Энциклопедия пожаробезопасности

Солнечные отопительные системы. Солнечные тепловые коллекторы. Системы солнечного теплоснабжения

С ростом цен на энергоносители все актуальнее становится использование альтернативных источников энергии. А так как отопление у многих основная статья расходов, то об отоплении речь в первую очередь: платить приходится практически круглый год и немалые суммы. При желании сэкономить, первым на ум приходит солнечное тепло: мощный и совершенно бесплатный источник энергии. И использовать его вполне реально. Причем оборудование стоит хоть и дорого, но в разы дешевле, чем тепловые насосы. О том, как может быть использована энергия солнца для отопления дома, поговорим подробнее.

Отопление от солнца: за и против

Если говорить об использовании солнечной энергии для отопления, то нужно иметь в виду, что существуют два разных устройства для преобразования солнечной энергии:

Оба варианта имеют свои особенности. Хотя сразу нужно сказать, какой бы из их вы ни выбрали, не спешите отказываться от той системы отопления, которая у вас есть. Солнце встает, конечно, каждое утро, но вот не всегда на ваши солнечные элементы будет попадать достаточно света. Самое разумное решение — сделать комбинированную систему. Когда энергии солнца достаточно, второй источник тепла работать не будет. Этим вы и обезопасите себя, и жить будете в комфортных условиях, и сэкономите.

Если желания или возможности ставить две системы нет, ваше солнечное отопление должно иметь, как минимум, двукратный запас по мощности. Тогда точно можно сказать, что тепло у вас будет в любом случае.

Достоинства использования солнечной энергии для отопления:


Недостатки:

  • Зависимость количества поступающего тепла от погоды и региона.
  • Для гарантированного отопления потребуется система, которая может работать параллельно с гелиосистемой отопления. Многие производители отопительного оборудования предусматривают такую возможность. В частности европейские производители настенных газовых котлов предусматривают совместную работу с солнечным отоплением (например, котлы Baxi). Даже если у вас установлено оборудование, у которого такой возможности нет, можно согласовать работу отопительной системы при помощи контролера.
  • Солидные финансовые вложения на стартовом.
  • Периодичное обслуживание: трубки и панели нужно очищать от налипшего мусора и мыть от пыли.
  • Некоторые из жидкостных солнечных коллекторов не могут работать при очень низких температурах. В преддверии сильных морозов жидкость приходится сливать. Но это касается не всех моделей и не всех жидкостей.

Теперь рассмотрим подробнее каждый из типов солнечных нагревательных элементов.

Солнечные коллекторы

Для солнечного отопления используют именно гелиоколлекторы. Эти установки при помощи тепла солнца нагревают жидкость-теплоноситель, которую потом можно использовать в системе водяного отопления. Специфика в том, что солнечный водонагреватель для отопления дома выдает только температуру 45-60 о С, а самую высокую эффективность показывает при 35 о С на выходе. Потому рекомендованы такие системы для использования в паре с теплыми водяными полами. Если отказываться от радиаторов вам не хочется, или увеличивайте количество секций (раза в два примерно) или подогревайте теплоноситель.

Для обеспечения дома теплой водой и для водяного отопления можно использовать солнечные коллекторы (плоские и трубчатые)

Теперь о видах солнечных коллекторов. Конструктивно есть две модификации:

  • плоские;
  • трубчатые.

В каждой из групп есть вариации и по материалам, и по конструкции, но принцип действия у них один: по трубкам бежит теплоноситель, который нагревается от солнца. Вот только конструкции абсолютно разные.

Плоские солнечные коллекторы

Эти гелиоустановки для отопления имеют простую конструкцию и потому именно их можно при желании изготовить своими руками. На металлической раме закреплено прочное дно. Сверху уложен слой теплоизоляции. Изолируются для уменьшения потерь и стенки корпуса. Затем идет слой адсорбера — материала, который хорошо поглощает солнечное излучение, превращая его в тепло. Этот слой обычно имеет черный цвет. На адсорбере закреплены трубы, по которым течет теплоноситель. Сверху вся эта конструкция закрывается прозрачной крышкой. Материалом для крышки может быть закаленное стекло или один из пластиков (чаще всего это поликарбонат). В некоторых моделях светопропускающий материал крышки может проходить специальную обработку: для уменьшения отражающей способности его делают не гладким, а чуть матовым.

Трубы в плоском солнечном коллекторе обычно уложены змейкой, имеется два отверстия — впускное и выпускное. Может быть реализовано однотрубное и двухтрубное подключение. Это кому как нравится. Но для нормального теплообмена необходим насос. Возможна и самотечная система, но она будет очень неэффективной из-за небольшой скорости движения теплоносителя. Именно этого типа солнечный коллектор и используют для отопления, хотя с его помощью можно эффективно греть воду для ГВС.

Есть вариант самотечного коллектора, но его применяют в основном для подогрева воды. Называют такую конструкцию еще пластиковым солнечным коллектором. Это две пластины из прозрачного пластика, герметично закрепленные на корпусе. Внутри устроен лабиринт для продвижения воды. Иногда нижняя панель бывает окрашена в черный цвет. Имеется два отверстия — впускное и выпускное. Вода подается внутрь, по мере продвижения по лабиринту греется солнцем, и выходит уже теплой. Такая схема хорошо работает с резервуаром для воды и легко нагревает воду для ГВС. Это современная замена обычной бочке, установленной на летнем душе. Причем более эффективная замена.

Насколько эффективны солнечные коллекторы? Среди всех бытовых гелиоустановок на сегодня они показывают лучшие результаты: их КПД 72-75%. Но не все так хорошо:

  • они не работают ночью и плохо работают в пасмурную погоду;
  • большие потери тепла, особенно при ветре;
  • низкая ремонтопригодность: если что-то выходит из строя, то менять нужно значительную часть, или всю панель полностью.

Тем не менее, часто отопление частного дома от солнца делают именно при помощи этих гелиоустановок. Такие установки популярны в южных странах с активным излучением и положительными температурами в зимний период. Для наших зим они не подходят, но в летний сезон показывают хорошие результаты.

Воздушный коллектор

Эта установка может быть использована для воздушного отопления дома. Конструктивно она очень напоминает описанный выше пластиковый коллектор, но циркулирует и нагревается в нем воздух. Такие устройства навешиваются на стены. Действовать они могут двумя способами: если воздушный гелионагреватель герметичен, воздух забирается из помещения, нагревается и возвращается в то же помещение.

Есть другой вариант. В нем обогрев совмещен с вентиляцией. В наружном корпусе воздушного коллектора имеются отверстия. Через них внутрь конструкции поступает холодный воздух. Проходя через лабиринт, от солнечных лучей он нагревается, а затем подогретым попадает в помещение.

Такое отопление дома будет более-менее эффективным, если установка будет занимать всю южную стену, и при этом тени на этой стене не будет.

Трубчатые коллекторы

Тут тоже циркулирует теплоноситель по трубам, но каждая из таких теплообменных труб вставлена в стеклянную колбу. Все они соединяются в манифолде (manifold), который, по сути, является гребенкой.

