Энциклопедия пожаробезопасности

Спиртовое брожение – магия превращения сахара в этиловый спирт. Спиртовое брожение Гомоферментативное молочно-кислое брожение

При спиртовом брожении помимо основных продуктов - спир­та и СО 2 , из сахаров возникает множество других, так называе­мых вторичных продуктов брожения. Из 100 г С 6 Н 12 О 6 образует­ся 48,4 г этилового спирта, 46,6 г диоксида углерода, 3,3 г глице­рина, 0,5 г янтарной кислоты и 1,2 г смеси молочной кислоты, ацетальдегида, ацетоина и других органических соединений.

Наряду с этим дрожжевые клетки в период размножения и логарифмического роста потребляют из виноградного сусла ами­нокислоты, необходимые для построения собственных белков. При этом образуются побочные продукты брожения, главным об­разом высшие спирты.

В современной схеме спиртового брожения насчитывается 10-12 фаз биохимических превращений гексоз под действием комплекса ферментов дрожжей. В упрощенном виде можно вы­делить три этапа спиртового брожения.

I этап - фосфорилирование и распад гексоз. На этом этапе протекает несколько реакций, в результате которых гексоза пре­вращается в триозофосфат:

АТФ → АДФ

Главную роль в передаче энергии в биохимических реакциях играют АТФ (аденозинтрифосфат) и АДФ (аденозиндифосфат). Они входят в состав ферментов, аккумулируют большое коли­чество энергии, необходимой для осуществления жизненных про­цессов, и представляют собой аденозин - составную часть ну­клеиновых кислот - с остатками фосфорной кислоты. Вначале образуется адениловая кислота (монофосфат аденозина, или аденозинмонофосфат - АМФ):

Если обозначить аденозин буквой А, то строение АТФ может быть представлено в следующем виде:

А-О-Р-О ~ Р - О ~ Р- ОН

Значком с ~ обозначены так называемые макроэргические фосфатные связи, чрезвычайно богатые энергией, которая выде­ляется при отщеплении остатков фосфорной кислоты. Передача энергии с АТФ на АДФ может быть представлена следующей схе­мой:

Выделяющаяся энергия используется дрожжевыми клетками для обеспечения жизненных функций, в частности их размноже­ния. Первым актом выделения энергии и является образование фосфорных эфиров гексоз - фосфорилирование их. Присоедине­ние к гексозам остатка фосфорной кислоты от АТФ происходит под действием фермента фосфогексокиназы, поставляемого дрожжами (молекулу фосфата обозначим буквой Р):

Глюкоза Глюкозо-6-фосфат фруктозо-1,6-фосфат

Как видно из приведенной схемы, фосфорилирование проис­ходит дважды, причем фосфорный эфир глюкозы под действием фермента изомеразы обратимо превращается в фосфорный эфир фруктозы, имеющий симметричное фурановое кольцо. Симмет­ричное расположение остатков фосфорной кислоты по концам молекулы фруктозы облегчает ее последующий разрыв как раз в середине. Распад гексозы на две триозы катализирует фермент альдолаза; в результате распада образуется неравновесная смесь 3-фосфоглицеринового альдегида и фосфодиоксиацетона:

Фосфоглицери-новый альдегид (3,5 %) Фосфодиокси-ацетон (96,5 %)

В дальнейших реакциях участвует только 3-фосфоглицерино­вый альдегид, содержание которого постоянно пополняется под действием фермента изомеразы на молекулы фосфодиоксиацетона.

ІІ этап спиртового брожения - образование пировиноградной кислоты. На втором этапе триозофосфат в виде 3-фосфоглицеринового альдегида под действием окислительного фермента дегидрогеназы окисляется в фосфоглицериновую кислоту, а она при участии соответствую­щих ферментов (фосфоглицеромутазы и энолазы) и системы ЛДФ - АТФ превращается в пировиноградную кислоту:

Вначале каждая молекула 3-фосфоглицеринового альдегида присоединяет к себе еще один остаток фосфорной кислоты (за счет молекулы неорганического фосфора) и образуется 1,3-дифосфоглицериновый альдегид. Затем в анаэробных условиях про­исходит его окисление в 1,3-дифосфоглицериновую кислоту:

Активной группой дегидрогеназы является кофермент сложного органического строения НАД (никотинамидадениндинуклеотид), фиксирующий своим никотинамидным ядром два атома водорода:

НАД+ + 2Н+ + НАД Н2

НАД окисленный НАД восстановленный

Окисляя субстрат, кофермент НАД становится обладателем свободных ионов водорода, что придает ему высокий восстано­вительный потенциал. Поэтому бродящее сусло всегда характеризуется высокой восстанавливающей способностью, что имеет большое практическое значение в виноделии: понижается рН среды, восстанавливаются временно окисленные вещества, погибают патогенные микроорганизмы.

В заключительной фазе II этапа спиртового брожения фермент фосфотрансфераза дважды катализирует перенос остатка фосфорной кислоты, а фосфоглицеромутаза перемещает его от 3-го угле­родного атома ко 2-му, открывая возможность ферменту энолазе образовать пировиноградную кислоту:

1,3-Дифосоглицериновая кислота 2-Фосфогглицериновая кислота Пировиноградная кислота

В связи с тем что из одной молекулы дважды фосфорилированной гексозы (израсходовано 2 АТФ) получаются две молеку­лы дважды фосфорилированных триоз (образовано 4 АТФ), чи­стым энергетическим балансом ферментативного распада саха­ров является образование 2 АТФ. Эта энергия обеспечивает жиз­ненные функции дрожжей и вызывает повышение температуры бродящей среды.

