Энциклопедия пожаробезопасности

Неразрушающие способы контроля коррозионно-стойких покрытий. Капиллярный метод неразрушающего контроля сварных швов. Капиллярная дефектоскопия сварных соединений Цветной метод неразрушающего контроля

ВЫПОЛНИЛА: ЛОПАТИНА ОКСАНА

Капиллярная дефектоскопия - метод дефектоскопии, основанный на проникновении определенных жидких веществ в поверхностные дефекты изделия под действием капиллярного давления, в результате чего повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного.

Капиллярная дефектоскопия (капиллярный контроль) предназначен для выявления невидимых или слабо видимых невооруженным глазом поверхностных и сквозных дефектов (трещины, поры, раковины, непровары, межкристаллическая коррозия, свищи и т.д.) в объектах контроля, определения их расположения, протяженности и ориентации по поверхности.

Индикаторная жидкость (пенетрант) – это окрашенная жидкость, предназначенная для заполнения открытых поверхностных дефектов и последующего образования индикаторного рисунка. Жидкость представляет собой раствор или суспензию красителя в смеси органических растворителей, керосина, масел с добавками поверхностно-активных веществ (ПАВ), снижающих поверхностное натяжение воды, находящейся в полостях дефектов и улучшающих проникновение пенетрантов в эти полости. Пенетранты содержат красящие вещества (цветной метод) или люминесцирующие добавки (люминесцентный метод), или их комбинацию.

Очиститель – служит для предварительной очистки поверхности и удаления излишков пенетранта

Проявителем называют дефектоскопический материал, предназначенный для извлечения пенетранта из капиллярной несплошности с целью образования четкого индикаторного рисунка и создания контрастирующего с ним фона. Существует пять основных видов проявителей, используемых с пенетрантами:

Сухой порошок;- водная суспензия;- суспензия в растворителе;- раствор в воде;- пластиковая пленка.

Приборы и оборудования для капиллярного контроля:

Материалы для цветной дефектоскопии,Люминесцентные материалы

Наборы для капиллярной дефектоскопии(очистители,проявители, пенетранты)

Пульверизаторы,Пневмогидропистолеты

Источники ультрафиолетового освещения (ультрафиолетовые фонари, осветители).

Испытательные панели (тест-панель)

Контрольные образцы для цветной дефектоскопии.

Процесс капиллярного контроля состоит из 5 этапов:

1 – предварительная очистка поверхности. Чтобы краситель мог проникнуть в дефекты на поверхности, ее предварительно следует очистить водой или органическим очистителем. Все загрязняющие вещества (масла, ржавчина, и т.п.) любые покрытия (ЛКП, металлизация) должны быть удалены с контролируемого участка. После этого поверхность высушивается, чтобы внутри дефекта не оставалось воды или очистителя.

2 – нанесение пенетранта. Пенетрант, обычно красного цвета, наносится на поверхность путем распыления, кистью или погружением объекта контроля в ванну, для хорошей пропитки и полного покрытия пенетрантом. Как правило, при температуре 5…50°С, на время 5…30 мин.

3 - удаление излишков пенетранта. Избыток пенетранта удаляется протиркой салфеткой, промыванием водой, или тем же очистителем, что и на стадии предварительной очистки. При этом пенетрант должен быть удален только с поверхности контроля, но никак не из полости дефекта. Затем поверхность высушивается салфеткой без ворса или струей воздуха.

4 – нанесение проявителя. После просушки сразу же на поверхность контроля тонким ровным слоем наносится проявитель (обычно белого цвета).

5 - контроль. Выявление имеющихся дефектов начинается непосредственно после окончания процесса проявки. При контроле выявляются и регистрируются индикаторные следы. Интенсивность окраски которых говорит о глубине и ширине раскрытия дефекта, чем бледнее окраска, тем дефект мельче. Интенсивную окраску имеют глубокие трещины. После проведения контроля проявитель удаляется водой или очистителем.

К недостаткам капиллярного контроля следует отнести его высокую трудоемкость при отсутствии механизации, большую длительность процесса контроля (от 0.5 до 1.5 ч), а также сложность механизации и автоматизации процесса контроля; снижение достоверности результатов при отрицательных температурах; субъективность контроля - зависимость достоверности результатов от профессионализма оператора; ограниченный срок хранения дефектоскопических материалов, зависимость их свойств от условий хранения.

Достоинствами капиллярного контроля являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам. Главным преимуществом капиллярной дефектоскопии является то, что с его помощью можно не только обнаружить поверхностные и сквозные дефекты, но и получить по их расположению, протяженности, форме и ориентации по поверхности ценную информацию о характере дефекта и даже некоторых причинах его возникновения (концентрация напряжений, несоблюдение технологии и пр.).

Дефектоскопические материалы для цветной дефектоскопии выбирают в зависимости от требований, предъявляемых к контролируемому объекту, его состояния и условий контроля. В качестве параметра размера дефекта принимается поперечный размер дефекта на поверхности объекта контроля – так называемая ширина раскрытия дефекта. Минимальная величина раскрытия выявленных дефектов называется нижним порогом чувствительности и ограничивается тем, что весьма малое количество пенетранта, задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества. Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта на поверхности. Обнаружение индикаторных следов, соответствующего указанным выше основным признакам, служит основанием для анализа о допустимости дефекта по его размеру, характеру, положению. ГОСТ 18442-80 установлено 5 классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов

Класс чувствительности

Ширина раскрытия дефекта,мкм

От 10 до 100

От 100 до 500

технологический

Не нормируется

С чувствительностью по 1 классу контролируют лопатки турбореактивных двигателей, уплотнительные поверхности клапанов и их гнезд, металлические уплотнительные прокладки фланцев и др. (выявляемые трещины и поры величиной до десятых долей мкм). По 2 классу проверяют корпуса и антикоррозийные наплавки реакторов, основной металл и сварные соединения трубопроводов, детали подшипников (выявляемые трещины и поры величиной до нескольких мкм). По 3 классу проверяют крепеж ряда объектов, с возможностью выявления дефектов с раскрытием до 100 мкм, по 4 классу – толстостенное литье.

Капиллярные методы в зависимости от способа выявления индикаторного рисунка подразделяют на:

· Люминесцентный метод , основанный на регистрации контраста люминесцирующего в длинноволновом ультрафиолетовом излучении видимого индикаторного рисунка на фоне поверхности объекта контроля;

· контрастный (цветной) метод , основанный на регистрации контраста цветного в видимом излучении индикаторного рисунка на фоне поверхности объекта контроля.

· люминесцентно-цветной метод , основанный на регистрации контраста цветного или люминесцирующего индикаторного рисунка на фоне поверхности объекта контроля в видимом или длинноволновом ультрафиолетовом излучении;

· яркостный метод , основанный на регистрации контраста в видимом излучении ахроматического рисунка на фоне поверхности объекта.

ВЫПОЛНИЛ: ВАЛЮХ АЛЕКСАНДР

Капиллярный контроль

Капиллярный метод неразрушающего контроля

Капилл я рная дефектоскоп и я - метод дефектоскопии, основанный на проникновении определенных жидких веществ в поверхностные дефекты изделия под действием капиллярного давления, в результате чего повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного.

Различают люминесцентный и цветной методы капиллярной дефектоскопии.

В большинстве случаев по техническим требованиям необ­ходимо выявлять настолько малые дефекты, что заметить их при визуальном контроле невооруженным глазом практически невозможно. Применение же оптических измерительных приборов, например лупы или микроскопа, не позволяет выявить поверхностные дефекты из-за недостаточной контрастности изображения де­фекта на фоне металла и малого поля зрения при больших увеличениях. В таких случаях применяют капиллярный метод контроля.

При капиллярном контроле индикаторные жидкости проникают в полости поверхностных и сквозных несплошностей материала объектов контроля, и образующиеся индикаторные следы регистрируются визуальным способом или с помощью преобразователя.