Схема трубчатого коллектора (кликните для увеличения размера картинки)

Трубчатые коллекторы имеют два типа трубок: коаксиальные и перьевые. Коаксиальные — труба в трубе — вложены одна в другую и их края запаяны. Внутри между двумя стенками создается разреженная безвоздушная среда. Потому такие трубки называют еще вакуумными. Перьевые трубки — это обычная трубка, запаянная с одной стороны. А перьевыми их называют потому, что для повышения теплоотдачи в них вставляется пластина адсорберная, которая имеет изогнутые края и чем-то напоминает перо.

Кроме того в разные корпуса могут быть вставлены теплообменники разного типа. Первые — это тепловые каналы Heat-pipe (Хит пайп). Это целая система преобразования солнечного света в тепловую энергию. Heat-pipe — это полая медная трубка небольшого диаметра, запаянная на одном конце. На втором находится массивный наконечник. В трубку залито вещество с низкой температурой кипения. При нагревании вещество начинает кипеть, часть его переходит в газообразное состояние и поднимается по трубке вверх. По пути от нагретых стенок трубки оно все больше нагревается. Попадает в верхнюю часть, где находится некоторое время. За это время часть тепла газ передает массивному наконечнику, постепенно охлаждается, конденсируется и оседает вниз, где процесс снова повторяется.

Второй способ — U-type — это традиционная трубка, заполненная теплоносителем. Тут никаких новостей или сюрпризов. Все как обычно: с одной стороны входит теплоноситель, проходя по трубке, нагревается от солнечного света. Несмотря на свою простоту этот вид теплообменников эффективнее. Но используется он реже. А все потому, что солнечные водонагреватели такого типа составляют собой единое целое. При повреждении одной трубки приходится менять вся секцию.

Трубчатые коллекторы с системой Heat-pipe стоят дороже, показывают меньшую эффективность, но используются чаще. А все потому, что поврежденную трубку поменять можно за пару минут. Причем, если колба использована коаксиальная, то трубка тоже может быть отремонтирована. Просто она разбирается (снимается верхняя заглушка) и поврежденный элемент (тепловой канал или сама колба) заменяется на исправный. Затем трубка вставляется на место.

Какой коллектор лучше для отопления

Для южных регионов с мягкой зимой и большим количеством солнечных дней в году лучший вариант — плоский коллектор. При таком климате он показывает высшую продуктивность.

Для регионов с более суровым климатом подходят трубчатые коллекторы. Причем для суровых зим больше подходят именно системы с Heat-pipe: они греют даже ночью и даже в пасмурную погоду, собирая большую часть спектра солнечного излучения. Они не боятся низких температур, но точный диапазон температур нужно уточнять: он зависит от вещества, находящегося в тепловом канале.

Эти системы при грамотном расчете могут быть основными, но чаще они просто экономят затраты на отопление от другого, платного источника энергии.

Еще одним вспомогательным отоплением может быть воздушный коллектор. Его можно сделать во всю стену, причем он легко реализуется своими руками. Он отлично подойдет для отопления гаража или дачи. Причем проблемы с недостаточным нагревом могут возникнуть не зимой, как вы ожидаете, а осенью. При морозе и снеге энергии солнца в разы больше, чем в пасмурную дождливую погоду.

Солнечные батареи

Слыша слова «солнечная энергетика» мы в первую очередь думаем именно о батареях, которые преобразуют свет в электричество. И делают это специальные фотоэлектрические преобразователи. Они выпускаются промышленностью из разных полупроводников. Чаще всего для бытового использования мы применяем кремниевые фотоэлементы. Они имеют самую низкую цену и показывают достаточно приличную производительность: 20-25%.

Солнечные батареи для частного дома в некоторых странах — обычное явление

Напрямую использовать солнечные батареи для отопления можно лишь в том случае, если котел или другой отопительный прибор на электричестве вы подключите к этому источнику тока. Также солнечные панели в совокупности с электро-аккумуляторами можно интегрировать в систему снабжения дома электричеством и таким образом уменьшать приходящие ежемесячно счета за использованную электроэнергию. В принципе, вполне реально полностью обеспечить потребности семьи от этих установок. Просто средств и площадей потребуется много. В среднем с квадратного метра панели можно получить 120-150Вт. Вот и считайте, сколько квадратов кровли или придомовой территории должно быть занято такими панелями.

Особенности отопления солнечным теплом

Целесообразность устройства системы солнечного отопления у многих вызывает сомнения. Основной довод — это дорого и никогда себя не окупит. С тем, что это дорого, приходится согласиться: цены на оборудование немаленькие. Но никто не мешает вам начать с малого. Например, для оценки эффективности и практичности идеи сделать подобную установку самому. Затрат минимум, а представление будете иметь из первых рук. Потом уже будете решать стоит со всем этим связываться или нет. Вот только в чем дело: все негативные сообщения от теоретиков. От практиков не встречалось ни одного. Идет активное выяснение способов улучшения, переделок, но никто не сказал, что затея бесполезна. Это о чем-то говорит.

Теперь о том, что установка системы солнечного отопления никогда не окупится. Пока срок окупае

мости в нашей стране большой. Он сравним со сроком эксплуатации солнечных коллекторов или батарей. Но если посмотреть динамику роста цен на все энергоносители, то можно предположить, что вскоре он сократится до вполне приемлемых сроков.

Теперь собственно о том, как сделать систему. Прежде всего, нужно определить потребность вашего дома и семи в тепле и горячей воде. Общая методика расчета системы солнечного отопления следующая:

  • Зная, в каком регионе находится дом, вы можете узнать, сколько солнечного света приходится на 1м 2 площади в каждом месяце года. Специалисты это называют инсоляцией. Исходя из этих данных, вы затем сможете прикинуть, сколько солнечных панелей вам необходимо. Но сначала нужно определить, сколько тепла понадобится на подготовку ГВС и отопление.
  • Если счетчик горячей воды у вас есть, то вы знаете объемы горячей воды, которые вы тратите ежемесячно. Выведите средние данные расхода за месяц или считайте по максимальному расходу — это кто как хочет. Также у вас должны иметься данные о тепловых потерях дома.
  • Присмотрите солнечные нагреватели, которые хотели бы поставить. Имея данные по их производительности, вы сможете примерно определить количество элементов, необходимое на покрытие ваших потребностей.

Кроме определения количества составляющих гелиосистемы, понадобится определить объем бака, в котором будет накапливаться горячая вода для ГВС. Это легко можно сделать, зная фактический расход вашей семьи. Если у вас установлен счетчик на ГВС, и вы имеете данные за несколько лет, можно вывести среднюю норму потребления в день (средний расход в месяц поделить на количество дней). Вот примерно такой объем бака вам нужен. Но бак нужно брать с запасом в 20% или около того. На всякий случай.

Если ГВС или счетчика нет, можно воспользоваться нормами потребления. Один человек в сутки в среднем расходует 100-150 литров воды. Зная, сколько человек постоянно проживают в доме, вы рассчитаете требуемый объем бака: норма умножается на количество жильцов.

Сразу нужно сказать, что рациональной (с точки зрения окупаемости) для средней полосы России является система солнечного отопления, которая покрывает порядка 30% потребности в тепле и полностью снабжает горячей водой. Это усредненный результат: в какие-то месяцы отопление будет на 70-80% обеспечиваться гелиосистемой, а в какие-то (декабрь-январь) всего на 10%. И снова-таки многое зависит от типа солнечных батарей и от региона проживания.