Все реакции, предшествующие образованию пировиноградной кислоты, присущи как анаэробному сбраживанию сахаров, так и дыханию простейших организмов и растений. III этап име­ет отношение только к спиртовому брожению.

III этап спиртового брожения - образование этилового спирта. На заключитель­ном этапе спиртового брожения пировиноградная кислота под действием фермента декарбоксилазы декарбоксилируется с об­разованием ацетальдегида и диоксида углерода, а с участием фермента алкогольдегидрогеназы и кофермента НАД-Н2 проис­ходит восстановление ацетальдегида в этиловый спирт:

Пировиноградная кислота Ацетилальдегид Этиловый спирт

Если в бродящем сусле есть избыток свободной сернистой кислоты, то часть ацетальдегида связывается в альдегидсернистое соединение: в каждом литре сусла 100 мг Н2SO3 связывают 66 мг СН3СОН.

Впоследствии при наличии кислорода это нестойкое соедине­ние распадается, и в виноматериале обнаруживают свободный ацетальдегид, что особенно нежелательно для шампанских и сто­ловых виноматериалов.

В сжатом виде анаэробное превращение гексозы в этиловый спирт может быть представлено следующей схемой:

Как видно из схемы спиртового брожения, сперва образуются фосфорные эфиры гексоз. При этом молекулы глюкозы и фруктозы под действием фермента гексокеназы присоединяют остаток фосфорной кислоты от аденозиттрифосфата (АТФ), при этом образуется глюкоза-6-фосфат и аденозитдифосфат (АДФ).

Глюкоза-6-фосфат под действием фермента изомеразы превращается в фруктозу-6-фосфат, присоединяющий еще один остаток фосфорной кислоты из АТФ и образующий фруктозу-1,6-дифосфат. Эта реакция катализируется фосфофруктокиназой. Образованием этого химического соединения заканчивается первая подготовительная стадия анаэробного распада сахаров.

В результате этих реакций молекула сахара переходит в оксиформу, приобретает большую лабильность и становится более способной к ферментативным преобразованиям.

Под влиянием фермента альдолазы фруктоза-1, 6-дифосфат расщепляется на глицеринальдегидофосфорную и диоксиацетонофосфорную кислоты, способные превращаться одна в одну под действием фермента триозофосфатизомеразы. Дальнейшему преобразованию подвергается фосфоглицериновый альдегид, которого образуется приблизительно 3 % по сравнению с 97 % фосфодиоксиацетона. Фосфодиоксиацетон, по мере использования фосфоглицеринового альдегида, превращается под действием изомеразы фосфотриоз в 3-фосфоглицериновый альдегид.

На второй стадии 3-фосфоглицериновый альдегид присоединяет еще один остаток фосфорной кислоты (за счет неорганического фосфора) с образованием 1, 3-дифосфоглицеринового альдегида, который дегидруется под действием триозофосфатдегидрогеназы и дает 1, 3-дифосфоглицериновую кислоту. Водород, в этом случае, переносится на окисленную форму кофермента НАД. 1, 3-дифосфоглицериновая кислота, отдавая АДФ (под действием фермента фосфоглицераткеназы) один остаток фосфорной кислоты, превращается в 3-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеромутазы превращается в 2-фосфоглицериновую кислоту. Последняя, под действием фосфопируватгидротазы, превращается в фосфоэнолпировиноградную кислоту. Дальше, при участии фермента пируваткеназы, фосфоэнолпировиноградная кислота передает остаток фосфорной кислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула энолпировиноградной кислоты переходит в пировиноградную кислоту.

Третья стадия спиртового брожения характеризуется расщеплением пировиноградной кислоты под действием фермента пируватдекарбоксилазы на диоксид углерода и уксусный альдегид, который под действием фермента алкогольдегидрогеназы (коферментом ее является НАД) восстанавливается в этиловый спирт.

Суммарное уравнение спиртового брожения может быть представлено так :

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О

Таким образом, при брожении происходит преобразование одной молекулы глюкозы в две молекулы этанола и две молекулы диоксида углерода.

Но указанный ход брожения не единственный. Если, например, в субстрате нет фермента пируватдекарбоксилазы, то не происходит расщепление пировиноградной кислоты до уксусного альдегида и восстановлению подвергается непосредственно пировиноградная кислота, превращаясь в молочную кислоту в присутствии лактатдегидрогеназы.

В виноделии брожение глюкозы и фруктозы происходит в присутствии бисульфита натрия. Уксусный альдегид, образующийся при декарбоксилировании пировиноградной кислоты, удаляется в результате связывания бисульфитом. Место уксусного альдегида занимают диоксиацетонфосфат и 3-фосфоглицериновый альдегид, они получают водород от восстановленных химических соединений, образуя глицерофосфат, который превращается в результате дефосфорилирования в глицерин. Это вторая форма брожения по Нейбергу. По этой схеме спиртового брожения происходит накопление глицерина и уксусного альдегида в виде бисульфитной производной.

Вещества, образующиеся при брожении.

В настоящее время в продуктах брожения найдено около 50 высших спиртов, которые обладают разнообразными запаха­ми и существенно влияют на аромат и букет вина. В наиболь­ших количествах при брожении образуются изоамиловый, изобутиловый и N-пропиловый спирты. В мускатных игристых и столовых полусладких винах, получаемых путем так называемого биологического азотопонижения, в большом количестве (до 100 мг/дм3) найдены ароматические высшие спирты β-фенилэтанол (ФЭС), тирозол, терпеновый спирт фарнезол, обладающие ароматом розы, ландыша, цветов липы. Их присутствие в неболь­шом количестве желательно. Кроме того, при выдержке вина высшие спирты вступают в этерификацию с летучими кислотами и образуют сложные эфиры, придающие вину благоприятные эфирные тона зрелости букета.

