.д.), предъявляются более высокие требования, зачастую объем таких операционных - около 135 – 150 м 3 . Для таких случаев потребуется система распределения воздуха, имеющая большую площадь и производительность воздуха.

Если организуется приток воздуха для операционных большего размера, это приводит к возникновению проблемы поддержания ламинарности потока от уровня на выходе до операционного стола. Проводились исследования потоков воздуха в нескольких операционных помещениях. В каждом из них устанавливались ламинарные панели, которые по занимаемой площади можно разделить на две группы: 1,5 – 3 м 2 и более 3 м 2 , а также были построены экспериментальные установки для кондиционирования воздуха, которые позволяют менять значение температуры приточного воздуха. В ходе исследования были проведены замеры скорости поступающего воздушного потока при различных его расходах и изменении температуры; эти замеры можно увидеть в таблице.

Критерии чистоты операционных помещений

Для правильной организации циркуляции и распределения воздуха в помещении необходимо выбрать рациональный размер приточных панелей, обеспечить нормативную скорость потока и температуру приточного воздуха. Однако эти факторы не гарантируют абсолютное обеззараживание воздуха. Более 30 лет ученые решают вопрос обеззараживания операционных помещений и предлагают разные противоэпидемиологические мероприятия. Сегодня же перед требованиями современных нормативных документов по эксплуатации и проектированию больничных помещений стоит цель обеззараживания воздуха, где основным способом предупреждения накопления и распространения инфекций являются системы ОВК .

Например, согласно стандарту , главная цель его требований – обеззараживание, а в сказано, что «правильно спроектированная система ОВК сводит к минимуму воздушно-капельное распространение вирусов, спор грибков, бактерий и других биологических загрязнений», главную роль в контроле инфекций и других вредных факторов играет система ОВК. В определены требования к системам кондиционирования воздуха помещений, которые говорят о том, что проектирование системы подачи воздуха должно обеспечить минимизацию проникновения бактерий вместе с воздухом в чистые зоны, и поддержать максимально возможный уровень чистоты в оставшейся части операционного помещения.

Однако в нормативных документах не содержатся прямые требования, отражающие определение и контроль эффективности обеззараживания помещений с различными способами вентиляции. Поэтому при проектировании приходится заниматься поисками, которые требуют много времени и не дают заниматься основной работой.

Было выпущено большое количество нормативной литературы о проектировании систем ОВК для операционных залов, в ней описаны требования к обеззараживанию воздушной среды, которым проектировщикоу достаточно трудно соответствовать по целому ряду причин. Для этого мало только знать современное обеззараживающее оборудование и правила работы с ним, нужно еще поддерживать дальнейший своевременный эпидемиологический контроль воздуха в помещениях, что и создает представление качества работы систем ОВК. Это, к сожалению, не всегда соблюдается. Если производимая оценка чистоты производственных помещений ориентируется на наличие в нем частиц (взвешенных веществ), то показатель чистоты в чистых больничных помещениях представлен живыми бактериальными или колониеобразующими частицами, их допустимые уровни приведены в . Чтобы не превысить эти уровни, нужен регулярный контроль воздуха помещений по микробиологическим показателям, для этого требуется вести подсчет микроорганизмов. Методика сбора и подсчета для оценки уровня чистоты воздушной среды не была приведена ни в одном нормативном документе. Очень важно, что подсчет микроорганизмов должен производиться в рабочем помещении во время проведения операции. Но для этого требуется готовый проект и установка системы распределения воздуха. Степень обеззараживания или эффективности работы системы определить до начала работы в операционном зале невозможно, устанавливается это только во время проведения хотя бы нескольких операций. Здесь возникает ряд трудностей для инженеров, ведь необходимые исследования противоречат соблюдению противоэпидемической дисциплины больничных помещений.

Способ воздушных завес

Правильно организованная совместная работа притока и удаления воздуха обеспечивает требуемый воздушный режим операционного зала. Для улучшения характера движения потоков воздуха в операционной необходимо обеспечить рациональное взаиморасположение вытяжных и приточных устройств.