Причем дело не только в «севернее» или «южнее». Дело в количестве солнечных дней. Например, на очень холодной Чукотке солнечное отопление будет очень эффективным: там почти всегда светит солнце. В гораздо более мягком климате Англии, с вечными туманами, его эффективность крайне низка.
;

Итоги

Несмотря на множество критиков, которые говорят о неэффективности солнечной энергетики и слишком большом сроке окупаемости, все больше людей хоть частично переходят на альтернативные источники. Кроме экономии многих привлекает независимость от государства и его ценовой политики. Чтобы не жалеть о напрасно вложенных суммах, можно сначала провести эксперимент: изготовить одну из солнечных установок своими руками и решить для себя насколько это вас привлекает (или нет).

Почти половина всей производимой энергии используется для обогрева воздуха. Солнце светит и зимой, но его излучение обычно недооценивается.

Декабрьским днем недалеко от Цюриха физик А. Фишер генерировал пар; это было, когда солнце находилось в своей самой низкой точке, а температура воздуха была 3°С. Днем позже солнечный коллектор площадью 0,7 м2 нагрел 30 л холодной воды из садового водопровода до +60°С.

Солнечная энергия зимой может легко использоваться для обогрева воздуха в помещениях. Весной и осенью, когда часто бывает солнечно, но холодно, солнечный обогрев помещений позволит не включать основное отопление. Это дает возможность сэкономить часть энергии, а соответственно и деньги. Для домов, которыми редко пользуются, или для сезонного жилья (дачи, бунгало), обогрев солнечной энергией особенно полезен зимой, т.к. исключает чрезмерное охлаждение стен, предотвращая разрушение от конденсации влаги и плесени. Таким образом, ежегодные эксплуатационные расходы в основном снижаются.

При отоплении домов с помощью солнечного тепла необходимо решать проблему теплоизоляции помещений на основе архитектурно-конструктивных элементов, т.е. при создании эффективной системы солнечного отопления следует возводить дома, имеющие хорошие теплоизоляционные свойства.


Стоимость тепла
Вспомогательное отопление

Солнечный вклад в отопление дома
К сожалению, период поступления тепла от Солнца далеко не всегда совпадает по фазе с периодом появления тепловых нагрузок.

Большая часть энергии, которая имеется в нашем распоряжении в течение летнего периода, теряется из-за отсутствия постоянного спроса на нее (на самом деле коллекторная система является до некоторой степени системой саморегулирующейся: когда температура носителя достигает равновесного значения, тепловосприятие прекращается, поскольку тепловые потери от солнечного коллектора становятся равными воспринимаемому теплу).

Количество полезного тепла, поглощенного солнечным коллектором, зависит от 7 параметров:

1. величины поступающей солнечной энергии;
2. оптических потерь в прозрачной изоляции;
3. поглощающих свойств тепловоспринимающей поверхности солнечного коллектора;
4. эффективности теплоотдачи от теплоприемника (от тепловоспринимающей поверхности солнечного коллектора к жидкости, т.е. от величины эффективности теплоприемника);
5. пропускательной способности прозрачной теплоизоляции, которая определяет уровень тепловых потерь;
6. температуры тепловоспринимающей поверхности солнечного коллектора, которая в свою очередь зависит от скорости теплоносителя и температуры теплоносителя на входе в солнечный коллектор;
7. температуры наружного воздуха.

Эффективность солнечного коллектора, т.е. отношение использованной энергии и падающей, будет определяться всеми этими параметрами. При благоприятных условиях она может достичь 70%, а при неблагоприятных снизиться до 30%. Точное значение эффективности можно получить при предварительном расчете только путем полного моделирования поведения системы с учетом всех факторов, перечисленных выше. Очевидно, что такая задача может быть решена только с применением компьютера.

Поскольку плотность потока солнечной радиации постоянно меняется, то для расчетных оценок можно пользоваться полными суммами радиации за день или даже за месяц.

В табл. 1 в качестве примера приведены:

  • средние месячные суммы поступления солнечной радиации, измеренные на горизонтальной поверхности;

  • суммы, рассчитанные для вертикальных стен, обращенных на юг;

  • суммы для поверхностей с оптимальным углом наклона 34° (для Кью, близ Лондона).
  • Таблица 1. Месячные суммы прихода солнечной радиации для Кью (близ Лондона)

    Из таблицы видно, что поверхность с оптимальным углом наклона получает (в среднем в течение 8 зимних месяцев) примерно в 1,5 раза больше энергии, чем горизонтальная поверхность. Если известны суммы прихода солнечной радиации на горизонтальную поверхность, то для пересчета на наклонную поверхность их можно умножить на произведение этого коэффициента (1,5) и принятого значения эффективности солнечного коллектора, равного 40%, т.е.

    1,5*0,4=0,6

    При этом получится количество полезной энергии, поглощенной наклонной тепловоспринимающей поверхностью в течение данного периода.

    Для того, чтобы определить эффективный вклад солнечной энергии в теплоснабжение здания даже путем ручного подсчета, необходимо составить по крайней мере месячные балансы потребностей и полезного тепла, получаемого от Солнца. Для наглядности рассмотрим пример.

    Если использовать приведенные выше данные и рассмотреть дом, для которого интенсивность тепловых потерь составляет 250 Вт/°C, местоположение характеризуется годовым числом градусо-дней равным 2800 (67200°C*ч). а площадь солнечных коллекторов составляет, например, 40 м2, то получается следующее распределение по месяцам (см. табл. 2).

    Таблица 2. Расчет эффективного вклада солнечной энергии

    Месяц °C*ч/мес Сумма радиации на горизонтальной поверхности, кВт*ч/м2 Полезное тепло на единицу площади коллектора (D*0,6), кВт*ч/м2 Суммарное полезное тепло (E*40 м2), кВт*ч Солнечный вклад, кВт*ч/м2
    A B C D E F G
    Январь 10560 2640 18,3 11 440 440
    Февраль 9600 2400 30,9 18,5 740 740
    Март 9120 2280 60,6 36,4 1456 1456
    Апрель 6840 1710 111 67,2 2688 1710
    Май 4728 1182 123,2 73,9 2956 1182
    Июнь - - 150,4 90,2 3608 -
    Июль - - 140,4 84,2 3368 -
    Август - - 125,7 75,4 3016 -
    Сентябрь 3096 774 85,9 51,6 2064 774
    Октябрь 5352 1388 47,6 28,6 1144 1144
    Ноябрь 8064 2016 23,7 14,2 568 568
    Декабрь 9840 2410 14,4 8,6 344 344
    Сумма 67200 16800 933 559,8 22392 8358

    Стоимость тепла
    Подсчитав количество тепла, обеспечиваемого за счет Солнца, необходимо представить его в денежном выражении.

    Стоимость выработанного тепла зависит от:

  • стоимости топлива;

  • теплотворной способности топлива;

  • общей эффективности системы.
  • Полученные таким образом эксплуатационные расходы можно затем сравнить с капитальными затратами на солнечную отопительную систему.

    В соответствии с этим, если считать, что в рассмотренном выше примере солнечная отопительная система используется вместо традиционной системы отопления, потребляющей, например, газовое топливо и вырабатывающей тепло стоимостью 1,67 руб/кВт*ч, то, чтобы определить полученную годовую экономию, надо 8358 кВт*ч, обеспечиваемых за счет солнечной энергии (согласно расчетам табл. 2 для площади коллектора 40 м2), умножить на 1,67 руб/кВт*ч, что дает

    8358*1,67 = 13957,86 руб.