В дальнейшем было доказано, что основная масса алифатических высших спиртов образуется из пировиноградной кислоты путем переаминирования и непосредственного биосинтеза с участием аминокислот и ацетальдегида. Но наиболее ценные ароматические высшие спирты образуются только из соответствующих аминокислот ароматического ряда, например:

Образование высших спиртов в вине зависит от многих факторов. В нормальных условиях их накапливается в среднем 250 мг/дм3. При медленном длительном брожении количество высших спиртов возрастает, при повышении температуры брожения до 30 °С - уменьшается. В условиях поточного непрерывно брожения размножение дрожжей очень ограничено и высших спиртов образуется меньше, чем при периодическом способе брожения.

При уменьшении количества дрожжевых клеток в результате охлаждения, отстаивания и грубой фильтрации забродившего сусла происходит медленное накопление биомассы дрожжей и одновременно растет количество высших спиртов, прежде всего ароматического ряда.

Повышенное количество высших спиртов нежелательно для столовых белых сухих, шампанских и коньячных виноматериалов, однако придает многообразие оттенков в аромате и вкусе красным столовым, игристым и крепким винам.

Спиртовое брожение виноградного сусла связано также с образованием высокомолекулярных альдегидов и кетонов, летучих и жирных кислот и их эфиров, имеющих значение в формировании букета и вкуса вина.

Первичным источником энергии организмов является Солнце. Кванты света поглощаются хлорофиллом, содержащимся в хлоро- пластах зеленых клеток растений, и накапливаются в виде энергии химических связей органических веществ - продуктов фотосинтеза. Гетеротрофные клетки растений и животных получают энергию из различных органических веществ (углеводов, жиров и белков), синтезируемых автотрофными клетками. Живые существа, способные использовать световую энергию, называют фототрофами, а энергию химических связей - хемотрофами .

Процесс потребления энергии и вещества называется питанием. Известны два способа питания: голозойный - посредством захвата частиц пищи внутрь тела и голофитный - без захвата, посредством всасывания растворенных пищевых веществ через поверхностные структуры организма. Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма. Дыханием можно назвать процесс, в котором окисление органических веществ ведет к выделению энергии. Внутреннее, тканевое или внутриклеточное дыхание протекает в клетках. Большинство организмов характеризуется аэробным дыханием, для которого необходим кислород (рис. 8.4). У анаэробов, обитающих в среде, лишенной кислорода (бактерии), или у аэробов при его недостатке диссимиляция протекает по типу брожения (анаэробного дыхания). Основными веществами, расщепляющимися в процессе дыхания, являются углеводы - резерв первого порядка. Липиды представляют резерв второго порядка, и лишь в том случае, когда запасы углеводов и липидов исчерпаны, для дыхания используются белки - резерв третьего порядка. В процессе дыхания происходит передача электронов по системе взаимосвязанных молекул-переносчиков: потеря электронов молекулой называется окислением, присоединение электронов к молекуле (акцептору) - восстановлением, освобождающаяся при этом энергия запасается в макроэргических связях молекулы АТФ. Один из наиболее распространенных акцепторов в биосистемах - кислород. Энергия освобождается небольшими порциями, главным образом в электронно-транспортной цепи.

Энергетический обмен, или диссимиляция, представляет собой совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания единый процесс энергетического обмена можно условно разделить на несколько последовательных этапов. У большинства живых организмов - аэробов, живущих в кислородной среде, в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный и кислородный, в процессе которых органические вещества распадаются до неорганических соединений.

Рис. 8.4.

Первый этап. В пищеварительной системе многоклеточных органические вещества пищи под действием соответствующих ферментов расщепляются на простые молекулы: белки - на аминокислоты, полисахариды (крахмал, гликоген) - на моносахариды (глюкозу), жиры - на глицерин и жирные кислоты, нуклеиновые кислоты - на нуклеотиды и т.д. У одноклеточных внутриклеточное расщепление происходит под действием гидролитических ферментов лизосом. В ходе пищеварения выделяется небольшое количество энергии, которая рассеивается в виде тепла, а образовавшиеся небольшие органические молекулы могут подвергнуться дальнейшему расщеплению (диссимиляции) или использоваться клеткой как «строительный материал» для синтеза собственных органических соединений (ассимиляции).

Второй этап - бескислородный, или брожение, осуществляется в цитоплазме клетки. Образовавшиеся на подготовительном этапе вещества - глюкоза, аминокислоты и др. - подвергаются дальнейшему ферментативному распаду без использования кислорода. Основным источником энергии в клетке является глюкоза. Бескислородное, неполное расщепление глюкозы (гликолиз) - многоступенчатый процесс расщепления глюкозы до пировиноградной кислоты (П В К), а затем до молочной, уксусной, масляной кислот или этилового спирта, происходящий в цитоплазме клетки. В ходе реакций гликолиза выделяется большое количество энергии - 200 кДж/моль. Часть этой энергии (60%) рассеивается в виде теплоты, остальное (40%) используется на синтез АТФ. Продуктами гликолиза являются пировиноградная кислота, водород в форме НАД Н (никотинамидадениндинуклеотид) и энергия в форме АТФ.

Суммарная реакция гликолиза имеет следующий вид:

При разных видах брожения дальнейшая судьба продуктов гликолиза различна. В клетках животных, испытывающих временный недостаток кислорода, например в мышечных клетках человека при чрезмерной физической нагрузке, а также у некоторых бактерий происходит молочнокислое брожение, при котором ПВК восстанавливается до молочной кислоты:

Известное всем молочнокислое брожение (при скисании молока, образовании сметаны, кефира и т.д.) вызывается молочнокислыми грибками и бактериями. При спиртовом брожении (растения, некоторые грибы, пивные дрожжи) продуктами гликолиза являются этиловый спирт и СО2. У других организмов продуктами брожения могут быть бутиловый спирт, ацетон, уксусная кислота и т.д.