Рис. 1. Анализ работы воздушной завесы

Использование как площади всего потолка для распределения воздуха, так и всего пола для отведения является невозможным. Вытяжные устройства на полу – это негигиенично, поскольку они быстро загрязняются и трудно очищаются. Сложные, громоздкие и дорогие системы не получили широкого распространения в небольших операционных палатах. Поэтому наиболее рациональным считается «островное» размещение ламинарных панелей над защищаемой зоной и установка вытяжных отверстий в нижней части помещения. Это дает возможность организовать потоки воздуха по аналогии с чистыми промышленными помещениями. Этот способ более дешевый и компактный. Успешно применяются воздушные завесы, выступающие как защитный барьер. Воздушная завеса соединяется с потоком приточного воздуха, образуя узкую «оболочку» из воздуха с большей скоростью, которую специально создают по периметру потолка. Такая завеса постоянно работает на вытяжку и не дает поступать в ламинарный поток загрязненному окружающему воздуху.

Чтобы лучше понять принцип работы воздушной завесы, можно представить операционное помещение с вытяжкой, установленной со всех четырех сторон комнаты. Приток воздуха, который поступает из расположенного в центре потолка «ламинарного островка», может только опускаться вниз, при этом расширяясь в стороны стен по мере приближения к полу. Это решение позволит уменьшить зоны рециркуляции и размеры участков застоя, где собираются вредные микроорганизмы, предотвратить смешение воздуха помещения с ламинарным потоком, снизить его ускорение, стабилизировать скорость и получить перекрытие нисходящим потоком всей стерильной зоны. Это способствует изоляции защищаемой зоны от окружающего воздуха и позволяет удалить из нее биологические загрязнители.

Рис. 2 показывает стандартную конструкцию воздушной завесы, имеющей щели по периметру комнаты. Если организовать вытяжку по периметру ламинарного потока, произойдет его растягивание, воздушный поток расширится и заполнит всю зону под завесой, и как результат предотвращение эффекта «сужения» и стабилизация требуемой скорости ламинарного потока.

Рис. 2. Схема воздушной завесы

На рис. 3 представлены значения фактической скорости воздуха при правильно спроектированной воздушной завесе. Они наглядно показывают взаимодействие воздушной завесы с ламинарным потоком, который движется равномерно. Воздушная завеса позволяет избежать установки громоздкой вытяжной системы на весь периметр помещения. Вместо нее, как принято в операционных, в стенах устанавливается традиционная вытяжка. Воздушная завеса служит защитой зоны, охватывающей хирургический персонал и стол, не дает возвращаться загрязненным частицам в начальный воздушный поток.

Рис. 3. Фактический профиль скоростей в сечении воздушной завесы

Какого же уровня обеззараживания можно добиться при использовании воздушной завесы? Если ее плохо спроектировать, то она не принесет большего эффекта, чем ламинарная система. Ошибиться можно на высокой скорости воздуха, тогда такая завеса может «вытягивать» воздушный поток быстрее, чем нужно, и он не успеет достичь операционного стола. Неконтролируемое поведение потока может дать угрозу проникновения зараженных частиц в защищаемую зону с уровня пола. Также завеса с недостаточной скоростью всасывания не сможет полностью шибировать воздушный поток и может в него втянуться. В таком случае воздушный режим операционной будет такой же, как при применении только ламинарного устройства. Во время проектирования нужно правильно выявить диапазон скоростей и выбрать соответствующую систему. От этого зависит расчет характеристик обеззараживания.

Воздушные завесы имеют целый ряд явных преимуществ, но не стоит применять их везде, ведь не всегда требуется создание стерильного потока во время операции. Решение о том, насколько необходимо обеспечивать уровень обеззараживания воздуха, принимается совместно с хирургами, участвующими в данных операциях.

Заключение

Вертикальный ламинарный поток ведет себя не всегда предсказуемо, что зависит от условий его использования. Ламинарные панели, которые эксплуатируются в чистых производственных помещениях, зачастую не обеспечивают необходимый уровень обеззараживания в операционных залах. Установка систем воздушных завес помогает управлять характером движения вертикальных ламинарных воздушных потоков. Воздушные завесы помогают осуществлять бактериологический контроль воздуха в операционных помещениях, особенно при длительных хирургических вмешательствах и постоянном нахождении пациентов со слабой иммунной системой, для которых огромным риском являются воздушные инфекции.

Статья подготовлена А. П. Борисоглебской с использованием материалов журнала «ASHRAE».