    Вспомогательное отопление
    Одним из вопросов, наиболее часто задаваемых людьми, которые хотят понять использование солнечной энергии для отопления (или другой цели), является вопрос: «Что делать, когда солнце не светит?» Поняв концепцию запасания энергии, они задают следующий вопрос: «Что делать, когда в аккумуляторе не остается больше тепловой энергии?» Вопрос закономерен, и необходимость в дублирующей, часто традиционной системе является серьезным камнем преткновения для широкого принятия солнечной энергии в качестве альтернативы существующим источникам энергии.

    Если мощности системы солнечного теплоснабжения недостаточно, чтобы продержать здание в течение периода холодной, пасмурной погоды, то последствия, даже один раз за зиму, могут быть достаточно серьезными, заставляющими предусматривать в качестве дублирующей обычную полномерную систему отопления. Большинство зданий, отапливаемых солнечной энергией, нуждаются в полномерной дублирующей системе. В настоящее время в большинстве районов солнечная энергия должна рассматриваться в качестве средства снижения расхода традиционных видов энергии, а не как полный их заменитель.

    Обычные отопители являются подходящими дублерами, но существует немало и других альтернатив, например:

    Камины;
    - дровяные печи;
    - дровяные калориферы.

    Предположим, однако, что нам захотелось сделать систему солнечного теплоснабжения достаточно большой, чтобы обеспечить теплом помещение в наиболее неблагоприятных условиях. Поскольку сочетание очень холодных дней и долгих периодов облачной погоды случается редко, то дополнительные размеры солнечной энергетической установки (коллектор и аккумулятор), которые потребуются для этих случаев, обойдутся слишком дорого при сравнительно небольшой экономии топлива. Кроме того, большую часть времени система будет работать при мощности ниже номинальной.

    Система солнечного теплоснабжения, рассчитанная на обеспечение 50% отопительной нагрузки, может дать достаточно тепла только на 1 день очень холодной погоды. При удвоении размеров солнечной системы дом будет обеспечен теплом в течение 2 холодных пасмурных дней. Для периодов более 2 дней последующее увеличение размеров будет столь же неоправданным, как и предыдущее. Кроме того, будут периоды мягкой погоды, когда второе увеличение не потребуется.

    Теперь, если увеличить площадь коллекторов отопительной системы еще в 1,5 раза, чтобы продержаться 3 холодных и облачных дня, то теоретически она будет достаточной для обеспечения 1/2 всей потребности дома в течение зимы. Но, разумеется, на практике этого может не быть, поскольку случается иногда 4 (и более) дня подряд холодной облачной погоды. Чтобы учесть этот 4-ый день, нам потребуется система солнечного отопления, которая теоретически может собрать в 2 раза больше тепла, чем это необходимо зданию в течение отопительного сезона. Ясно, что холодные и облачные периоды могут быть более продолжительными, чем предусмотрено в проекте системы солнечного теплоснабжения. Чем больше коллектор, тем менее интенсивно используется каждое дополнительное приращение его размеров, тем меньше энергии экономится на единицу площади коллектора и тем меньше окупаемость капиталовложений на каждую дополнительную единицу площади.

    Тем не менее, предпринимались смелые попытки накопить достаточное количество тепловой энергии солнечного излучения для покрытия всей потребности в отоплении и отказаться от вспомогательной системы отопления. За редким исключением таких систем, как солнечный дом Г. Хэя, долговременное аккумулирование тепла является, пожалуй, единственной альтернативой вспомогательной системе. Г. Томасон близко подошел к 100%-ному солнечному отоплению в своем первом доме в Вашингтоне; только 5% отопительной нагрузки покрывалось за счет стандартного отопителя на жидком топливе.

    Если вспомогательная система покрывает лишь небольшой процент всей нагрузки, то есть смысл использовать электроотопление, несмотря на то, что оно требует производства значительного количества энергии на электростанции, которая затем преобразуется в тепло для обогрева (на электростанции расходуется 10500...13700 кДж для производства 1 кВт*ч тепловой энергии в здании). В большинстве случаев электрообогреватель будет дешевле нефтяной или газовой печи, а сравнительно небольшое количество электроэнергии, необходимой для обогрева здания, может оправдать его применение. Кроме того, электронагреватель - менее материалоемкое устройство благодаря сравнительно небольшому количеству материала (по сравнению с отопителем), идущему на изготовление электроспиралей.

    Так как КПД солнечного коллектора существенно возрастает, если эксплуатировать его при низких температурах, то отопительная система должна рассчитываться на использование как можно более низких температур - даже на уровне 24...27°C. Одно из достоинств системы Томасона, использующей теплый воздух, заключается в том, что она продолжает извлекать полезное тепло из аккумулятора при температурах, почти равных температуре помещения.

    В новом строительстве отопительные системы можно рассчитывать на использование более низких температур, например, путем удлинения трубчато-ребристых радиаторов с горячей водой, увеличения размеров радиационных панелей или увеличения объема воздуха более низкой температуры. Проектировщики чаще всего останавливают свой выбор на отоплении помещения с помощью теплого воздуха или на применении увеличенных радиационных панелей. В системе воздушного отопления лучше всего используется низкотемпературное запасенное тепло. Лучистые отопительные панели имеют длительное запаздывание (между включением системы и нагревом воздушного пространства) и обычно требуют более высоких рабочих температур теплоносителя, чем системы с горячим воздухом. Поэтому тепло из аккумулирующего устройства не используется в полной мере при более низких температурах, которые приемлемы для систем с теплым воздухом, да и общий КПД такой системы ниже. Превышение размеров системы из радиационных панелей для получения результатов, аналогичных результатам при использовании воздуха, может повлечь за собой значительные дополнительные затраты.

    Для повышения общего КПД системы (солнечного отопления и вспомогательной дублирующей системы) и одновременного снижения общих затрат путем ликвидации простоя составных частей, многие проектировщики избрали путь интегрирования солнечного коллектора и аккумулятора со вспомогательной системой. Общими являются такие составные элементы, как:

    Вентиляторы;
    - насосы;
    - теплообменники;
    - органы управления;
    - трубы;
    - воздуховоды.

    На рисунках статьи Системное проектирование показаны различные схемы таких систем.

    Ловушкой при проектировании стыковых элементов между системами является увеличение органов управления и движущихся частей, что повышает вероятность механических поломок. Искушение увеличить на 1...2% КПД путем добавления еще одного устройства на стыке систем является почти непреодолимым и может быть наиболее распространенной причиной выхода из строя солнечной отопительной системы. Обычно вспомогательный обогреватель не должен нагревать отсек аккумулятора солнечного тепла. Если это происходит, то фаза сбора солнечного тепла будет менее эффективной, так как почти всегда этот процесс будет протекать при более высоких температурах. В других системах снижение температуры аккумулятора благодаря использованию тепла зданием повышает общий КПД системы.