Третий этап энергетического обмена - полное окисление, или аэробное дыхание, происходит в митохондриях. В ходе цикла три- карбоновых кислот (цикла Кребса) от ПВК отщепляется С0 2 , а двухуглеродный остаток присоединяется к молекуле коэнзима А с образованием ацетилкоэнзима А, в молекуле которого запасается энергия

(ацетил-КоА образуется также при окислении жирных кислот и некоторых аминокислот). В последующем циклическом процессе (рис. 8.4) происходят взаимопревращения органических кислот, в результате из одной молекулы ацетилкоэнзима А образуются две молекулы СО2, четыре пары атомов водорода, переносимые НАДН 2 и ФАДН 2 (фла- винадениндинуклеотидом), и две молекулы АТФ. В дальнейших процессах окисления важную роль играют белки - переносчики электронов. Они транспортируют атомы водорода к внутренней мембране митохондрий, где передают их по цепи встроенных в мембрану белков. Транспорт частиц по цепи переноса осуществляется таким образом, что протоны остаются на внешней стороне мембраны и накапливаются в межмембранном пространстве, превращая его в Н+-резервуар, а электроны передаются на внутреннюю поверхность внутренней митохондриальной мембраны, где соединяются в конечном итоге с кислородом:

В результате внутренняя мембрана митохондрий изнутри заряжается отрицательно, а снаружи - положительно. Когда разность потенциалов на мембране достигает критического уровня (200 мВ), положительно заряженные частицы Н+ силой электрического поля начинают проталкиваться через канал АТФазы (фермента, встроенного во внутреннюю мембрану митохондрий) и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду. Процесс на этом этапе сопряжен с окислительным фосфорилированием - присоединением к АДФ неорганического фосфата и образованием АТФ. Приблизительно 55% энергии запасается в химических связях АТФ, а 45% - рассеивается в виде теплоты.

Суммарные реакции клеточного дыхания:

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты, соединяющихся между собой макроэр- гическими связями (30,6 кДж).

Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения химической, осмотической, механической и других видов работ. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе.

Опорные точки

  • Метаболизм складывается из двух тесно взаимосвязанных и противоположно направленных процессов: ассимиляции и диссимиляции.
  • Подавляющее большинство процессов жизнедеятельности, протекающих в клетке, требуют затрат энергии в виде АТФ.
  • Расщепление глюкозы у аэробных организмов, при котором за бескислородным этапом следует расщепление молочной кислоты с участием кислорода, в 18 раз более эффективно с энергетической точки зрения, чем анаэробный гликолиз.

Вопросы и задания для повторения

  • 1. Что такое диссимиляция? Охарактеризуйте этапы этого процесса. В чем заключается роль АТФ в обмене веществ в клетке?
  • 2. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.
  • 3. Какие организмы называют гетеротрофными? Приведите примеры.
  • 4. Где, в результате каких преобразований молекул и в каком количестве образуется АТФ у живых организмов?
  • 5. Какие организмы называют автотрофными? На какие группы подразделяют автотрофов?

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз .

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

А + О 2 → АО 2 ,

так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:

АН 2 + В → А + ВН 2

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Fe 2+ → Fe 3+ + e — .

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н 2:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + → 2С 3 Н 4 О 3 + 2АТФ + 2Н 2 О + 2НАД·Н 2 .

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

  1. С 3 Н 4 О 3 → СО 2 + СН 3 СОН,
  2. СН 3 СОН + НАД·Н 2 → С 2 Н 5 ОН + НАД + .

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

С 3 Н 4 О 3 + НАД·Н 2 → С 3 Н 6 О 3 + НАД + .

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО 2 ; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н 2 , ФАД·Н 2), а также одна молекула АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С 6 Н 12 О 6 + 6Н 2 О → 6СО 2 + 4АТФ + 12Н 2 .

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

О 2 + e — → О 2 — .

Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О 2 —), с другой — положительно (за счет Н +). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.

Спиртовое брожение лежит в основе приготовления любого алкогольного напитка. Это самый простой и доступный способ получить этиловый спирт. Второй метод – гидратация этилена, является синтетическим, применяется редко и только в производстве водки. Мы рассмотрим особенности и условия брожения, чтобы лучше понять, как сахар превращается спирт. С практической точки эти знания помогут создать оптимальную среду для дрожжей – правильно поставить брагу, вино или пиво.

Спиртовое брожение – это процесс превращения дрожжами глюкозы в этиловый спирт и углекислый газ в анаэробной (бескислородной) среде. Уравнение следующее:

C6H12O6 → 2C2H5OH + 2CO2.

В результате одна молекула глюкозы превращается в 2 молекулы этилового спирта и 2 молекулы углекислого газа. При этом происходит выделение энергии, что приводит к незначительному повышению температуры среды. Также в процессе брожения образуются сивушные масла: бутиловый, амиловый, изоамиловый, изобутиловый и другие спирты, которые являются побочными продуктами обмена аминокислот. Во многом сивушные масла формируют аромат и вкус напитка, но большинство из них вредны для человеческого организма, поэтому производители стараются очистить спиртное от вредных сивушных масел, но оставить полезные.

Дрожжи – это одноклеточные грибы шарообразной формы (около 1500 видов), активно развивающиеся в жидкой или полужидкой среде богатой сахарами: на поверхности плодов и листьев, в нектаре цветов, мертвой фитомассе и даже почве.