Контроль капиллярным методом осуществляется в соответствии с ГОСТ 18442-80 “Контроль неразрушающий. Капиллярные методы. Общие требования.”

Капиллярные методы подразделяют на основные, использующие капиллярные явления, и комбинированные, основанные на сочетании двух или более различных по физической сущности методов неразрушающего контроля, одним из которых является капиллярный контроль (капиллярная дефектоскопия).

Назначение капиллярного контроля (капиллярной дефектоскопии)

Капиллярная дефектоскопия (капиллярный контроль) предназначен для выявления невидимых или слабо видимых невооруженным глазом поверхностных и сквозных дефектов (трещины, поры, раковины, непровары, межкристаллическая коррозия, свищи и т.д.) в объектах контроля, определения их расположения, протяженности и ориентации по поверхности.

Капиллярные методы неразрушающего контроля основаны на капиллярном проникновении индикаторных жидкостей (пенетрантов) в полости поверхностных и сквозных несплошностей материала объекта контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя.

Применение капиллярного метода неразрушающего контроля

Капиллярный метод контроля применяется при контроле объектов любых размеров и форм, изготовленных из черных и цветных металлов, легированных сталей, чугуна, металлических покрытий, пластмасс, стекла и керамики в энергетике, авиации, ракетной технике, судостроении, химической промышленности, металлургии, при строительстве ядерных реакторов, в автомобилестроении, электротехники, машиностроении, литейном производстве, штамповке, приборостроении, медицине и других отраслях. Для некоторых материалов и изделий этот метод является единственным для определения пригодности деталей или установок к работе.

Капиллярная дефектоскопию применяют также и для неразрушающего контроля объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достигать требуемой по ГОСТ 21105-87 чувствительности магнитопорошковым методом и магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта.

Необходимым условием выявления дефектов типа нарушения сплошности материала капиллярными методами является наличие полостей, свободных от загрязнений и других веществ, имеющих выход на поверхность объектов и глубину распространения, значительно превышающую ширину их раскрытия.

Капиллярный контроль используется также при течеискании и, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации.

Достоинствами капиллярных методов дефектоскопии являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам.

Преимуществом капиллярной дефектоскопии является то, что с его помощью можно не только обнаружить поверхностные и сквозные дефекты, но и получить по их расположению, протяженности, форме и ориентации по поверхности ценную информацию о характере дефекта и даже некоторых причинах его возникновения (концентрация напряжений, несоблюдение технологии и пр.).

В качестве индикаторных жидкостей применяют органические люминофоры - вещества, дающие яркое собственное свечение под действием ультрафиолетовых лучей, а также различные красители. Поверхностные дефекты выявляют с помощью средств, позволяющих извлекать индикаторные вещества из полости дефектов и обнаруживать их присутствие на поверхности контролируемого изделия.

Капилляр (трещина) , выходящий на поверхность объекта контроля только с одной стороны, называют поверхностной несплошностью, а соединяющий противоположные стенки объекта контроля, - сквозной. Если поверхностная и сквозная несплошности являются дефектами, то допускается применять вместо них термины «поверхностный дефект» и «сквозной дефект». Изображение, образованное пенетрантом в месте расположения несплошности и подобное форме сечения у выхода на поверхность объекта контроля, называют индикаторным рисунком, или индикакацией.

Применительно к несплошности типа единичной трещины вместо термина «индикация» допускается применение термина «индикаторный след». Глубина несплошности - размер несплошности в направлении внутрь объекта контроля от его поверхности. Длина несплошности - продольный размер несплошности на поверхности объекта. Раскрытие несплошности - поперечный размер несплошности у ее выхода на поверхность объекта контроля.

Необходимым условием надежного выявления капиллярным методом дефектов, имеющих выход на поверхность объекта, является относительная их незагрязнённость посторонними веществами, а также глубина распространения, значительно превышающая ширину их раскрытия (минимум 10/1). Для очистки поверхности перед нанесением пенетранта используют очиститель.

Капиллярные методы дефектоскопии подразделяют на основные, использующие капиллярные явления, и комбинированные, основанные на сочетании двух или более различных по физической сущности методов неразрушающего контроля, одним из которых является капиллярный.

Капиллярный контроль сварных соединений применяется для выявления наружных (поверхностных и сквозных) и . Такой способ проверки позволяет выявлять такие дефекты, как горячие и , непровары, поры, раковины и некоторые другие.

При помощи капиллярной дефектоскопии можно определить расположение и величину дефекта, а также его ориентацию по поверхности металла. Этот метод применяется как , так и . Также его используют при сварке пластмасс, стекла, керамики и других материалов.

Сущность метода капиллярного контроля состоит в способности специальных индикаторных жидкостей проникать в полости дефектов шва. Заполняя дефекты, индикаторные жидкости образуют индикаторные следы, которые регистрируются при визуальном осмотре, или с помощью преобразователя. Порядок капиллярного контроля определяется такими стандартами, как ГОСТ 18442 и EN 1289.

Классификация методов капиллярной дефектоскопии

Способы капиллярной проверки подразделяются на основные и комбинированные. Основные подразумевают только капиллярный контроль проникающими веществами. Комбинированные основаны на совместном применении двух или более , одним из которых является капиллярный контроль.

Основные методы контроля

Основные методы контроля подразделяются:

  1. В зависимости от типа проникающего вещества:
  • проверка с помощью проникающих растворов
  • проверка при помощи фильтрующих суспензий
  1. В зависимости от способа считывания информации:
  • яркостный (ахроматический)
  • цветной (хроматический)
  • люминесцентный
  • люминисцентно-цветной.

Комбинированные методы капиллярного контроля

Комбинированные методы подразделяются в зависимости от характера и способа воздействия на проверяемую поверхность. И бывают они:

  1. Капиллярно-электростатический
  2. Капиллярно-электроиндукционный
  3. Капиллярно-магнитный
  4. Капиллярно-радиационный метод поглощения
  5. Капиллярно-радиационный метод излучения.

Технология проведения капиллярной дефектоскопии

До проведения капиллярного контроля проверяемую поверхность необходимо очистить и просушить. После этого на поверхность наносят индикаторную жидкость - панетрант. Эта жидкость проникает в поверхностные дефекты швов и по истечении некоторого времени проводят промежуточную очистку, в ходе которой удаляется излишняя индикаторная жидкость. Далее на поверхность наносят проявитель, который начинает вытягивать индикаторную жидкость из сварных дефектов. Таким образом, на контролируемой поверхности проявляются рисунки дефекта, видимые невооружённым глазом, или при помощи специальных проявителей.

Этапы капиллярного контроля

Процесс контроля капиллярным методом можно разделить на следующие этапы:

  1. Подготовка и предварительная очистка
  2. Промежуточная очистка
  3. Процесс проявления
  4. Выявление сварочных дефектов
  5. Составление протокола в соответствии с результатами проверки
  6. Окончательная очистка поверхности

Материалы для капиллярного контроля

Перечень необходимых материалов для проведения капиллярной дефектоскопии дан в таблице:

Индикаторная жидкость

Промежуточный очиститель

Проявитель

Флуоресцентные жидкости

Цветные жидкости

Флуоресцентные цветные жидкости

Сухой проявитель

Эмульгатор на масляной основе

Жидкий проявитель на водной основе

Растворимый жидкий очиститель

Водный проявитель в виде суспензии

Водочувствительный эмульгатор

Вода или растворитель

Жидкий проявитель на основе воды или растворителя для специального применения

Подготовка и предварительная очистка проверяемой поверхности

При необходимости, с контролируемой поверхности сварного шва удаляют загрязнения, такие как окалина, ржавчина, масляные пятна, краска и др. Эти загрязнения удаляют с помощью механической или химической очистки, или комбинацией этих способов.