    Причины других недостатков этой схемы объясняются большой потерей тепла из аккумулятора из-за его постоянно высоких температур. В системах, в которых вспомогательное оборудование не нагревает аккумулятор, последний будет терять значительно меньше тепла при отсутствии солнца в течение нескольких дней. Даже в спроектированных таким путем системах потери тепла из контейнера составляют 5...20% всего тепла, поглощенного системой солнечного отопления. С аккумулятором, обогреваемом вспомогательным оборудованием, потеря тепла будет значительно выше и может быть оправдана только в том случае, если контейнер аккумулятора находится внутри отапливаемого помещения здания

    Системы солнечного теплоснабжения

    4.1. Классификация и основные элементы гелиосистем

    Системами солнечного теплоснабжения называются системы, использующие в качестве источника тепловой энергии солнечную радиацию. Их характерным отличием от других систем низкотемпературного отопления является применение специального элемента – гелиоприемника, предназначенного для улавливания солнечной радиации и преобразования ее в тепловую энергию.

    По способу использования солнечной радиации системы солнечного низкотемпературного отопления подразделяют на пассивные и активные.

    Пассивныминазываются системы солнечного отопления, в которых в качестве элемента, воспринимающего солнечную радиацию и преобразующего ее в теплоту, служат само здание или его отдельные ограждения (здание-коллектор, стена-коллектор, кровля-коллектор и т. п. (рис. 4.1.1)).

    Рис. 4.1.1 Пассивная низкотемпературная система солнечного отопления “стена-коллектор”: 1 – солнечные лучи; 2 – лучепрозрачный экран; 3 – воздушная заслонка; 4 – нагретый воздух; 5 – охлажденный воздух из помещения; 6 – собственное длинноволновое тепловое излучение массива стены; 7 – черная лучевоспринимающая поверхность стены; 8 – жалюзи.

    Активныминазываются системы солнечного низкотемпературного отопления, в которых гелиоприемник является самостоятельным отдельным устройством, не относящимся к зданию. Активные гелиосистемы могут быть подразделены:

    по назначению (системы горячего водоснабжения, отопления, комбинированные системы для целей теплохолодоснабжения);

    по виду используемого теплоносителя (жидкостные – вода, антифриз и воздушные);

    по продолжительности работы (круглогодичные, сезонные);

    по техническому решению схем (одно-, двух-, многоконтурные).

    Воздух является широко распространенным незамерзающим во всем диапазоне рабочих параметров теплоносителем. При применении его в качестве теплоносителя возможно совмещение систем отопления с системой вентиляции. Однако воздух – малотеплоемкий теплоноситель, что ведет к увеличению расхода металла на устройство систем воздушного отопления по сравнению с водяными системами.

    Вода является теплоемким и широкодоступным теплоносителем. Однако при температурах ниже 0°С в нее необходимо добавлять незамерзающие жидкости. Кроме того, нужно учитывать, что вода, насыщенная кислородом, вызывает коррозию трубопроводов и аппаратов. Но расход металла в водяных гелиосистемах значительно ниже, что в большой степени способствует более широкому их применению.

    Сезонные гелиосистемы горячего водоснабжения обычно одноконтурные и функционируют в летние и переходные месяцы, в периоды с положительной температурой наружного воздуха. Они могут иметь дополнительный источник теплоты или обходиться без него в зависимости от назначения обслуживаемого объекта и условий эксплуатации.

    Гелиосистемы отопления зданий обычно двухконтурные или чаще всего многоконтурные, причем для разных контуров могут быть применены различные теплоносители (например, в гелиоконтуре – водные растворы незамерзающих жидкостей, в промежуточных контурах – вода, а в контуре потребителя – воздух).

    Комбинированные гелиосистемы круглогодичного действия для целей теплохолодоснабжения зданий многоконтурные и включают дополнительный источник теплоты в виде традиционного теплогенератора, работающего на органическом топливе, или трансформатора теплоты.

    Принципиальная схема системы солнечного теплоснабжения приведена на рис.4.1.2. Она включает три контура циркуляции:

    первый контур, состоящий из солнечных коллекторов 1, циркуляционного насоса 8 и жидкостного теплообменника 3;

    второй контур, состоящий из бака-аккумулятора 2, циркуляционного насоса 8 и теплообменника 3;

    третий контур, состоящий из бака-аккумулятора 2, циркуляционного насоса 8, водовоздушного теплообменника (калорифера) 5.

    Рис. 4.1.2. Принципиальная схема системы солнечного теплоснабжения: 1 – солнечный коллектор; 2 – бак-аккумулятор; 3 – теплообменник; 4 – здание; 5 – калорифер; 6 – дублер системы отопления; 7 – дублер системы горячего водоснабжения; 8 – циркуляционный насос; 9 – вентилятор.

    Функционирует система солнечного теплоснабжения следующим образом. Теплоноситель (антифриз) теплоприемного контура, нагреваясь в солнечных коллекторах 1, поступает в теплообменник 3, где теплота антифриза передается воде, циркулирующей в межтрубном пространстве теплообменника 3 под действием насоса 8 второго контура. Нагретая вода поступает в бак-аккумулятор 2. Из бака-аккумулятора вода забирается насосом горячего водоснабжения 8, доводится при необходимости до требуемой температуры в дублере 7 и поступает в систему горячего водоснабжения здания. Подпитка бака-аккумулятора осуществляется из водопровода.

    Для отопления вода из бака-аккумулятора 2 подается насосом третьего контура 8 в калорифер 5, через который с помощью вентилятора 9 пропускается воздух и, нагревшись, поступает в здание 4. В случае отсутствия солнечной радиации или нехватки тепловой энергии, вырабатываемой солнечными коллекторами, в работу включается дублер 6.

    Выбор и компоновка элементов системы солнечного теплоснабжения в каждом конкретном случае определяются климатическими факторами, назначением объекта, режимом теплопотребления, экономическими показателями.

    4.2. Концентрирующие гелиоприемники

    Концентрирующие гелиоприемникипредставляют собой сферические или параболические зеркала (рис. 4.2.1), выполненные из полированного металла, в фокус которых помещают тепловоспринимающий элемент (солнечный котел), через который циркулирует теплоноситель. В качестве теплоносителя используют воду или незамерзающие жидкости. При использовании в качестве теплоносителя воды в ночные часы и в холодный период систему обязательно опорожняют для предотвращения ее замерзания.

    Для обеспечения высокой эффективности процесса улавливания и преобразования солнечной радиации концентрирующий гелиоприемник должен быть постоянно направлен строго на Солнце. С этой целью гелиоприемник снабжают системой слежения, включающей датчик направления на Солнце, электронный блок преобразования сигналов, электродвигатель с редуктором для поворота конструкции гелиоприемника в двух плоскостях.

    Рис. 4.2.1. Концентрирующие гелиоприемники: а – параболический концентратор; б – параболоцилиндрический концентратор; 1 – солнечные лучи; 2 – тепловоспринимающий элемент (солнечный коллектор); 3 – зеркало; 4 – механизм привода системы слежения; 5 – трубопроводы, подводящие и отводящие теплоноситель.

    Преимуществом систем с концентрирующими гелиоприемниками является способность выработки теплоты с относительно высокой температурой (до 100 °С) и даже пара. К недостаткам следует отнести высокую стоимость конструкции; необходимость постоянной очистки отражающих поверхностей от пыли; работу только в светлое время суток, а следовательно, потребность в аккумуляторах большого объема; большие энергозатраты на привод системы слежения за ходом Солнца, соизмеримые с вырабатываемой энергией. Эти недостатки сдерживают широкое применение активных низкотемпературных систем солнечного отопления с концентрирующими гелиоприемниками. В последнее время наиболее часто для солнечных низкотемпературных систем отопления применяют плоские гелиоприемники.