Дрожжевые клетки под микроскопом

Это одни из самых первых организмов, «прирученных» человеком, в основном дрожжи используются для выпечки хлеба и приготовления спиртных напитков. Археологами установлено, что древние египтяне за 6000 лет до н. э. научились делать пиво, а к 1200 году до н. э. освоили выпечку дрожжевого хлеба.

Научное исследование природы брожения началось в XIX веке, первыми химическую формулу предложили Ж. Гей-Люссак и А. Лавуазье, но осталась неясной сущность процесса, возникло две теории. Немецкий ученый Юстус фон Либих предполагал, что брожение имеет механическую природу – колебания молекул живых организмов передаются сахару, который расщепляется на спирт и углекислый газ. В свою очередь, Луи Пастер считал, что в основе процесса брожения биологическая природа – при достижении определенных условий дрожжи начинают перерабатывать сахар в спирт. Пастеру опытным путем удалось доказать свою гипотезу, позже биологическую природу брожения подтвердили другие ученые.

Русское слово «дрожжи» происходит от старославянского глагола «drozgati», что значит «давить» или «месить», прослеживается явная связь с выпечкой хлеба. В свою очередь, английское название дрожжей «yeast» восходит от староанглийских слов «gist» и «gyst», которые значат «пена», «выделять газ» и «кипеть», что ближе к винокурению.

В качестве сырья для спирта используют сахар, сахаросодержащие продукты (в основном фрукты и ягоды), а также крахмалосодержащее сырье: зерно и картофель. Проблема в том, что дрожжи не могут сбродить крахмал, поэтому сначала нужно расщепить его до простых сахаров, это делается ферментом – амилазой. Амилаза содержится в солоде – пророщенном зерне, и активируется при высокой температуре (обычно 60-72 °C), а сам процесс преобразования крахмала до простых сахаров называется «осахариванием». Осахаривание солодом («горячее») можно заменить внесением синтетических ферментов, при котором не нужно нагревать сусло, поэтому метод называется «холодным» осахариванием.

Условия брожения

На развитие дрожжей и ход брожения влияют следующие факторы: концентрация сахара, температура и свет, кислотность среды и наличие микроэлементов, содержание спирта, доступ кислорода.

1. Концентрация сахара. Для большинства рас дрожжей оптимальная сахаристость сусла составляет 10-15%. При концентрации выше 20% брожение ослабевает, а при 30-35% почти гарантированно прекращается, поскольку сахар становится консервантом, препятствующим работе дрожжей.

Интересно, что при сахаристости среды ниже 10% брожение тоже протекает слабо, но прежде чем подслащать сусло, нужно помнить о максимальной концентрации спирта (4-й пункт), полученного в ходе брожения.

2. Температура и свет. Для большинства штаммов дрожжей оптимальная температура брожения – 20-26 °C (пивным дрожжам низового брожения требуется 5-10 °C). Допустимый диапазон – 18-30 °C. При более низких температурах брожение существенно замедляется, а при значениях ниже нуля процесс останавливается и дрожжи «засыпают» — впадают в анабиоз. Для возобновления брожения достаточно поднять температуру.

Слишком высокая температура уничтожает дрожжи. Порог выносливости зависит от штамма. В общем случае опасными считаются значения выше 30-32 °C (особенно для винных и пивных), однако существуют отдельные расы спиртовых дрожжей, способные выдержать температуру сусла до 60 °C. Если дрожжи «сварились», для возобновления брожения придется добавить в сусло новую партию.

Процесс брожения сам по себе вызывает повышение температуры на несколько градусов – чем больше объем сусла и активнее работа дрожжей, тем сильнее нагрев. На практике коррекцию температуры делают, если объем больше 20 литров – достаточно держать температуру ниже 3-4 градусов от верхней границы.

Емкость оставляют в темном месте или накрывают плотной тканью. Отсутствие прямых солнечных лучей позволяет избежать перегрева и позитивно сказывается на работе дрожжей – грибки не любят солнечного света.

3. Кислотность среды и наличие микроэлементов. Среда кислотностью 4.0-4.5 рН способствует спиртовому брожению и подавляет развитие сторонних микроорганизмов. В щелочной среде выделяются глицерин и уксусная кислота. В нейтральном сусле брожение протекает нормально, но активно развиваются патогенные бактерии. Кислотность сусла корректируют перед внесением дрожжей. Зачастую винокуры-любители повышают кислотность лимонной кислотой или любым кислым соком, а для снижения гасят сусло мелом или разбавляют водой.

Кроме сахара и воды дрожжам требуются другие вещества – в первую очередь это азот, фосфор и витамины. Эти микроэлементы дрожжи используют для синтеза аминокислот, входящих в состав их белка, а также для размножения на начальном этапе брожения. Проблема в том, что в домашних условиях точно определить концентрацию веществ не получится, а превышение допустимых значений может негативно сказаться на вкусе напитка (особенно это касается вина). Поэтому предполагается, что крахмалосодержащее и фруктовое сырье изначально содержит требуемое количество витаминов, азота и фосфора. Обычно подкармливают только брагу из чистого сахара.

4. Содержание спирта. С одной стороны, этиловый спирт – продукт жизнедеятельности дрожжей, с другой – это сильный токсин для дрожжевых грибков. При концентрации спирта в сусле 3-4% брожение замедляется, этанол начинает тормозить развитие дрожжей, при 7-8% дрожжи уже не размножаются, а при 10-14% перестают перерабатывать сахар – брожение прекращается. Только отдельные штаммы культурных дрожжей, выведенных в лабораторных условиях, толерантны к концентрации спирта выше 14% (некоторые продолжают брожение даже при 18% и выше). Из 1% сахара в сусле получается около 0.6% спирта. Это значит, что для получения 12% спирта требуется раствор с содержанием сахара 20% (20 × 0.6 = 12).