Механическую очистку рекомендуется проводить лишь в исключительных случаях, если на контролируемой поверхности находится рыхлая плёнка окислов или имеются резкие перепады между валиками шва, глубокие подрезы. Ограниченное применение механическая очистка получила из-за того, что при её проведении часто поверхностные дефекты оказываются закрытыми в результате затирания, и они не выявляются при проверке.

Химическая очистка происходит с применением различных химических чистящих средств, которые удаляют с проверяемой поверхности такие загрязнения, как краска, масляные пятна и др. Остатки химических реагентов могут реагировать с индикаторными жидкостями и влиять на точность контроля. Поэтому химические вещества после предварительной очистки должны смываться с поверхность водой, или другими средствами.

После предварительной очистки поверхности её необходимо просушить. Просушивание необходимо для того, чтобы на наружной поверхности проверяемого шва не осталось ни воды, ни растворителя, ни каких-либо других веществ.

Нанесение индикаторной жидкости

Нанесение индикаторных жидкостей на контролируемую поверхность может выполняться следующими способами:

  1. Капиллярным способом. В этом случае заполнение сварных дефектов происходит самопроизвольно. Жидкость наносится при помощи смачивания, погружения, струёй или распылением сжатым воздухом или инертным газом.
  2. Вакуумным способом. При таком способе в полостях дефектов создаётся разряженная атмосфера и давление становится в них меньше, чем атмосферное, т.е. получается своеобразный вакуум в полостях, который всасывает в себя индикаторную жидкость.
  3. Компрессионный способ. Этот способ противоположен вакуумному способу. Заполнение дефектов происходит под воздействием на индикаторную жидкость давления, превышающего атмосферное давление. Под большим давлением жидкость заполняет дефекты, вытесняя из них воздух.
  4. Ультразвуковой способ. Заполнение полостей дефектов происходит в ультразвуковом поле и использованием ультразвукового капиллярного эффекта.
  5. Деформационный способ. Полости дефектов заполняются под воздействием на индикаторную жидкость упругих колебаний звуковой волны или при статическом нагружении, увеличивающем минимальный размер дефектов.

Для лучшего проникновения индикаторной жидкости в полости дефектов, температура поверхности должна быть в пределах 10-50°С.

Промежуточная очистка поверхности

Наносить вещества для промежуточной очистки поверхности следует таким образом, чтобы индикаторная жидкость не удалялась из поверхностных дефектов.

Очистка водой

Избытки индикаторной жидкости могут быть удалены обрызгиванием, или протиранием влажной тканью. При этом, следует избегать механического воздействия на контролируемую поверхность. Температура воды не должна превышать 50°С.

Очистка растворителем

Сначала излишнюю жидкость удаляют при помощи чистой ткани без ворса. После этого поверхность очищают тканью, смоченной растворителем.

Очистка эмульгаторами

Для удаления индикаторных жидкостей используются водочувствительные эмульгаторы или эмульгаторы на основе масел. Перед нанесением эмульгатора необходимо смыть излишки индикаторной жидкости водой и сразу после этого нанести эмульгатор. После эмульгтрования необходимо поверхность металла промыть водой.

Комбинированная очистка водой и растворителем

При таком способе очистки сначала с контролируемой поверхности смывают водой излишнюю индикаторную жидкость, а затем очищают поверхность безворсовой тканью, смоченной растворителем.

Сушка после промежуточной очистки

Для высушивания поверхности после промежуточной очистки можно применить несколько способов:

  • вытиранием чистой сухой неволокнистой тканью
  • испарением при температуре окружающей среды
  • сушкой при повышенной температуре
  • сушкой в воздушной струе
  • комбинированием вышеперечисленных способов сушки.

Процесс сушки необходимо проводить таким образом, чтобы не происходило высыхания индикаторной жидкости в полостях дефектов. Для этого сушку выполняют при температуре, не превышающей 50°С.

Процесс проявления поверхностных дефектов в сварном шве

Проявитель наносят на контролируемую поверхность ровным тонким слоем. Процесс проявления следует начинать как можно быстрее после промежуточной очистки.

Сухой проявитель

Применение сухого проявителя возможно только с флуоресцентными индикаторными жидкостями. Наносится сухой проявитель напылением или с помощью электростатического распыления. Контролируемые участки должны покрываться однородно, равномерно. Локальные скопления проявителя недопустимы.

Жидкий проявитель на основе водной суспензии

Проявитель наносится однородно при погружении в него контролируемого соединения или разбрызгиванием при помощи аппарата. При использовании метода погружения, для получения наилучших результатов, длительность погружения должна быть как можно короче. После этого контролируемое соединение должно пройти сушку испарением или обдувом в печи.

Жидкий проявитель на основе растворителя

Проявитель наносится распылением на контролируемую поверхность таким образом, чтобы поверхность была равномерно смочена и на ней сформировалась тонкая и однородная плёнка.

Жидкий проявитель в виде водного раствора

Равномерное нанесение такого проявителя достигается помощи погружения в него контролируемых поверхностей, либо при помощи распыления специальными аппаратами. Погружение должно быть кратковременным, в этом случае достигаются наилучшие результат проверки. После этого контролируемые поверхности высушивают испарением или обдувом в печи.

Длительность процесса проявления

Длительность процесса проявления продолжается, как правило, в течение 10-30 мин. В отдельных случаях допускается увеличение длительности проявления. Отсчёт времени проявления начинается: для сухого проявителя сразу после его нанесения, а для жидкого проявителя - сразу после окончания просушивания поверхности.

Выявление сварочных дефектов в результате капиллярной дефектоскопии

По возможности, осмотр контролируемой поверхности начинают сразу же после нанесения проявителя или после его высушивания. Но окончательный контроль происходит после завершения процесса проявления. В качестве вспомогательных приборов, при оптическом контроле, применяются увеличительные стёкла, или очки с увеличительными линзами.

При использовании флуоресцентных индикаторных жидкостей

Недопустимо использование фотохроматических очков. Необходимо, чтобы глаза контролёра адаптировались к темноте в испытательной кабине в течение 5 минут, как минимум.

Ультрафиолетовое излучение не должно попадать в глаза контролёра. Все контролируемые поверхности не должны флуоресцировать (отражать свет). Также в поле зрения контролёра не должны попадать предметы, которые отражают свет под воздействием ультрафиолетовых лучей. Можно применять общее ультрафиолетовое освещение для того, чтобы контролёр мог беспрепятственно перемещаться по испытательной камере.

При использовании цветных индикаторных жидкостей

Все контролируемые поверхности осматриваются при дневном, или искусственном освещении. Освещённость на проверяемой поверхности должна быть не менее 500лк. При этом, на поверхности не должно быть бликов из-за отражения света.

Повторный капиллярный контроль

Если есть необходимость в повторном контроле, то весь процесс капиллярной дефектоскопии повторяют, начиная с процесса предварительной очистки. Для этого необходимо, по-возможности, обеспечить более благоприятные условия контроля.

Для повторного контроля допускается применять только такие же индикаторные жидкости, одного и того же производителя, что и при первом контроле. Использование других жидкостей, или таких же жидкостей, но разных производителей, не допускается. В этом случае необходимо выполнить тщательную очистку поверхности, чтобы на ней не осталось следов от прежней проверки.

Согласно EN571-1, основные стадии капиллярного контроля представлены на схеме:

Видео на тему: "Капиллярная дефектоскопия сварных швов"

Капиллярный контроль (капиллярная / люминесцентная / цветная дефектоскопия, контроль пенетрантами)

Капиллярный контроль, капиллярная дефектоскопия, люминесцентная / цветная дефектоскопия - это наиболее распространённые в среде специалистов названия метода неразрушающего контроля проникающими веществами, - пенетрантами .

Капиллярный метод контроля - оптимальный способ обнаружения дефектов, выходящих на поверхность изделий. Практика показывает высокую экономическую эффективность капиллярной дефектоскопии, возможность её использования в широком разнообразии форм и контролируемых объектов, начиная от металлов и заканчивая пластмассами.