    4.3. Плоские солнечные коллекторы

    Плоский солнечный коллектор– устройство с поглощающей панелью плоской конфигурации и плоской прозрачной изоляцией для поглощения энергии солнечного излучения и преобразования ее в тепловую.

    Плоские солнечные коллекторы (рис. 4.3.1) состоят из стеклянного или пластикового покрытия (одинарного, двойного, тройного), тепловоспринимающей панели, окрашенной со стороны, обращенной к солнцу, в черный цвет, изоляции на обратной стороне и корпуса (металлического, пластикового, стеклянного, деревянного).

    Рис. 4.3.1. Плоский солнечный коллектор: 1 – солнечные лучи; 2 – остекление; 3 – корпус; 4 – тепловоспринимающая поверхность; 5 – теплоизоляция; 6 – уплотнитель; 7 – собственное длинноволновое излучение тепловоспринимающей пластины.

    В качестве тепловоспринимающей панели можно использовать любой металлический или пластмассовый лист с каналами для теплоносителя. Изготавливаются тепловоспринимающие панели из алюминия или стали двух типов: лист-труба и штампованные панели (труба в листе). Пластмассовые панели из-за недолговечности и быстрого старения под действием солнечных лучей, а также из-за малой теплопроводности не находят широкого применения.

    Под действием солнечной радиации тепловоспринимающие панели разогреваются до температур 70-80 °С, превышающих температуру окружающей среды, что ведет к возрастанию конвективной теплоотдачи панели в окружающую среду и ее собственного излучения на небосвод. Для достижения более высоких температур теплоносителя поверхность пластины покрывают спектрально-селективными слоями, активно поглощающими коротковолновое излучение солнца и снижающими ее собственное тепловое излучение в длинноволновой части спектра. Такие конструкции на основе “черного никеля”, “черного хрома”, окиси меди на алюминии, окиси меди на меди и другие дорогостоящи (их стоимость часто соизмерима со стоимостью самой тепловоспринимающей панели). Другим способом улучшения характеристик плоских коллекторов является создание вакуума между тепловоспринимающей панелью и прозрачной изоляцией для уменьшения тепловых потерь (солнечные коллекторы четвертого поколения).

    Опыт эксплуатации солнечных установок на основе солнечных коллекторов выявил ряд существенных недостатков подобных систем. Прежде всего это высокая стоимость коллекторов. Увеличение эффективности их работы за счет селективных покрытий, повышение прозрачности остекления, вакуумирования, а также устройства системы охлаждения оказываются экономически нерентабельными. Существенным недостатком является необходимость частой очистки стекол от пыли, что практически исключает применение коллектора в промышленных районах. При длительной эксплуатации солнечных коллекторов, особенно в зимних условиях, наблюдается частый выход их из строя из-за неравномерности расширения освещенных и затемненных участков стекла за счет нарушения целостности остекления. Отмечается также большой процент выхода из строя коллекторов при транспортировке и монтаже. Значительным недостатком работы систем с коллекторами является также неравномерность загрузки в течение года и суток. Опыт эксплуатации коллекторов в условиях Европы и европейской части России при высокой доле диффузной радиации (до 50%) показал невозможность создания круглогодичной автономной системы горячего водоснабжения и отопления. Все гелиосистемы с солнечными коллекторами в средних широтах требуют устройства больших по объему баков-аккумуляторов и включения в систему дополнительного источника энергии, что снижает экономический эффект от их применения. В связи с этим наиболее целесообразно их использование в районах с высокой средней интенсивностью солнечной радиации (не ниже 300 Вт/м 2).

    Потенциальные возможности использования гелиоэнергетики на Украине

    На территории Украины энергия солнечной радиации за один среднегодовой световой день составляет в среднем 4 кВт ∙ час на 1м 2 (в летние дни – до 6 – 6.5 кВт ∙ час) т. е. около 1,5 тысячи кВт ∙ час за год на каждый квадратный метр. Это примерно столько же, сколько в средней Европе, где использование солнечной энергии носит самый широкий характер.

    Кроме благоприятных климатических условий на Украине имеются высоко квалифицированные научные кадры в области использования солнечной энергии. После возвращения проф. Бойко Б.Т. из ЮНЕСКО, где он возглавлял международную программу ЮНЕСКО по использованию солнечной энергии (1973-1979г.), он начал интенсивную научную и организационную деятельность в Харьковском политехническом институте (ныне Национальный Технический Университет - ХПИ) по развитию нового научного и учебного направления материаловедения для гелиоэнергетики. Уже в 1983 году в соответствии с приказом Минвуза СССР N 885 от 13.07.83 г. в Харьковском Политехническом Институте впервые в практике высшей школы СССР была начатая подготовка инженеров-физиков с профилированием в области материаловедения для гелиоэнергетики в рамках специальности “Физика металлов”. Это заложило основы создания в 1988 году выпускающей кафедры “Физическое материаловедение для электроники и гелиоэнергетики” (ФМЭГ). Кафедра ФМЭГ в содружестве с Научно-исследовательским институтом технологии приборостроения (Харьков) в рамках космической программы Украины принимала участие в создании кремниевых солнечных батарей с к.п.д. 13- 14% для украинских космических аппаратов.

    Начиная с 1994 года, кафедра ФМЭГ при поддержке Штутгардского Университета и Европейского Сообщества, а также Цюрихского Технического Университета и Швейцарского Национального Научного Общества принимает активное участие в научных исследованиях по разработке пленочных ФЭП.

    Описание:

    Особое значение при проектировании олимпийских объектов в Сочи имеет использование экологически чистых возобновляемых источников энергии и в первую очередь энергии солнечной радиации. В связи с этим будет интересен опыт разработки и внедрения пассивных солнечных систем теплоснабжения в жилых и общественных зданиях в провинции Ляонин (Китай), поскольку географическое расположение и климатические условия данной части Китая сопоставимы с аналогичными характеристиками Сочи.

    Опыт Китайской Народной Республики

    Чжао Цзиньлин , канд. техн. наук, Даляньский политехнический ун-т (КНР), стажер кафедры промышленных теплоэнергетических систем,

    А. Я. Шелгинский , доктор техн. наук, проф., науч. руководитель, МЭИ (ТУ), Москва

    Особое значение при проектировании олимпийских объектов в Сочи имеет использование экологически чистых возобновляемых источников энергии и в первую очередь энергии солнечной радиации. В связи с этим будет интересен опыт разработки и внедрения пассивных солнечных систем теплоснабжения в жилых и общественных зданиях в провинции Ляонин (Китай), поскольку географическое расположение и климатические условия данной части Китая сопоставимы с аналогичными характеристиками Сочи.

    Применение возобновляемых источников энергии (ВИЭ) для систем теплоснабжения является актуальным и весьма перспективным в настоящее время при условии грамотного подхода к данному вопросу, т. к. традиционные источники энергии (нефть, газ и т. п.) не безграничны. В связи с этим многие страны, включая КНР, переходят на использование экологически чистых возобновляемых источников энергии, одним из которых является теплота солнечного излучения.