5. Доступ кислорода. В анаэробной среде (без доступа кислорода) дрожжи нацелены на выживание, а не размножение. Именно в таком состоянии выделяется максимум алкоголя, поэтому в большинстве случаев нужно оградить сусло от доступа воздуха и одновременно организовать отвод углекислого газа с емкости, чтобы избежать повышенного давления. Эта задача решается путем установки гидрозатвора.

При постоянном контакте сусла с воздухом возникает опасность скисания. В самом начале, когда брожение активное, выделяющийся углекислый газ выталкивает воздух от поверхности сусла. Но в конце, когда брожение ослабевает и углекислоты появляется всё меньше, воздух попадает в незакрытую емкость с суслом. Под воздействием кислорода активируются уксуснокислые бактерии, которые начинают перерабатывать этиловый спирт на уксусную кислоту и воду, что приводит к порче вина, снижению выхода самогона и появлению у напитков кислого привкуса. Поэтому так важно закрыть емкость гидрозатвором.

Однако для размножения дрожжей (достижения оптимального их количества) требуется кислород. Обычного достаточно той концентрации, что находится в воде, но для ускоренного размножения брагу после внесения дрожжей оставляют на несколько часов открытой (с доступом воздуха) и несколько раз перемешивают.

Брожение основано на гликолитическом пути распада углеводов. Различают: гомоферментативное молочнокислое (ГФМ), спиртовое, пропионовое, маслянокислое, ацетонобутиловое.
Брожение - это эволюционно самый древний и примитивный путь получения энергии бактериальной клеткой. АТФ образуется в результате окисления органического субстрата по механизму субстратного фосфорилирования. Брожение происходит в анаэробных условиях. Примитивность брожения объясняется тем, что при брожении происходит расщепление субстрата не полностью, а образованные в ходе брожения вещества (спирты, органические кислоты и т.д.) содержат внутренние запасы энергии.
Количество выделенной энергии при брожении незначительно 1 г/моль глюкозы эквивалентен2 - 4 молекулам АТФ. Микроорганизмы бродящего типа вынуждены интенсивнее збраживать субстрат, чтобы обеспечить себя энергией. Основная проблема брожения - решение донорно-акцепторных связей. Донорами электронов являются органические субстраты, а акцептором электронов, который определяет судьбу брожения представляет основную задачу. Конечный продукт брожения дает название виду данного процесса.

Химизм процесса брожения

В процессе брожения в условиях анаэробиоза в центре находится проблема выработки энергии при расщеплении углеводов. Основным механизмом является гликолитический путь распада (Эмбдена - Мейергоффа - Парнаса, гексозо-дифосфатный путь). Этот путь наиболее распространен, существую 2 гликолитических пути, которые встречаются в меньшей степени: окислительный пентозо-фосфатный путь (Варбурга - Диккенса - Хорекера), путь Энтнера - Дударова (КДФГ-путь).
Следует обратить вимание, что все эти механизмы нельзя рассматривать как брожение, так как они лежат в основе дыхания. Брожение начинается тогда, когда происходит утилизация оторвавшегося от субстрата протона или электрона и присоединения на акцептор.
ГЛИКОЛИЗ
Глюкоза под действием гексаминазы фосфорилируется в положении 6 - превращается в глюкозо-6-фосфат - метаболически более активную форму глюкозы. Донором фосфата выступает молекула АТФ.Глюкоза-6-фосфат изомеризуется в фруктозо-6-фосфат. Реакция обратима, уровень присутствия 2 веществ в зоне реакции одинаков.Фруктоза-6-фосфат присоединяет фосфатную группу к первому атому С и превращается в фруктоза-1,6-дифосфат. Реакции идёт с затратой энергии АТФ и катализируется фруктозо-1,6-дифосфат альдолазой (основной регуляторный фермент гликолиза).
Фруктозо-1,6-дифосфат расщепляется на 2 фосфотриозы триозофосфатизомеразой. В результате образуются 2 триозы:фосфодиоксиацетон и 3-фосглицеральдегид (3-ФГА). Эти 2 триозы могут изомеризоваться одна в другую и проходить трансформацию до пирувата по одинаковому механизму. Это восстановительный этап (идёт с выработкой энергии).

Гликолиз
Гексокиназа
Глюкозо-6-фосфатизомераза
6-Фосфофруктокиназа
Альдолаза
Триозофосфатизомераза
Гліцеральдегидфосфатдегидрогеназа
Фосфоглицераткиназа
Фосфоглицеромутаза
Енолаза
Пируваткиназа
Произошло образование 3-ФГК. Теперь можно подвести некоторые итоги. Клетка на этом этапе "вернула" свои энергетические затраты: 2 молекулы АТФ были затрачены и 2 молекулы АТФ синтезировались на 1 молекулу глюкозы. На этом же этапе в реакции окисления 3-ФГА до 1,3-ФГК и образования АТФ имеет место первое субстратное фосфорилирование. Энергия освобождается и запасается в макроэргических фосфатных связях АТФ в процессе перестройки сбраживаемого субстрата при участии ферментов. Первое субстратное фосфорилирование носит еще название фосфорилирования на уровне 3-ФГА. После образования 3-ФГК фосфатная группа из третьего положения переносится во второе. Далее происходит отщепление молекулы воды от второго и третьего атомов углерода 2-ФГК, катализируемое ферментом энолазой, и образуется фосфоенолпировиноградная кислота. В результате происшедшей дегидратации молекулы 2-ФГК степень окисления ее второго углеродного атома увеличивается, а третьего — уменьшается. Дегидратация молекулы 2-ФГК, приводящая к образованию ФЕП, сопровождается перераспределением энергии внутри молекулы, в результате чего фосфатная связь у второго углеродного атома из низкоэнергетической в молекуле 2-ФГК превращается в высокоэнергетическую в молекуле ФЕП. Молекула ФЕП становится донором богатой энергией фосфатной группы, которая переносится на АДФ с помощью фермента пируваткиназы. Таким образом, в процессе превращения 2-ФГК в пировиноградную кислоту имеет место высвобождение энергии и запасание ее в молекуле АТФ. Это второе субстратное фосфорилирование. В результате внутримолекулярного окислительно-восстановительного процесса одна молекула и донирует и акцептирует электроны. В процессе второго субстратного фосфорилирования образуется еще молекула АТФ; в итоге общий энергетический выигрыш процесса составляет 2 молекулы АТФ на 1 молекулу глюкозы. Такова энергетическая сторона процесса гомоферментативного молочнокислого брожения. Энергетический баланс процесса: С6+2АТФ=2С3+4 АТФ+2НАДФ∙Н2