Литература

  1. СНиП 2.08.02–89*. Общественные здания и сооружения.
  2. СанПиН 2.1.3.1375–03. Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров.
  3. Инструктивно-методические указания по организации воздухообмена в палатных отделениях и операционных блоках больниц.
  4. Инструктивно-методические указания по гигиеническим вопросам проектирования и эксплуатации инфекционных больниц и отделений.
  5. Пособие к СНиП 2.08.02–89* по проектированию учреждений здравоохранения. ГипроНИИздрав Минздрава СССР. М., 1990.
  6. ГОСТ ИСО 14644-1–2002. Чистые помещения и связанные с ними контролируемые среды. Ч. 1. Классификация чистоты воздуха.
  7. ГОСТ Р ИСО 14644-4–2002. Чистые помещения и связанные с ними контролируемые среды. Ч. 4. Проектирование, строительство и ввод в эксплуатацию.
  8. ГОСТ Р ИСО 14644-5–2005. Чистые помещения и связанные с ними контролируемые среды. Ч. 5. Эксплуатация.
  9. ГОСТ 30494–96. Здания жилые и общественные. Параметры микроклимата в помещениях.
  10. ГОСТ Р 51251–99. Фильтры очистки воздуха. Классификация. Маркировка.
  11. ГОСТ Р 52539–2006. Чистота воздуха в лечебных учреждениях. Общие требования.
  12. ГОСТ Р МЭК 61859–2001. Кабинеты лучевой терапии. Общие требования безопасности.
  13. ГОСТ 12.1.005–88. Система стандартов.
  14. ГОСТ Р 52249–2004. Правила производства и контроля качества лекарственных средств.
  15. ГОСТ 12.1.005–88. Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
  16. Инструктивно-методическое письмо. Санитарно-гигиенические требования к лечебно-профилактическим учреждениям стоматологического профиля.
  17. МГСН 4.12-97. Лечебно-профилактические учреждения.
  18. МГСН 2.01-99. Нормативы по теплозащите и тепловодоэлектроснабжению.
  19. Методические указания. МУ 4.2.1089-02. Методы контроля. Биологические и микробиологические факторы. Минздрав России. 2002.
  20. Методические указания. МУ 2.6.1.1892-04. Гигиенические требования по обеспечению радиационной безопасности при проведении радионуклидной диагностики с помощью радиофармпрепаратов. Классификация помещений ЛПУ.

Вопрос особенного подхода к организации систем кондиционирования и вентиляции «чистых» помещений обусловлен самой сутью этого термина.

«Чистыми» помещениями называют лаборатории на пищевых, фармацевтических и косметических производствах, в научно-исследовательских институтах, экспериментальных кабинетах, на предприятиях по разработке и производству микроэлектроники и т.д.

Кроме того, к «чистым» относят кабинеты в лечебно-профилактических учреждениях (ЛПУ): операционные, родовые, реанимационные, наркозные залы, рентген-кабинеты.

Требования к «чистому помещению» и классу чистоты

На данный момент разработан и действует ГОСТ Р ИСО 14644-1-2000, который основан на международном стандарте ИСО 14644-1-99 «Чистые помещения и связанные с ними контролируемые среды». В соответствии с этим документом должны работать все компании и организации, отвечающие за вентиляцию и кондиционирование таких помещений.

Стандарт описывает требования к «чистому помещению» и классу чистоты - от 1 ISO (высший класс) до 9 ISO (низший класс). Класс чистоты определяется в зависимости от допустимой концентрации взвешенных частиц в воздухе и их размеров. Так, например, класс чистоты операционных от 5 и выше. Для определения класса чистоты также подсчитывают количество микроорганизмов в воздухе. Например, в помещениях класса 1 микроорганизмов не должно быть совсем.

«Чистое» помещение должно быть устроено и оборудовано таким образом, чтобы минимизировать поступление взвешенных частиц внутрь помещения, а в случае поступления - изолировать их внутри и ограничить выход вовне. Кроме того, в этих помещениях должны постоянно и непрерывно поддерживаться заданная температура, влажность и давление.

Особенности вентиляции и кондиционирования для «чистых» помещений

Исходя из всего вышеизложенного, выделяют следующие особенности систем вентиляции и кондиционирования:

  1. В «чистых» и медицинских помещениях запрещена установка кондиционеров с рециркуляцией воздуха, только приточного типа. Установка сплит-систем допускается в административных помещениях ЛПУ и лабораторий.
  2. Для обеспечения и поддержания точных параметров температуры и влажности часто используют прецизионные кондиционеры.
  3. Конструкция и материал воздуховодов, фильтровальных камер и их элементов должны быть приспособлены для регулярной чистки и дезинфекции.
  4. В сети кондиционирования и вентиляции должна быть установлена система многоступенчатой фильтрации (не менее двух фильтров) и использоваться конечные фильтры высокой эффективности HEPA (High Efficiency Particular Airfilters).