При относительно низкой стоимости расходных материалов, оборудование для проведения люминесцентной и цветной дефектоскопии является более простым и менее дорогостоящим, чем для большинства других методов неразрушающего контроля.

Наборы для капиллярного контроля

Комплекты для цветной дефектоскопии на основе красных пенетрантов и белых проявителей

Стандартный набор для работы в диапазоне температур -10°C ... +100°C

Высокотемпературный набор для работы в диапазоне 0°C ... +200°C

Комплекты для капиллярной дефектоскопии на основе люминесцентных пенетрантов

Стандартный набор для работы в диапазоне температур -10°C ... +100°C в видимом и УФ свете

Высокотемпературный набор для работы в диапазоне 0°C ... +150°C с использованием УФ светильника λ=365 нм.

Набор для контроля особо ответственных изделий в диапазоне 0°C ... +100°C с использованием УФ светильника λ=365 нм.

Капиллярная дефектоскопия - обзор

Историческая справка

Метод исследования поверхности объекта проникающими пенетрантами , который также известен как капиллярная дефектоскопия (капиллярный контроль), появился в нашей стране в 40-х годах прошлого столетия. Капиллярный контроль впервые стали применять в авиастроении. Его простые и понятные принципы остались неизменными до настоящего времени.

За рубежом, примерно в это же время был предложен, а вскоре и запатентован красно-белый метод обнаружения поверхностных дефектов. Впоследствии, он получил название - метод контроля проникающими жидкостями (Liquid penetrant testing). Во второй половине 50-х годов прошлого века материалы для капиллярной дефектоскопии были описаны в военной спецификации США (MIL-1-25135).

Контроль качества проникающими веществами

Возможность контроля качества изделий, деталей и узлов проникающими веществами - пенетрантами существует благодаря такому физическому явлению, как смачивание. Дефектоскопическая жидкость (пенетрант) смачивает поверхность, заполняет устье капилляра, тем самым создавая условия для появления капиллярного эффекта.

Проникающая способность - комплексное свойство жидкостей. Это явление - основа капиллярного контроля. Проникающая способность зависит от следующих факторов:

  • свойства исследуемой поверхности и степень её очистки от загрязнений;
  • физико-химические свойства материала объекта контроля;
  • свойства пенетранта (смачиваемость, вязкость, поверхностное натяжение);
  • температура объекта исследования (влияет на вязкость пенетранта и смачиваемость)

Среди прочих видов неразрушающего контроля (НК) капиллярный метод играет особую роль. Во-первых, по совокупности качеств, это идеальный способ контроля поверхности на наличие невидимых глазу микроскопических несплошностей. От других видов НК его выгодно отличают портативность и мобильность, стоимость контроля единицы площади изделия, относительная простота реализации без использования сложного оборудования. Во-вторых, капиллярный контроль более универсален. Если, к примеру, применяется только для контроля ферромагнитных материалов имеющих относительную магнитную проницаемость более 40, то капиллярная дефектоскопия применима к изделиям практически любой формы и материала, где геометрия объекта и направление дефектов особой роли не играют.

Развитие капиллярного контроля как метода неразрушающего контроля

Развитие методов дефектоскопии поверхностей, как одного из направлений неразрушающего контроля напрямую связано с научно-техническим прогрессом. Производители промышленного оборудования всегда были озабочены экономией материалов и людских ресурсов. При этом, эксплуатация оборудования зачастую связана с повышенными механическими нагрузками на некоторые его элементы. В качестве примера приведём лопатки турбин авиационных двигателей. В режиме интенсивных нагрузок именно трещины на поверхности лопаток представляют собой известную опасность.

В этом частном случае, как и во многих других, капиллярный контроль оказался как нельзя кстати. Производители быстро оценили , он был взят на вооружение и получил устойчивый вектор развития. Капиллярный метод оказался одним из самых чувствительных и востребованных методов неразрушающего контроля во многих отраслях. Главным образом, в машиностроении, серийном и мелкосерийном производстве.

В настоящее время совершенствование методов капиллярного контроля осуществляется в четырёх направлениях:

  • повышение качества дефектоскопических материалов, направленное на расширение диапазона чувствительности;
  • снижение вредного воздействия материалов на окружающую среду и человека;
  • использование систем электростатического напыления пенетрантов и проявителей для более равномерного и экономного их нанесения на контролируемые детали;
  • внедрение схем автоматизации в многооперационный процесс диагностики поверхностей на производстве.

Организация участка цветной (люминесцентной) дефектоскопии

Организация участка для цветной (люминесцентной) дефектоскопии осуществляется в соответствии с отраслевыми рекомендациями и стандартами предприятий: РД-13-06-2006. Участок закрепляется за лабораторией неразрушающего контроля предприятия, которая аттестуется в соответствии с Правилами аттестации и основными требованиями к лабораториям неразрушающего контроля ПБ 03-372-00.

Как в нашей стране, так и за рубежом, использование методов цветной дефектоскопии на крупных предприятиях описано во внутренних стандартах, которые, полностью основаны на национальных. Цветная дефектоскопия описана в стандартах компаний Pratt&Whitney, Rolls-Royce, General Electric, Aerospatiale и других.

Капиллярный контроль - плюсы и минусы

Преимущества капиллярного метода

  1. Низкие затраты на расходные материалы.
  2. Высокая объективность результатов контроля.
  3. Может применяться почти для всех твёрдых материалов (металлы, керамика, пластмассы и т.д.) за исключением пористых.
  4. В большинстве случаев, капиллярный контроль не требует использования технологически сложного оборудования.
  5. Осуществление контроля в любом месте при любых условиях, в том числе стационарных с использованием соответствующего оборудования.
  6. Благодаря высокой производительности контроля возможна быстрая проверка крупных объектов имеющих большую площадь исследуемой поверхности. При использовании данного метода на предприятиях с непрерывным производственным циклом возможен поточный контроль изделий.
  7. Капиллярный метод идеально подходит для обнаружения всех типов поверхностных трещин, обеспечивая чёткую визуализацию дефектов (при осуществлении контроля должным образом).
  8. Прекрасно подходит для контроля изделий со сложной геометрией, лёгких металлических деталей, например, турбинных лопаток в аэрокосмической отрасли и энергетике, деталей двигателей в автомобильной промышленности.
  9. При определённых обстоятельствах метод может быть применён для испытаний на герметичность. Для этого пенетрант наносится на одну сторону поверхности, а проявитель на другую. В месте утечки пенетрант вытягивается на поверхность проявителем. Контроль герметичности для обнаружения и определения местонахождения утечек чрезвычайно важен для таких изделий как резервуары, ёмкости, радиаторы, гидравлические системы и т.п.
  10. В отличие от рентгеновского контроля капиллярная дефектоскопия не требует специальных мер безопасности, таких как применение средств радиационной защиты. Во время проведения исследований оператору достаточно проявлять элементарную осторожность при работе с расходными материалами и пользоваться респиратором.
  11. Отсутствие специальных требований, касающихся знаний и квалификации оператора.

Ограничения для цветной дефектоскопии

  1. Основным ограничением капиллярного метода контроля является возможность обнаружения только тех дефектов, которые открыты к поверхности.
  2. Фактором, снижающим эффективность капиллярного тестирования, является шероховатость объекта исследований, - пористая структура поверхности приводит к получению ложных показаний.
  3. К особым случаям, хотя и достаточно редким, следует причислить малую смачиваемость поверхности некоторых материалов пенетрантами как на водной основе, так и на основе органических растворителей.
  4. В некоторых случаях к недостаткам метода можно отнести сложность выполнения подготовительных операций, связанных с удалением лакокрасочных покрытий, оксидных плёнок и сушкой деталей.