ГОМОФЕРМЕНТАТИВНОЕ МОЛОЧНО-КИСЛОЕ БРОЖЕНИЕ

Осуществляется молочно-кислым бактериями. Которые расщепляют углеводы по гликолитическому пути с последним образованием из пирувата молочной кислоты. У ГФМК- бактерий проблема донорно-акцепторой связи решается самым простым путём - этот вид брожения рассматривают как эволюционно самый древний механизм.
В процессе брожения пировиноградная кислота восстанавливается Н+ оторвавшимся от глюкозы. На пируват сбрасывается Н2 с НАДФ∙Н2. В результате чего образуется молочная кислота. Энергетический выход составляет 2 молекулы АТФ.
Молочно-кислое брожение осуществляют бактерии рода: Streptococcus, Lactobacillus,Leuconostoc.Все они Г+ (являются палочками или кокками) неспорообразующие (Sporolactobacillus образуют споры). По отношению к кислороду молочно-кислые бактерии относятся к аэротолерантным, являются строгими анаэробами, но способны существовать в атмосфере кислорода. Они имеют ряд ферментов, которые нейтрализуют токсическое действие кислорода (флавиновые ферменты, негемовая каталаза, супероксиддисмутаза). МКБ не могут осуществлять дыхание, так как нет дыхательной цепи. В связи с тем, что природа обитания МКБ богата на факторы роста, в процессе эволюции они стали метаболическими инвалидами и утратили способность синтезировать в достаточном количестве факторы роста, поэтому в процессе культивирования они

Гомоферментативное молочнокислое брожение: Ф1 — гексокиназа; Ф2 — глюкозофосфатизомераза; Ф3 — фофсофруктокиназа; Ф4 — фруктозо-1,6-дифосфатальдолаза; Ф5 — триозофосфатизомераза; Ф6 — 3-ФГА-дегидрогеназа; Ф7 — фофсоглицерокиназа; Ф8 — фосфоглицеромутаза; Ф9 — енолаза; Ф10 — пируваткиназа; Ф11 — лактатдегиброгеназа (по Dagley, Nicholson, 1973)

нуждаются в добавлении витамиов, аминокислот (овощные, растительные экстракты).
МКБ могут использовать лактозу, которая под действием β-галактозидазы в присутствии молекул воды расщепляется на D-глюкозц и D-галактозу. Впоследствии D-галактоза фосфорилируется и трансформируется в глюкозо-6-фосфат.
МКБ - мезофиллы с оптимальной температурой культивирования 37 - 40ºС. При 15ºС большинство из них не растут.
Способность к антагонизму связана с тем, что в процессе метаболизма накапливается молочная кислота и другие продукты, которые угнетают рост других микроорганизмов. Кроме того накопление молочной кислоты в культуральной жидкости приводит к резкому снижению рН, что угнетает рост гнилостных микрооргаизмов, а сами МКБ могут выдерживать рН до 2.
МКБ нечувствительны к многим антибиотикам. Это позволило использовать их в качестве продуцентов пробиотических препаратов, которые могут использоваться как препараты, сопровождающие при антибиотико-терапии (способствуют восстановлению микрофлоры кишечника, угнетаемой антибиотиками).
Экология МКБ. В природе встречаются там, где много углеводов: молоко, поверхность растений, пищевой тракт человека и животных. Патогенных форм нет.

СПИРТОВОЕ БРОЖЕНИЕ

В основе лежит гликолитический путь. В спиртовом брожении происходит усложнение решения донорно-акцепторной связи. Сначала пируват с помощью пируватдекарбоксилазы, ключевого фермента спиртового брожения, декарбоксилируется до ацетальдегида и CO2:
CH3-CO-COOH ® CH3-COH + CO2 .
Особенность реакции заключается в ее полной необратимости. Образовавшийся ацетальдегид восстанавливается до этанола с участием НАД+-зависимой алкогольдегидрогеназы:
CH3-COH + НАД-H2 ® CH3-CH2OH + НАД+
Донором водорода служат 3-ФГА (как и в случае молочнокислого брожения).
Процесс спиртового брожения суммарно можно выразить следующим уравнением:
C6H12O6 + 2ФН + 2АДФ ® 2CH3-CH2OH + 2CO2 + 2АТФ +2H2O.
Спиртовое брожение широко распространенный процесс получения энергии как у Про-, так и у Эукариотов. У Прокариотов встречается как у Г+ так и у Г-. Промышленное значение имеет микроорганизм Zymomonas mobilies (пульке из сока агавы), но в основе брожения лежит не гликолиз, а путь Энтнера - Дудорова или КДФГ-путь.
Основные продуценты спирта - дрожжи (пивоварение, виноделие, ферментные препараты, витамины группы В, нуклеиновые кислоты, белково-витаминные концентраты, пробиотические препараты).