Воздушные фильтры различаются в зависимости от ступеней очистки: 1 ступень (грубой очистки) 4-5; 2 ступени (тонкой очистки) от F7 и выше; 3 ступени - фильтры высокой эффективности выше Н11. Соответственно, фильтры первой ступени принимают на себя наружный воздух - они устанавливаются на входе воздуха в приточную установку и обеспечивают защиту приточной камеры от частиц. Фильтры второй ступени устанавливаются на выходе из приточной камеры и обеспечивают защиту воздуховода от частиц. Фильтры третьей ступени устанавливаются в непосредственной близости от обслуживаемого помещения.

  1. Обеспечение воздухообмена - создание избыточного давления по отношению к соседним помещениям.

Основные задачи системы вентиляции и кондиционирования для чистых помещений: удаление отработанного воздуха из помещений; обеспечение приточного воздуха, его распределение и регулирование объема; подготовка приточного воздуха по заданным параметрам - влажность, температура, очистка; организация направления движения воздуха исходя из особенностей помещений.

Кроме системы подготовки и распределения воздуха, в проектировании «чистого» помещения предполагается целый комплекс дополнительных элементов: ограждающие конструкции - гигиенические стеновые ограждения, двери, герметичные потолки, антистатические полы; система управления и диспетчеризации приточно-вытяжных систем; ряд иного специального инженерного оборудования.

Проектированием и установкой систем подготовки и распределения воздуха должны заниматься только специализированные компании, имеющие опыт подобной работы, соблюдающие все ГОСТы и требования, и обеспечивающие комплексный подход к организации «чистых» помещений. Один подрядчик в идеале должен выполнять работы по проектированию и конструированию, сборке и монтажу, пусконаладочным работам и обучению персонала специфике нахождения в помещении.

Как выбрать подрядчика

Чтобы выбрать подрядчика, нужно:

  • узнать, есть ли у компании опыт внедрения стандартов GMP (Good Manufacturing Practice - система норм и правил, регулирующих производство медикаментов, продуктов питания, пищевых добавок и т.д.) или стандартов ISO 9000;
  • ознакомиться с опытом компании и с портфолио проектов по организации «чистых» помещений, которые она выполняла;
  • запросить имеющиеся дистрибьюторские сертификаты, сертификаты соответствия ГОСТам, допуски СРО к проектным и монтажным работам, лицензии, технические регламенты, протоколы чистоты и разрешения на работу;
  • познакомиться с командой специалистов, которые занимаются проектированием и монтажом;
  • узнать условия гарантийного и постгарантийного обслуживания.