Капиллярный контроль - термины и определения

Капиллярный неразрушающий контроль

Капиллярный неразрушающий контроль базируется на проникновении пенетрантов в полости, которые образуют дефекты на поверхности изделий. Пенетрант - это краситель . Его след, после соответствующей обработки поверхности, регистрируется визуально или с помощью приборов.

В капиллярном контроле применяются различные способы тестирования, основанные на использования пенетрантов, материалов для подготовки поверхности, проявителей и для капиллярных исследований. В настоящее время на рынке имеется достаточное количество расходных материалов для капиллярного контроля, которые позволяют провести выбор и разработку методик, удовлетворяющих, по существу, любым требованиям чувствительности, совместимости и экологии.

Физические основы капиллярной дефектоскопии

Основа капиллярной дефектоскопии - это капиллярный эффект, как физическое явление и пенетрант, как вещество с определёнными свойствами. На капиллярный эффект оказывают влияние такие явления как поверхностное натяжение, смачивание, диффузия, растворение, эмульгирование. Но для того, чтобы эти явления работали на результат, поверхность объекта контроля должна быть хорошо очищена и обезжирена.

Если поверхность подготовлена должным образом, капля пенетранта, попавшая на неё быстро растекается, образуя пятно. Это говорит о хорошем смачивании. Под смачиванием (прилипанием к поверхности) понимают способность жидкого тела образовывать устойчивую поверхность раздела на границе с твёрдым телом. Если силы взаимодействия между молекулами жидкости и твёрдого тела превышают силы взаимодействия между молекулами внутри жидкости, то происходит смачивание поверхности твёрдого тела.

Частицы пигмента пенетранта , во много раз меньше по размеру, чем ширина раскрытия микротрещин и прочих повреждений поверхности объекта исследования. Кроме того, важнейшим физическим свойством пенетрантов является низкое поверхностное натяжение. За счёт этого параметра пенетранты обладают достаточной проникающей способностью и хорошо смачивают различные виды поверхностей - от металлов, до пластика.

Проникновение пенетранта в несплошности (полости) дефектов и последующее извлечение пенетранта в процессе проявки происходит под действием капиллярных сил. А расшифровка дефекта становится возможной за счёт разницы в цвете (цветная дефектоскопия) или свечении (люминесцентная дефектоскопия) между фоном и участком поверхности над дефектом.

Таким образом, при обычных условиях, очень мелкие дефекты на поверхности объекта контроля человеческому глазу не видны. В процессе поэтапной обработки поверхности специальными составами, на котором и основана капиллярная дефектоскопия, над дефектами образуется легко читаемый, контрастный индикаторный рисунок.

В цветной дефектоскопии , за счёт действия проявителя пенетранта, который "вытягивает" пенетрант на поверхность силами диффузии, размер индикации обычно оказывается существенно больше, чем размер самого дефекта. Размер индикаторного рисунка в целом, при соблюдении технологии контроля, зависит от поглощённого несплошностью объёма пенетранта. При оценке результатов контроля можно провести некоторую аналогию с физикой "эффекта усиления" сигналов. В нашем случае, "выходной сигнал" - это контрастный индикаторный рисунок, который по размеру может быть в несколько раз больше чем "входной сигнал" - нечитаемое глазом изображение несплошности (дефекта).

Дефектоскопические материалы

Дефектоскопические материалы для капиллярного контроля это средства, которые используются при контроле жидкостью (контроль пенетрацией), проникающей в поверхностные несплошности проверяемых изделий.

Пенетрант

Пенетрант - это индикаторная жидкость, проникающее вещество (от английского penetrate - проникать) .

Пенетрантами называют капиллярный дефектоскопический материал, который способен проникать в поверхностные несплошности контролируемого объекта. Проникновение пенетранта в полость повреждения происходит под действием капиллярных сил. В результате малого поверхностного натяжения и действия сил смачивания, пенетрант заполняет пустоту дефекта через устье, открытое к поверхности, образуя, при этом, вогнутый мениск.

Пенетрант - главный расходный материал для капиллярной дефектоскопии. Пенетранты различают по способу визуализации на контрастные (цветные) и люминесцентные (флуоресцентные), по способу удаления с поверхности на водосмываемые и удаляемые очистителем (пост-эмульгируемые), по чувствительности на классы (в порядке убывания - I, II, III и IV классы по ГОСТ 18442-80)

Зарубежные стандарты MIL-I-25135E и AMS-2644 в отличие от ГОСТ 18442-80 разделяют уровни чувствительности пенетрантов на классы в порядке возрастания: 1/2 - ультранизкая чувствительность, 1 - низкая, 2 - средняя, 3 - высокая, 4 - сверхвысокая.

К пенетрантам предъявляют целый ряд требований, главное из которых - хорошая смачиваемость. Следующий, важный для пенетрантов параметр, - вязкость. Чем она ниже, тем меньше времени требуется для полной пропитки поверхности объекта контроля. В капиллярном контроле учитываются такие свойства пенетрантов, как:

  • смачиваемость;
  • вязкость;
  • поверхностное натяжение;
  • летучесть;
  • точка воспламенения (температура вспышки);
  • удельный вес;
  • растворимость;
  • чувствительность к загрязнениям;
  • токсичность;
  • запах;
  • инертность.

В состав пенетранта обычно входят высококипящие растворители, красители (люминофоры) на основе пигмента или растворимые, поверхностно-активные вещества (ПАВ), ингибиторы коррозии, связующие. Пенетранты выпускаются в баллонах для аэрозольного нанесения (наиболее подходящая форма выпуска для выездных работ), пластиковых канистрах и бочках.

Проявитель

Проявитель - материал для капиллярного неразрушающего контроля, который благодаря своим свойствам извлекает на поверхность находящийся в полости дефекта пенетрант.

Проявитель пенетранта, как правило, имеет белый цвет и выступает в качестве контрастирующего фона для индикаторного изображения.

Проявитель наносится на поверхность объекта контроля тонким, равномерным слоем после её очистки (промежуточная очистка) от пенетранта. После процедуры промежуточной очистки некоторое количество пенетранта остаётся в зоне дефекта. Проявитель, под действием сил адсорбции, абсорбции или диффузии (в зависимости от типа действия) "вытягивает" на поверхность оставшийся в капиллярах дефектов пенетрант.

Таким образом, пенетрант под действием проявителя "подкрашивает" участки поверхности над дефектом, образуя чёткую дефектограмму - индикаторный рисунок, повторяющий расположение дефектов на поверхности.

По типу действия проявители разделяют на сорбционные (порошки и суспензии) и диффузионные (краски, лаки и плёнки). Чаще всего проявители представляют собой химически нейтральные сорбенты из соединений кремния, белого цвета. Такие проявители, покрывая поверхность создают слой, имеющий микропористую структуру, в которую, под действием капиллярных сил, легко проникает красящий пенетрант. При этом слой проявителя над дефектом окрашивается в цвет красителя (цветной метод), либо смачивается жидкостью с добавкой люминофора, которая в ультрафиолетовом свете начинает флуоресцировать (люминесцентный метод). В последнем случае использование проявителя не обязательно - он лишь увеличивает чувствительность контроля.

Правильно выбранный проявитель должен обеспечивать равномерное покрытие поверхности. Чем выше сорбционные свойства проявителя, тем лучше он "вытягивает" пенетрант из капилляров в ходе проявки. Это важнейшие свойства проявителя, определяющие его качество.

Капиллярный контроль предполагает использование сухих и мокрых проявителей. В первом случае речь идёт о порошковых проявителях, во втором о проявителях на водной основе (водные, водосмываемые), или на основе органических растворителей (не водные).

Проявитель в составе дефектоскопической системы, как и остальные материалы этой системы подбирается исходя из требований к чувствительности. Например, для выявления дефекта, имеющего ширину раскрытия до 1 микрона, в соответствии с американским стандартом AMS-2644 для диагностики движущихся деталей газотурбинной установки следует применять порошковый проявитель и люминесцентный пенетрант.