ПРОПИОНОВОЕ БРОЖЕНИЕ

В пропионовокислом брожении мы имеем дело с реализацией третьей возможности превращения пирувата — его карбоксилированием, приводящим к возникновению нового акцептора водорода — ЩУК. Восстановление пировиноградной кислоты в пропионовую у пропионовокислых бактерий протекает следующим образом. Пировиноградная кислота карбоксилируется в реакции, катализируемой биотинзависимым ферментом, у которого биотин выполняет функцию переносчика CO2. Донором CO2-группы служит метилмалонил-КоА. В результате реакции транскарбоксилирования образуются ЩУК и пропионил-КоА. ЩУК в результате трех ферментативных этапов (аналогичных реакциям 6, 7, 8 цикла трикарбоновых кислот, превращается в янтарную кислоту.
Следующая реакция заключается в переносе КоА-группы с пропионил-КоА на янтарную кислоту (сукцинат), в результате чего образуется сукцинил-КоА и пропионовая кислота.
Образовавшаяся пропионовая кислота выводится из процесса и накапливается вне клетки. Сукцинил-КоА превращается в метилмалонил-КоА.
В состав кофермента метилмалонил-КоА-мутазы входит витамин B12.

Энергетический баланс на 1 молекулу глюкозы образуется 2 молекулы пропионовой кислоты и 4 молекулы АТФ.
Бактерии р.Propionibacterium - это Г+ палочки, неспорообразующие, неподвижные, размножаются бинарным делением, являются аэротолерантными микроорганизмами. У них есть механизм защиты от токсического действия кислорода, некоторые могут осуществлять дыхание.
Экология: встречаются в молоке, кишечнике жвачных животных. Промышленный интерес: продуценты В12 и пропионовой кислоты.

МАСЛЯНОКИСЛОЕ БРОЖЕНИЕ

При маслянокислом брожении пируват декарбоксилируется и присоединяется к КоА - образуется ацетил-КоА. Далее происходит конденсация: 2 молекулы ацетил-КоА конденсируются с образованием С4-соединения ацето-ацетил-КоА, который выступает акцептором продукции Н2.

Пути превращения пирувата в маслянокислом брожении, осуществляемом Clostridium butyricum: Ф1 — пируват:ферредоксиноксидоредуктаза; Ф2 — ацетил-КоА-трансфераза (тиолаза); Ф3 — (3-оксибутирил-КоА-дегидрогеназа; Ф4 — кротоназа; Ф5 — бутирил-КоА-дегидрогеназа; Ф6 — КоА-трансфераза; Ф7 — фосфотрансацетилаза; Ф8 — ацетаткиназа; Ф9 — гидрогеназа; Фдок — окисленный; Фд-H2 — восстановленный ферредоксин; ФН — неорганический фосфат

Далее С4 соединени проходя через ряд последовательных превращений образует масляную кислоту. Этот восстановительный путь не связан с образованием энергии и создан исключительно для утилизации восстановителя. Параллельно существует вторая окислительная ветвь, которая приводит к образоваию из пирувата уксусной кислоты и на этом участке имеет место субстратное фосфорилирование, что обуславливает синтез АТФ.
Энергетический баланс рассчитать сложно, поскольку направление реакций определяется внешними факторами, а также питательной средой:
1 мол. глюкозы→≈3,3 АТФ
Маслянокислое брожение осуществляют бактерии р.Clostridium - это Г+ палочки, подвижные, спорообразующие (эндоспоры d>dкл), являются исключительно анаэробными культурами. Движение осуществляют за счет перетрихиально расположенных жгутиков. По мере старения клетки теряют жгутики и накапливают гранулёзу (крахмалоподобное вещество). По способности збраживать субстрат разделяются на 2 типа:
сахаролитические (расщепляют сахара, полисахариды, крахмал, хитин);
протеолитические (имеют мощный комплекс протеолитических ферментов, расщепляют белки).
Клостридии осуществляют не только масляно-кислое брожение, но и ацетонобутиловое. Продуктами этого вида брожения на ряду с масляной кислотой и ацетатом могут быть: этанол, ацетон, бутиловый спирт, изопропиловый спирт.

АЦЕТОНОБУТИЛОВОЕ БРОЖЕНИЕ


При ацетонобутиловом брожении продуценты в молодом возрасте (логарифмическая фаза роста) осуществляют брожение по типу маслянокислого. По мере снижения рН и накопления кислых продуктов индуцируется синтез ферментов, приводит к накоплению нейтральных продуктов (ацетон, изопропиловый, бутиловый, этиловый спирты). Изучая процесс ацетонобутилового брожения русский ученый Шапошников показал, что оно проходит 2 фазы и в основе 2х фазности процесса лежит связь между конструктивным и энергетическим метаболизмом. Первая фаза характеризуется активным ростом культуры и интенсивным конструктивным метаболизмом, по этому в этот период происходит отток восстановителя НАД∙Н2 на биосинтетические нужды. При затухании роста культуры и переходе ее во вторую фазу уменьшается потребность в конструктивных процессах, что приводит к образоваию более восстановлеых форм - спиртов.
Практическое применение Clostridium:
производство масляной кислоты;
производство ацетона;
производство бутанола.
Бактерии играют огромную роль в природе: осуществляют гниение, анаэробное гниение клетчатки и хитина (некоторые расщепляют пектиновые волокна). Среди Clostridium имеются патогенны (возбудители ботулизма - выделяют крайне опасный экзотоксин; возбудители газовой гангрены; столбняка).

Похожие публикации