Очень часто к операционным блокам применяют термин под названием «чистые помещения».
Во всех «чистых помещениях» необходимо строгое соблюдение определенных требований к кратности воздухообмена, влажности воздуха и чистоте. В таких помещениях очень точно соблюдаются значения влажности и температуры воздуха. В операционных блоках общехирургического профиля, к которым относятся родовая, наркозная и операционная, поддерживается температурный режим в пределах 20 - 23 градусов Цельсия, а относительная влажность должнв равняться 55 - 60 %. Эти правила соблюдаются ввиду нескольких важных причин. При относительной влажности воздуха ниже 55%, в данных помещениях начинается процесс образования статического электричества. Параллельно с этим при медико-технологическом течении операций образуются газы, используемые при наркозе. При достижении критического уровня статического электричества, эти газы могут взорваться. Также, при низкой относительной влажности возможно неудовлетворительное самочувствие медицинского персонала. Поэтому, для предотвращения этого, необходимо в помещении поддерживать постоянную температуру. Чтобы создать максимально комфортные тепловые условия для врачей, работающих в спецодежде (повязках, костюмах, халатах, перчатках), ухудшающей теплоотдачу, температура не должна превышать 23 градуса.
Согласно ряду микробиологических исследований было выявлено, что в результате выделения человеком влаги, значительно увеличивается показатель интенсивности образования бактерий человеческого тела. Согласно установленным нормам, подвижность воздуха в районе расположения головы больного не должна превышать значения 0,1 - 0,15 м/сек. В силу того, что еще довольно часто встречаются послеоперационные раневые инфекции, в операционных помещениях соблюдаются все противоэпидемиологические требования с применением антибиотиков, а к климатическим установкам предъявляются жесткие требования.
Сейчас существует тенденция по расположению «чистых помещений» вдали от фасадов, в центральной части здания, где нет процессов теплообмена через ограждение с наружной средой. Для того, что компенсировать избыточное тепло в таких помещениях, необходима подача свежего воздуха объемом до 2500 куб.м/ч (до 20 крат в час при стандартных размерах операционного помещения). Важным фактом является то, что температура приточного воздуха при этом может превышать температуру в помещении только на 5 градусов. Согласно микробиологическим исследованиям, такого количества свежего воздуха будет вполне достаточно, чтобы разбавить и удалить бактериальную флору.
Так как воздух, который подается в операционные помещения, должен быть абсолютно стерильным, его очистке уделяется особое значение. Очень важным составляющим звеном климатической системы в помещениях «чистых комнат» являются фильтры. Именно с их помощью в помещении достигается нужная степень чистоты воздуха. Благодаря фильтрам с разной степенью очистки (грубой, тонкой на первой и второй ступенях), воздух проходит трехступенчатую очистку. На этапе третьей ступени, благодаря использования микрофильтров и фильтров, поступаемый воздух достигает необходимого уровня тонкой очистки. Для продления время службы основных фильтров, устанавливают фильтры с более низкой степенью очистки, выполненных в виде предварительного цикла.
Самый широкий ассортимент качественных очистителей воздуха, разработанных и производимых в России, которые так незаменимы для создания необходимых условий в операционных помещениях, представлен в

В распространении госпитальной инфекции наибольшее значение имеет воздушно-капельный путь, в связи с

чем постоянному обеспечению чистоты воздуха помещений хирургического стационара и операционного блока

должно уделяться большое внимание.

Основным компонентом, загрязняющим воздух помещении хирургического стационара и операционного блока,

является пыль мельчайшей дисперсности, на которой сорбируются микроорганизмы. Источниками пыли

являются, главным образом, обычная и специальная одежда больных и персонала, постельные принадлежности,

поступление почвенной пыли с потоками воздуха и т. п. Поэтому мероприятия, направленные на уменьшение

обсемененности воздуха операционной прежде всего предусматривают снижение влияния источников обсеменения

на воздух.

Не допускаются к работе в операционной особы с септическими ранами и какими-либо гнойными

Перед операцией персонал должен принять душ. Хотя исследования показали, что во многих случаях душ

являлся неэффективным. Поэтому во многих клиниках стали практиковать принятие ванны с раствором

антисептика. На выходе из санпропускника персонал надевает стерильные сорочку, штаны и бахилы. После

обработки рук в предоперационной одевают стерильный халат, марлевую повязку и стерильные перчатки.

Стерильная одежда хирурга через 3-4 часа теряет свои свойства и расстерилизовывается. Поэтому при

сложных асептических операциях (таких как трансплантация) целесообразно менять одежду каждые 4 часа. Эти

же требования относятся и к одежде персонала, обслуживающего больных после трансплантации в палатах

интенсивной терапии.

Марлевая повязка является недостаточным барьером для патогенной микрофлоры, и, как показали

исследования, около 25% послеоперационных гнойных осложнений вызваны штаммом микрофлоры, высеянным

как из нагноившейся раны, так и из ротовой полости оперировавшего хирурга. Барьерные функции марлевой

повязки улучшаются после обработки ее вазелиновым маслом перед стерилизацией.

Сами больные могут быть потенциальным источником загрязнения, поэтому их следует готовить перед

операцией соответствующим образом.

Среди мероприятий, направленных на обеспечение чистоты воздуха большое значение имеет правильный и

постоянный воздухообмен в помещениях стационара, практически исключающий развитие внутригоспитальных

заражений. Наряду с искусственным воздухообменом необходимо создавать условия для аэрации и проветривания

помещений хирургического отделения. Особенное предпочтение следует отдавать аэрации, позволяющей на

протяжении многих часов и даже круглосуточно во все сезоны года осуществлять естественный воздухообмен,

который является решающим звеном в цепи мероприятий, обеспечивающих чистоту воздуха.