Порошковые проявители обладают хорошей дисперсностью и наносятся на поверхность электростатическим или вихревым способом, с образованием тонкого и равномерного слоя, необходимого для гарантированного вытягивания небольшого объёма пенетранта из полостей микротрещин.

Проявители на водной основе не всегда обеспечивают создание тонкого и равномерного слоя. В этом случае, при наличии на поверхности мелких дефектов, пенетрант не всегда выходит на поверхность. Слишком толстый слой проявителя может маскировать дефект.

Проявители могут химически взаимодействовать с индикаторными пенетрантами. По характеру этого взаимодействия проявители разделяют на химически активные и химически пассивные. Последние получили наиболее широкое распространение. Химически активные проявители реагируют с пенетрантом. Обнаружение дефектов, в этом случае, производится по наличию продуктов реакции. Химически пассивные проявители выступают лишь в роли сорбента.

Проявители пенетрантов выпускаются в баллонах для аэрозольного нанесения (наиболее подходящая форма выпуска для выездных работ), пластиковых канистрах и бочках.

Эмульгатор пенетранта

Эмульгатор (гаситель пенетранта по ГОСТ 18442-80) - это дефектоскопический материал для капиллярного контроля, применяемый для промежуточной очистки поверхности при использовании постэмульгируемого пенетранта.

В процессе эмульгирования оставшийся на поверхности пенетрант взаимодействует с эмульгатором. Впоследствии, полученная смесь удаляется водой. Целью процедуры является очистка поверхности от избытка пенетранта.

Процесс эмульгирования может оказывать существенное влияние на качество визуализации дефектов, особенно при контроле объектов с шероховатой поверхностью. Выражается это в получении контрастирующего фона необходимой чистоты. Для получения хорошо читаемого индикаторного рисунка, яркость фона не должна превышать яркость индикации.

В капиллярном контроле применяют липофильные и гидрофильные эмульгаторы. Липофильный эмульгатор - изготавливается на масляной основе, гидрофильный - на водной. Различаются они механизмом действия.

Липофильный эмульгатор, покрывая поверхность изделия, переходит в оставшийся пенетрант под действием сил диффузии. Получившаяся смесь легко удаляется с поверхности водой.

Гидрофильный эмульгатор действует на пенетрант иным образом. При его воздействии пенетрант разделяется на множество частиц меньшего объёма. В результате образуется эмульсия, и пенетрант утрачивает свойства к смачиванию поверхности объекта контроля. Полученная эмульсия удаляется механически (смывается водой). Основа гидрофильных эмульгаторов - растворитель и поверхностно-активные вещества (ПАВ).

Очиститель пенетранта (поверхности)

Очиститель для капиллярного контроля - это органический растворитель для удаления излишков пенетранта (промежуточная очистка), очистки и обезжиривания поверхности (предварительная очистка).

Существенное влияние на смачивание поверхности оказывают её микрорельеф и степень очистки от масел, жиров и прочих загрязнений. Для того, чтобы пенетрант проникал даже в самые мелкие поры, в большинстве случаев, механической очистки недостаточно. Поэтому, перед проведением контроля поверхность детали обрабатывают специальными очистителями, изготовленными на основе высококипящих растворителей.

Степень проникновения пенетранта в полости дефектов:

Важнейшими свойствами современных очистителей поверхности для капиллярного контроля являются:

  • способность к обезжириванию;
  • отсутствие нелетучих примесей (способность к испарению с поверхности без оставления следов);
  • минимальное содержание вредных веществ, оказывающих влияние на человека и окружающую среду;
  • диапазон рабочих температур.
Совместимость расходных материалов для капиллярного контроля

Дефектоскопические материалы для капиллярного контроля по физическим и химическим свойствам должны быть совместимы как между собой, так и с материалом объекта контроля. Компоненты пенетрантов, очищающих средств и проявителей не должны приводить к потере эксплуатационных свойств контролируемых изделий и к порче оборудования.

Таблица совместимости расходных материалов Элитест для капиллярного контроля:

Расходники
Р10 Р10Т Э11 ПР9 ПР20 ПР21 ПР20Т Система электростатического напыления

Описание

* по ГОСТ Р ИСО 3452-2-2009
** изготавливается по особой, экологически чистой технологии со сниженным содержанием галогенных углеводородов, соединений серы и других веществ, негативно влияющих на окружающую среду.

Р10 × × Очиститель био**, класс 2 (негалогенизированный)
Р10Т × Очиститель высокотемпературный био**, класс 2 (негалогенизированный)
Э11 × × × Эмульгатор гидрофильный био** для очищения пенетрантов. Разводится в воде в пропорции 1/20
ПР9 Проявитель порошковый белого цвета, форма a
ПР20 Проявитель белого цвета на основе ацетона, форма d, e
ПР21 Проявитель белого цвета на основе растворителя, форма d, e
ПР20Т × × Проявитель высокотемпературный на основе растворителя, форма d, e
П42 Красный пенетрант, 2 (высокий) уровень чувствительности*, метод A, C, D, E
П52 × Красный пенетрант био**, 2 (высокий) уровень чувствительности*, метод A, С, D, E
П62 × Красный пенетрант высокотемпературный, 2 (высокий) уровень чувствительности*, метод A, С, D
П71 × × × Люм. пенетрант высокотемпературный на водной основе, 1 (низкий) уровень чувствительности*, метод A, D
П72 × × × Люм. пенетрант высокотемпературный на водной основе, 2 (средний) уровень чувствительности*, метод A, D
П71К × × × Концентрат люм. высокотемпературного пенетранта био**, 1/2 (сверхнизкий) уровень чувствительности*, метод A, D
П81 × Люминесцентный пенетрант, 1 (низкий) уровень чувствительности*, метод A, С
Люминесцентный пенетрант, 1 (низкий) уровень чувствительности*, метод B, C, D
П92 Люминесцентный пенетрант, 2 (средний) уровень чувствительности*, метод B, C, D Люминесцентный пенетрант, 4 (сверхвысокий) уровень чувствительности*, метод B, C, D

⚫ - рекомендуется использовать; - можно использовать; × - нельзя использовать
Скачать таблицу совместимости расходных материалов для капиллярного и магнитопорошкового контроля:

Оборудование для капиллярного контроля

Оборудование, используемое при капиллярном контроле:

  • эталонные (контрольные) образцы для капиллярной дефектоскопии;
  • источники ультрафиолетового освещения (УФ фонари и светильники);
  • испытательные панели (тест-панель);
  • пневмогидропистолеты;
  • пульвелизаторы;
  • камеры для капиллярного контроля;
  • системы электростатического нанесения дефектоскопических материалов;
  • системы очистки воды;
  • сушильные шкафы;
  • баки для иммерсионного нанесения пенетрантов.

Выявляемые дефекты

Методы капиллярной дефектоскопии позволяют выявлять дефекты, выходящие на поверхность изделия: трещины, поры, раковины, непровары, межкристаллитная коррозия и другие несплошности с шириной раскрытия менее 0,5 мм.

Контрольные образцы для капиллярной дефектоскопии

Контрольные (стандартные, эталонные, испытательные) образцы для капиллярного контроля представляют собой пластины из металла с нанесёнными на них искусственными трещинами (дефектами) определённого размера. Поверхность контрольных образцов может иметь шероховатость.

Контрольные образцы изготавливаются по зарубежным нормативам, в соответствии с европейскими и американскими стандартами EN ISO 3452-3, AMS 2644C, Pratt & Whitney Aircraft TAM 1460 40 (стандарт предприятия - крупнейшего американского производителя авиационных двигателей).

Контрольные образцы используют:
  • для определения чувствительности тест-систем на основе разных дефектоскопических материалов (пенетрант, проявитель, очиститель);
  • для сравнения пенетрантов, один из которых может быть взят за образцовый;
  • для оценки качества смываемости люминесцентных (флуоресцентных) и контрастных (цветных) пенетрантов в соответствии с нормами AMS 2644C;
  • для общей оценки качества капиллярного контроля.