    Возможность эффективного использования теплоты солнечного излучения в Китайской Народной Республике зависит от региона, поскольку климатические условия в разных частях страны сильно отличаются: от умеренного континентального (запад и север) с жарким летом и суровой зимой, субтропического в центральных районах страны до тропического муссонного на южном побережье и островах, обуславливается географическим местонахождением территории, на которой находится объект (таблица).

    Таблица
    Распределение солнечных ресурсов по территории Китая
    Зона Годовая
    длительность
    инсоляции, ч
    Солнечная
    радиация,
    MДж/(м 2 .год)
    Район
    Китая
    Соответствующие районы
    в других странах мира
    I 2 800-3 300 7 550-9 250 Тибет и т. д. Северные районы Пакистана и Индии
    II 3 000-3 200 5 850-7 550 Хэбэй и т. д. Джакарта (Индонезия)
    III 2 200-3 000 5 000-5 850 Пекин, Далянь и т. д. Вашингтон (США)
    IV 1 400-2 200 4 150-5 000 Хубжй, Хунань и т.д. Милан (Италия), Германия, Япония
    V 1 000-1 400 3 350-4 150 Сычуань и Гуйчжоу Париж (Франция), Москва (Россия)

    В провинции Ляонин интенсивность солнечной радиации составляет от 5 000 до 5 850 МДж/м 2 в год (в Сочи – около 5 000 МДж/м 2 в год), что позволяет активно применять системы отопления и охлаждения зданий на основе использования энергии солнечной радиации. Такие системы, преобразующие теплоту солнечного излучения и наружного воздуха, можно разделить на активные и пассивные.

    В пассивных системах солнечного теплоснабжения (ПССТ) используется естественная циркуляция нагретого воздуха (рис. 1), т. е. гравитационные силы.

    В активных системах солнечного теплоснабжения (рис. 2) задействованы дополнительные источники энергии для обеспечения ее работы (например, электроэнергия). Теплота солнечного излучения поступает на солнечные коллекторы, где частично аккумулируется и передается промежуточному теплоносителю, который насосами транспортируется и распределяется по помещениям.

    Возможны системы с нулевым потреблением теплоты и холода, где соответствующие параметры воздуха в помещениях обеспечиваются без дополнительных энергозатрат за счет:

    • необходимой тепловой изоляции;
    • выбора конструкционных материалов здания с соответствующими теплохладоаккумулирующими свойствами;
    • использования в системе дополнительных теплохладоаккумуляторов с соответствующими характеристиками.

    На рис. 3 представлена усовершенствованная схема работы пассивной системы теплоснабжения здания c элементами (шторы, клапаны), позволяющими более точно регулировать температуру воздуха внутри помещения. На южной стороне здания устанавливается так называемая стена Тромба, которая состоит из массивной стены (бетонной, кирпичной или каменной) и стеклянной перегородки, устанавливаемой на небольшом расстоянии от стены с внешней стороны. Наружная поверхность массивной стены окрашена в темный цвет. Через стеклянную перегородку нагревается массивная стена и воздух, находящийся между стеклянной перегородкой и массивной стеной. Нагретая массивная стена за счет излучения и конвективного теплообмена передает накопленную теплоту в помещение. Таким образом, в этой конструкции совмещаются функции коллектора и аккумулятора теплоты.

    Воздух, находящийся в прослойке между стеклянной перегородкой и стеной, в холодный период времени и в солнечный день используется в качестве теплоносителя для подачи теплоты в помещение. Для предотвращения теплооттоков в окружающую среду в холодный период времени в ночное время и избыточных теплопритоков в солнечные дни теплого периода времени используются шторы, которые значительно сокращают теплообмен между массивной стеной и внешней окружающей средой.

    Шторы выполняются из нетканых материалов с серебристым покрытием. Для обеспечения необходимой циркуляции воздуха используются воздушные клапаны, которые расположены в верхней и нижней частях массивной стены. Автоматическое управление работой воздушных клапанов позволяет поддерживать необходимые теплопритоки или теплооттоки в обслуживаемом помещении.

    Система пассивного солнечного теплоснабжения работает следующим образом:

    1. В холодный период времени (отопление):

    • солнечный день – штора поднята, клапаны открыты (рис. 3а). Это приводит к нагреву массивной стены через стеклянную перегородку и нагреву воздуха, находящегося в прослойке между стеклянной перегородкой и стеной. Теплота поступает в помещение от нагретой стены и нагретого в прослойке воздуха, циркулирующего через прослойку и помещение под воздействием гравитационных сил, вызванных разностью плотностей воздуха при разных температурах (естественная циркуляция);
    • ночь, вечер или пасмурный день – штора опущена, клапаны закрыты (рис. 3б). Теплооттоки во внешнюю среду значительно сокращаются. Температура в помещении поддерживается за счет поступления теплоты от массивной стены, накопившей эту теплоту от солнечного излучения;

    2. В теплый период времени (охлаждение):

    • солнечный день – штора опущена, нижние клапаны открыты, верхние – закрыты (рис. 3в). Штора предохраняет нагрев массивной стены от солнечного излучения. Наружный воздух поступает в помещение с затененной стороны дома и выходит через прослойку между стеклянной перегородкой и стеной в окружающую среду;
    • ночь, вечер или пасмурный день – штора поднята, нижние клапаны открыты, верхние – закрыты (рис. 3г). Наружный воздух поступает в помещение с противоположной стороны дома и выходит в окружающую среду через прослойку между стеклянной перегородкой и массивной стеной. Стена охлаждается в результате конвективного теплообмена с воздухом, проходящим через прослойку, и за счет оттока теплоты излучением в окружающую среду. Охлажденная стена в дневное время поддерживает необходимый температурный режим в помещении.

    Для расчета систем пассивного солнечного отопления зданий разработаны математические модели нестационарного теплопереноса при естественной конвекции для обеспечения помещений необходимыми температурными условиями в зависимости от теплофизических свойств ограждающих конструкций, суточного изменения солнечного излучения и температуры наружного воздуха .

    Для определения достоверности и уточнения полученных результатов в Даляньском политехническом университете разработана, изготовлена и исследована экспериментальная модель жилого дома, расположенного в г. Далянь, с пассивными солнечными системами отопления. Стена Тромба размещается только на южном фасаде, с автоматическими воздушными клапанами и шторами (рис. 3, фото).

    При проведении эксперимента использовались:

    • малая метеостанция;
    • приборы для измерения интенсивности солнечной радиации;
    • анемограф RHAT-301 для определения скорости воздуха в помещении;
    • термометрограф TR72-S и термопары для замеров температуры в помещении.

    Экспериментальные исследования проводились в теплый, переходной и холодный периоды года при различных метеорологических условиях.

    Алгоритм решения поставленной задачи представлен на рис. 4.

    Результаты эксперимента подтвердили достоверность полученных расчетных соотношений и позволили скорректировать отдельные зависимости с учетом конкретных граничных условий.

    В настоящее время в провинции Ляонин находится много жилых домов и школ, в которых используются пассивные солнечные системы отопления.

    Анализ пассивных солнечных систем теплоснабжения показывает, что они являются достаточно перспективными в отдельных климатических регионах в сравнении с остальными системами по следующим причинам:

    • дешевизна;
    • простота обслуживания;
    • надежность.