Повышению эффективности аэрации способствуют внутристенные вентиляционные каналы. Эффективное

функционирование этих каналов особенно необходимо в зимний и переходный периоды, когда воздух больничных

помещений в значительной степени загрязняется микроорганизмами, пылью, углекислотой и т. п. Исследования

показывают, что чем больше удаляется воздуха через вытяжные каналы, тем больше относительно чистого в

бактериологическом отношении наружного воздуха поступает через фрамуги и различные неплотности. В связи с

этим необходимо систематически прочищать вентиляционные каналы от пыли, паутины и другого мусора.

Эффективность действия внутристенных вентиляционных каналов повышается, если на их верхней концевой части

(на крыше) устраивать дефлекторы.

Проветривание надо обязательно проводить во время влажной уборки помещений стационара (особенно по

утрам) и операционного блока после работы.

Кроме указанных мероприятий для обеспечения чистоты воздуха и уничтожения микроорганизмов

применяется дезинфекция с помощью ультрафиолетовой радиации и в ряде случаев химических веществ. С этой

целью воздух помещений (в отсутствие персонала) облучается бактерицидными лампами типа ДБ-15, ДБ-30 и

более мощными, которые размещаются с учетом конвекционных токов воздуха. Количество ламп

устанавливается из расчета 3 Вт на 1 м 3 облучаемого пространства. С целью смягчения отрицательных сторон

действия ламп следует вместо прямого облучения воздушной среды применять рассеянную радиацию, т. е.

производить облучение, верхней зоны помещений с последующим отражением радиации от потолка, для чего

можно использовать потолочные облучатели, или одновременно с бактерицидными зажигать люминесцентные

лампы.

Для уменьшения возможности распространения микрофлоры по помещениям операционного блока

целесообразно применять световые бактерицидные завесы, создаваемые в виде излучения от ламп над дверями, в

открытых проходах и т. д. Лампы при этом монтируются в металлических трубках-софитах с узкой щелью (0,3-

0,5см).

Обезвреживание воздуха химическими веществами производится в отсутствие людей. Для этой цели

допускается использовать пропиленгликоль или молочную кислоту. Пропиленгликоль распыляют пульверизатором

из расчета 1,0 г на 5 м 3 воздуха. Молочную кислоту, используемую для пищевых целей, применяют из расчета 10

мг на 1 м 3 воздуха.

Асептичности воздуха помещений хирургического стационара и операционного блока можно также достичь

применением материалов, обладающих бактерицидным действием. К таким веществам относятся производные

фенола и трихлорфенола, оксидифенил, хлорамин, натриевая соль дихлоризоциануровой кислоты, нафтенилглицин,

цетилоктадецилпиридиновый хлорид, формальдегид, медь, серебро, олово и многие другие. Им импрегнируют

постельное и нательное белье, халаты, перевязочный материал. Во всех случаях бактерицидность материалов

сохраняется от нескольких недель до года. Мягкие ткани с бактерицидными добавками сохраняют бактерицидное

действие более 20 сут.

Весьма эффективно нанесение на поверхность стен и других предметов пленки или различных лаков и красок,

в которые добавлены бактерицидные вещества. Так, например, оксидифенил в смеси с поверхностно активными

веществами успешно используется для придания поверхности остаточного бактерицидного действия. Следует

иметь в виду, что бактерицидные материалы не оказывают вредного воздействия на организм человека.

Кроме бактериального большое значение имеет также загрязнение воздушной среды операционных блоков

наркотическими газами: эфиром, фторотаном и др. Исследования показывают, что в процессе оперирования в

воздухе операционных содержится 400-1200 мг/м 3 эфира, до 200 мг/м 3 и более фторотана, до 0,2% углекислоты.

Весьма интенсивное загрязнение воздуха химическими веществами является активным фактором,

способствующим преждевременному наступлению и развитию утомления хирургов, а также возникновению

неблагоприятных сдвигов в состоянии их здоровья.

С целью оздоровления воздушной среды операционных помимо организации необходимого воздухообмена

следует улавливать и нейтрализовать газы наркотиков, попадающие в воздушное пространство операционной из

наркозного аппарата и с выдыхаемым больным воздухом. Для этого применяют активированный уголь. Последний

помещают в стеклянный сосуд, соединенный с клапаном наркозного аппарата. Выдыхаемый больным воздух,

Похожие публикации