Использование контрольных образцов для капиллярного контроля в российском ГОСТ 18442-80 не регламентировано. Тем не менее, в нашей стране контрольные образцы активно применяются в соответствии с ГОСТ Р ИСО 3452-2-2009 и нормами предприятий (например, ПНАЭГ-7-018-89) для оценки пригодности дефектоскопических материалов.

Методики капиллярного контроля

На сегодняшний день накоплен достаточно большой опыт применения капиллярных методов для целей эксплуатационного контроля изделий, узлов и механизмов. Однако, разработку рабочей методики для проведения капиллярного контроля часто приходится осуществлять отдельно для каждого конкретного случая. При этом учитываются такие факторы, как:

  1. требования к чувствительности;
  2. состояние объекта;
  3. характер взаимодействия дефектоскопических материалов с контролируемой поверхностью;
  4. совместимость расходных материалов;
  5. технические возможности и условия выполнения работ;
  6. характер ожидаемых дефектов;
  7. прочие факторы, влияющие на эффективность капиллярного контроля.

ГОСТ 18442-80 определяет классификацию основных капиллярных методов контроля в зависимости от типа проникающего вещества - пенетранта (раствор, либо суспензия частиц пигмента) и в зависимости от способа получения первичной информации:

  1. яркостный (ахроматический);
  2. цветной (хроматический);
  3. люминесцентный (флуоресцентный);
  4. люминесцентно-цветной.

Стандарты ГОСТ Р ИСО 3452-2-2009 и AMS 2644 описывают шесть основных методов капиллярного контроля по типу и группам:

Тип 1. Флуоресцентные (люминесцентные) методы:
  • метод А: водосмываемый (Группа 4);
  • метод В: последующего эмульгирования (Группы 5 и 6);
  • метод С: органорастворимый (Группа 7).
Тип 2. Цветные методы:
  • метод А: водосмываемый (Группа 3);
  • метод В: последующего эмульгирования (Группа 2);
  • метод С: органорастворимый (Группа 1).

Капиллярная дефектоскопия

Капиллярный контроль

Капиллярный метод неразрушающего контроля

Капилл ярная дефектоскоп ия - метод дефектоскопии, основанный на проникновении определенных жидких веществ в поверхностные дефекты изделия под действием капиллярного давления, в результате чего повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного.


Различают люминесцентный и цветной методы капиллярной дефектоскопии.


В большинстве случаев по техническим требованиям необ­ходимо выявлять настолько малые дефекты, что заметить их при визуальном контроле невооруженным глазом практически невозможно. Применение же оптических измерительных приборов, например лупы или микроскопа, не позволяет выявить поверхностные дефекты из-за недостаточной контрастности изображения де­фекта на фоне металла и малого поля зрения при больших увеличениях. В таких случаях применяют капиллярный метод контроля.

При капиллярном контроле индикаторные жидкости проникают в полости поверхностных и сквозных несплошностей материала объектов контроля, и образующиеся индикаторные следы регистрируются визуальным способом или с помощью преобразователя.

Контроль капиллярным методом осуществляется в соответствии с ГОСТ 18442-80 “Контроль неразрушающий. Капиллярные методы. Общие требования.”

Капиллярные методы подразделяют на основные, использующие капиллярные явления, и комбинированные, основанные на сочетании двух или более различных по физической сущности методов неразрушающего контроля, одним из которых является капиллярный контроль (капиллярная дефектоскопия).

Назначение капиллярного контроля (капиллярной дефектоскопии)

Капиллярная дефектоскопия (капиллярный контроль) предназначен для выявления невидимых или слабо видимых невооруженным глазом поверхностных и сквозных дефектов (трещины, поры, раковины, непровары, межкристаллическая коррозия, свищи и т.д.) в объектах контроля, определения их расположения, протяженности и ориентации по поверхности.

Капиллярные методы неразрушающего контроля основаны на капиллярном проникновении индикаторных жидкостей (пенетрантов) в полости поверхностных и сквозных несплошностей материала объекта контроля и регистрации образующихся индикаторных следов визуальным способом или с помощью преобразователя.

Применение капиллярного метода неразрушающего контроля

Капиллярный метод контроля применяется при контроле объектов любых размеров и форм, изготовленных из черных и цветных металлов, легированных сталей, чугуна, металлических покрытий, пластмасс, стекла и керамики в энергетике, авиации, ракетной технике, судостроении, химической промышленности, металлургии, при строительстве ядерных реакторов, в автомобилестроении, электротехники, машиностроении, литейном производстве, штамповке, приборостроении, медицине и других отраслях. Для некоторых материалов и изделий этот метод является единственным для определения пригодности деталей или установок к работе.

Капиллярная дефектоскопию применяют также и для неразрушающего контроля объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достигать требуемой по ГОСТ 21105-87 чувствительности магнитопорошковым методом и магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта.

Необходимым условием выявления дефектов типа нарушения сплошности материала капиллярными методами является наличие полостей, свободных от загрязнений и других веществ, имеющих выход на поверхность объектов и глубину распространения, значительно превышающую ширину их раскрытия.

Капиллярный контроль используется также при течеискании и, в совокупности с другими методами, при мониторинге ответственных объектов и объектов в процессе эксплуатации.

Достоинствами капиллярных методов дефектоскопии являются: простота операций контроля, несложность оборудования, применимость к широкому спектру материалов, в том числе к немагнитным металлам.

Преимуществом капиллярной дефектоскопии является то, что с его помощью можно не только обнаружить поверхностные и сквозные дефекты, но и получить по их расположению, протяженности, форме и ориентации по поверхности ценную информацию о характере дефекта и даже некоторых причинах его возникновения (концентрация напряжений, несоблюдение технологии и пр.).

В качестве индикаторных жидкостей применяют органические люминофоры - вещества, дающие яркое собственное свечение под действием ультрафиолетовых лучей, а также различные красители. Поверхностные дефекты выявляют с помощью средств, позволяющих извлекать индикаторные вещества из полости дефектов и обнаруживать их присутствие на поверхности контролируемого изделия.

Капилляр (трещина) , выходящий на поверхность объекта контроля только с одной стороны, называют поверхностной несплошностью, а соединяющий противоположные стенки объекта контроля, - сквозной. Если поверхностная и сквозная несплошности являются дефектами, то допускается применять вместо них термины «поверхностный дефект» и «сквозной дефект». Изображение, образованное пенетрантом в месте расположения несплошности и подобное форме сечения у выхода на поверхность объекта контроля, называют индикаторным рисунком, или индикакацией.

Применительно к несплошности типа единичной трещины вместо термина «индикация» допускается применение термина «индикаторный след». Глубина несплошности - размер несплошности в направлении внутрь объекта контроля от его поверхности. Длина несплошности - продольный размер несплошности на поверхности объекта. Раскрытие несплошности - поперечный размер несплошности у ее выхода на поверхность объекта контроля.

Необходимым условием надежного выявления капиллярным методом дефектов, имеющих выход на поверхность объекта, является относительная их незагрязнённость посторонними веществами, а также глубина распространения, значительно превышающая ширину их раскрытия (минимум 10/1). Для очистки поверхности перед нанесением пенетранта используют очиститель.

Капиллярные методы дефектоскопии подразделяют на основные, использующие капиллярные явления, и комбинированные, основанные на сочетании двух или более различных по физической сущности методов неразрушающего контроля, одним из которых является капиллярный.