    К недостаткам пассивных солнечных систем отопления следует отнести то, что параметры воздуха внутри помещения могут отличаться от требуемых (расчетных) при изменении температуры наружного воздуха за пределами, принятыми в расчетах.

    Для достижения хорошего энергосберегающего эффекта в системах теплохладоснабжения зданий с более точным поддержанием температурных условий в заданных пределах целесообразно комбинированное использование пассивных и активных солнечных систем теплохладоснабжения.

    В связи с этим необходимы дальнейшие теоретические исследования и проведение экспериментальных работ на физических моделях с учетом ранее полученных результатов.

    Литература

    1. Zhao Jinling, Chen Bin, Liu Jingjun, Wang Yongxun Dynamic thermal performance simulation of an improved passive solar house with trombe wall ISES Solar word Congress, 2007, Beijing China, Vols 1-V: 2234–2237.

    2. Zhao Jinling, Chen Bin, Chen Cuiying, Sun Yuanyuan Study on dynamic thermal response of the passive solar heating systems. Journal of Harbin Institute of Technology (New Series). 2007. Vol. 14: 352–355.

    Соорудить солнечное отопление частного дома своими руками – не такая и сложная задача, как кажется неосведомленному обывателю. Для этого понадобятся навыки сварщика и материалы, доступные в любом строительном магазине.

    Актуальность создания солнечного отопления частного дома своими руками

    Получить полную автономию – мечта каждого владельца, затевающего частное строительство. Но действительно ли солнечная энергия способна отапливать жилой дом, особенно если устройство для ее накопления собрано в гараже?

    В зависимости от региона солнечный поток может давать от 50 Вт/кв.м в пасмурный день до 1400 Вт/кв.м при ясном летнем небе. При таких показателях даже примитивный коллектор с низким КПД (45-50%) и площадью 15 кв.м. может выдавать в год около 7000-10000 кВт*ч. А это сэкономленные 3 тонны дров для твердотопливного котла!

    • в среднем на квадратный метр устройства приходится 900 Вт;
    • чтобы повысить температуру воды, необходимо затратить 1,16 Вт;
    • учитывая также теплопотери коллектора, 1 кв.м сможет нагреть около 10 литров воды в час до температуры 70 градусов;
    • для обеспечения 50 л горячей воды, необходимой одному человеку, понадобится затратить 3,48 кВт;
    • сверившись с данными гидрометцентра о мощности солнечного излучения (Вт/кв.м) в регионе, необходимо 3480 Вт разделить на получившуюся мощность солнечного излучения – это и будет нужная площадь солнечного коллектора для нагрева 50 л воды.

    Как становится понятно, эффективное автономное отопление исключительно с использованием солнечной энергии осуществить довольно проблематично. Ведь в хмурую зимнюю пору солнечного излучения крайне мало, а разместить на участке коллектор площадью 120 кв.м. не всегда получится.

    Так неужели солнечные коллекторы нефункциональны? Не стоит заранее сбрасывать их со счетов. Так, с помощью подобного накопителя можно летом обходиться без бойлера – мощности будет достаточно для обеспечения семьи горячей водой. Зимой же удастся сократить затраты на энергоносители, если подавать уже нагретую воду из солнечного коллектора в электрический бойлер.
    Кроме того, солнечный коллектор станет отличным помощником тепловому насосу в доме с низкотемпературным отоплением (теплыми полами).

    Так, зимой нагретый теплоноситель будет использоваться в теплых полах, а летом излишки тепла можно отправить в геотермальный контур. Это позволит снизить мощность теплового насоса.
    Ведь геотермальное тепло не возобновляется, так что со временем в толще грунта образовывается все увеличивающийся «холодный мешок». Например, в обычном геотермальном контуре на начало отопительного сезона температура составляет +5 градусов, а в конце -2С. При подогреве же начальная температура поднимается до +15 С, а к концу отопительного сезона не падает ниже +2С.

    Устройство самодельного солнечного коллектора

    Для уверенного в своих силах мастера собрать тепловой коллектор не составит труда. Можно начать с небольшого устройства для обеспечения горячей воды на даче, а в случае успешного эксперимента перейти к созданию полноценной солнечной станции.

    Плоский солнечный коллектор из металлических труб

    Самый простой в исполнении коллектор – плоский. Для его устройства понадобится:

    • сварочный аппарат;
    • трубы из нержавеющей стали или меди;
    • стальной лист;
    • закаленное стекло или поликарбонат;
    • деревянные доски для рамы;
    • негорючий утеплитель, способный выдержать нагретый до 200 градусов металл;
    • черная матовая краска, устойчивая к высоким температурам.

    Сборка солнечного коллектора довольно проста:

    1. Трубы привариваются к стальному листу – он выступает в роли адсорбера солнечной энергии, поэтому прилегание труб должно быть максимально плотным. Все красится в матовый черный цвет.
    2. На лист с трубами кладется рама так, чтобы трубы оказались с внутренней стороны. Просверливаются отверстия для входа и выхода труб. Укладывается утеплитель. Если используется гигроскопичный материал, нужно позаботиться о гидроизоляции – ведь намокших утеплитель больше не будет защищать трубы от охлаждения.
    3. Утеплитель фиксируется листом ОСБ, все стыки заполняются герметиком.
    4. Со стороны адсорбера кладется прозрачное стекло или поликарбонат с небольшим воздушным зазором. Оно служит для предотвращения остывание стального листа.
    5. Фиксировать стекло можно с помощью деревянных оконных штапиков, предварительно проложив герметик. Он предотвратит попадание холодного воздуха и защитит стекло от сжатия рамы при нагревании и охлаждении.

    Для полноценного функционирования коллектора понадобится накопительный бак. Его можно сделать из пластиковой бочки, утепленной снаружи, в которой спиралью уложен теплообменник, соединенный с солнечным коллектором. Вход нагретой воды должен располагаться сверху, а выход холодной – снизу.

    Важно правильно разместить бак и коллектор. Чтобы обеспечить естественную циркуляцию воды, бак должен находиться выше коллектора, а трубы – иметь постоянный наклон.

    Солнечный нагреватель из подручных материалов

    Если со сварочным аппаратом дружбу свести так и не удалось, можно сделать простой солнечный нагреватель из того, что под рукой. Например, из жестяных банок. Для этого в дне делаются отверстия, сами банки скрепляются друг с другом герметиком, на него же садятся в местах соединения с ПВХ-трубами. Красятся в черный цвет и укладываются в раму под стекло также, как и обычные трубы.

    Фасад дома из солнечных батарей

    Почему бы вместо обычного сайдинга не отделать дом чем-то полезным? Например, сделав с южной стороны на всю стену солнечный нагреватель.

    Такое решение позволит оптимизировать расходы на отопление сразу по двум направлениям – снизить затраты на энергоноситель и существенно сократить теплопотери за счет дополнительного утепления фасада.

    Устройство просто до безобразия и не требует специальных инструментов:

    • на утеплитель уложен окрашенный оцинкованный лист;
    • поверх уложена нержавеющая гофрированная труба, также выкрашенная в черный;
    • все прикрыто листами поликарбоната и зафиксировано алюминиевыми уголками.

    Если же и этот способ кажется сложным, на видео представлен вариант из жести, полипропиленовых труб и пленки. Куда уж проще!

    Похожие публикации