Приборы и оборудования для капиллярного контроля:

  • Наборы для капиллярной дефектоскопии (очистители, проявители, пенетранты)
  • Пульверизаторы
  • Пневмогидропистолеты
  • Источники ультрафиолетового освещения (ультрафиолетовые фонари, осветители)
  • Испытательные панели (тест-панель)

Контрольные образцы для цветной дефектоскопии

Чувствительность капиллярной метода дефектоскопии

Чувствительность капиллярного контроля – способность выявления несплошностей данного размера с заданной вероятностью при использовании конкретного способа, технологии контроля и пенетрантной системы. Согласно ГОСТ 18442-80 класс чувствительности контроля определяют в зависимости от минимального размера выявленных дефектов с поперечными размером 0,1 - 500 мкм.

Выявление дефектов, имеющих ширину раскрытия более 0,5 мм, капиллярными методами контроля не гарантируется.

С чувствительностью по 1 классу с помощью капиллярной дефектоскопии контролируют лопатки турбореактивных двигателей, уплотнительные поверхности клапанов и их гнезд, металлические уплотнительные прокладки фланцев и др. (выявляемые трещины и поры величиной до десятых долей мкм). По 2 классу проверяют корпуса и антикоррозийные наплавки реакторов, основной металл и сварные соединения трубопроводов, детали подшипников (выявляемые трещины и поры величиной до нескольких мкм).

Чувствительность дефектоскопических материалов, качество промежуточной очистки и контроль всего капиллярного процесса определяются на контрольных образцах (эталонах для цветной дефектоскопии ЦД), т.е. на металлических определенной шероховатости с нанесенными на них нормированными искусственными трещинами (дефектами).

Класс чувствительности контроля определяют в зависимости от минимального размера выявляемых дефектов. Постигаемую чувствительность в необходимых случаях определяют на натурных объектах или искусственных образцах с естественными или имитируемыми дефектами, размеры которых уточняют металлографическими или другими методами анализа.

Согласно ГОСТ 18442-80 класс чувствительности контроля определяется в зависимости от размера выявляемых дефектов. В качестве параметра размера дефекта принимается поперечный размер дефекта на поверхности объекта контроля – так называемая ширина раскрытия дефекта. Поскольку глубина и длина дефекта также оказывают существенное влияние на возможность его обнаружения (в частности, глубина должна существенно больше раскрытия), эти параметры считаются стабильными. Нижний порог чувствительности, т.е. минимальная величина раскрытия выявленных дефектов ограничивается тем, что весьма малое количество пенетранта; задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества. Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта на поверхности.

Установлено 5 классов чувствительности (по нижнему порогу) в зависимости от размеров дефектов:

Класс чувствительности

Ширина раскрытия дефекта, мкм

Менее 1

От 1 до 10

От 10 до 100

От 100 до 500

технологический

Не нормируется

Физические основы и методика капиллярного метода контроля

Капиллярный метод неразрушающего контроля (ГОСТ 18442-80) основан на капиллярном проникновении внутрь дефекта индикаторной жидкости и предназначен для выявления дефектов, имеющих выход на поверхность объекта контроля. Данный метод пригоден для выявления несплошностей с поперечными размером 0,1 - 500 мкм, в том числе сквозных, на поверхности черных и цветных металлов, сплавов, керамики, стекла и т.п. Широко применяется для контроля целостности сварного шва.

Цветной или красящий пенетрант наносится на поверхность объекта контроля. Благодаря особым качествам, которые обеспечиваются подбором определенных физических свойств пенетранта: поверхностного натяжения, вязкости, плотности, он, под действием капиллярных сил, проникает в мельчайшие дефекты, имеющие выход на поверхность объекта контроля

Проявитель, наносимый на поверхность объекта контроля через некоторое время после осторожного удаления с поверхности пенетранта, растворяет находящийся внутри дефекта краситель и за счет диффузии “вытягивает” оставшийся в дефекте пенетрант на поверхность объекта контроля.

Имеющиеся дефекты видны достаточно контрастно. Индикаторные следы в виде линий указывают на трещины или царапины, отдельные точки - на поры.

Процесс обнаружения дефектов капиллярным методом разделяется на 5 стадий (проведение капиллярного контроля):

1. Предварительная очистка поверхности (используют очиститель)

2. Нанесение пенетранта

3. Удаление излишков пенетранта

4. Нанесение проявителя

5. Контроль

Предварительная очистка поверхности. Чтобы краситель мог проникнуть в дефекты на поверхности, ее предварительно следует очистить водой или органическим очистителем. Все загрязняющие вещества (масла, ржавчина, и т.п.) любые покрытия (ЛКП, металлизация) должны быть удалены с контролируемого участка. После этого поверхность высушивается, чтобы внутри дефекта не оставалось воды или очистителя.


Нанесение пенетранта.
Пенетрант, обычно красного цвета, наносится на поверхность путем распыления, кистью или погружением ОК в ванну, для хорошей пропитки и полного покрытия пенетрантом. Как правило, при температуре 5-50 0 С, на время 5-30 мин.

Удаление излишков пенетранта. Избыток пенетранта удаляется протиркой салфеткой, промыванием водой. Или тем же очистителем, что и на стадии предварительной очистки. При этом пенетрант должен быть удален с поверхности, но никак не из полости дефекта. Поверхность далее высушивается салфеткой без ворса или струей воздуха. Используя при этом очиститель, есть риск вымывания пенетранта и неправильной его индикации.

Нанесение проявителя. После просушки сразу же на ОК наносится проявитель, обычно белого цвета, тонким ровным слоем.

Контроль. Инспектирование ОК начинается непосредственно после окончания процесса проявки и заканчивается согласно разным стандартам не более чем через 30 мин. Интенсивность окраски говорит о глубине дефекта, чем бледнее окраска, тем дефект мельче. Интенсивную окраску имеют глубокие трещины. После проведения контроля проявитель удаляется водой или очистителем.
Красящий пенетрант наносится на поверхность объекта контроля (ОК). Благодаря особым качествам, которые обеспечиваются подбором определенных физических свойств пенетранта: поверхностного натяжения, вязкости, плотности, он, под действием капиллярных сил, проникает в мельчайшие дефекты, имеющие выход на поверхность объекта контроля. Проявитель, наносимый на поверхность объекта контроля через некоторое время после осторожного удаления с поверхности пенетранта, растворяет находящийся внутри дефекта краситель и за счет диффузии “вытягивает” оставшийся в дефекте пенетрант на поверхность объекта контроля. Имеющиеся дефекты видны достаточно контрастно. Индикаторные следы в виде линий указывают на трещины или царапины, отдельные точки - на поры.

Наиболее удобны распылители, например аэрозольные баллоны. Можно наносить проявитель и окунанием. Сухие проявители наносятся в вихревой камере, либо электростатически. После нанесения проявителя следует выждать время от 5 мин для крупных дефектов, до 1 часа для мелких дефектов. Дефекты будут проявляться, как красные следы на белом фоне.

Сквозные трещины на тонкостенных изделиях можно обнаруживать, нанося проявитель и пенетрант с разных сторон изделия. Прошедший насквозь краситель будет хорошо виден в слое проявителя.

Пенетрантом (пенетрант от английского penetrate - проникать) называют капиллярный дефектоскопический материал, обладающий способностью проникать в несплошности объекта контроля и индицировать эти несплошности. Пенетранты содержат красящие вещества (цветной метод) или люминесцирующие добавки (люминесцентный метод), или их комбинацию. Добавки позволяют отличать пропитанную этими веществами область слоя проявителя над трещиной от основного (чаще всего белого) сплошного без дефектов материала объекта (фон).

Проявителем (проявитель) называют дефектоскопический материал, предназначенный для извлечения пенетранта из капиллярной несплошности с целью образования четкого индикаторного рисунка и создания контрастирующего с ним фона. Таким образом, роль проявителя в капиллярном контроле заключается, с одной стороны, в том, чтобы он извлекал пенетрант из дефектов за счет капиллярных сил, с другой стороны, - проявитель должен создать контрастный фон на поверхности контролируемого объекта, чтобы уверенно выявлять окрашенные или люминесцирующие индикаторные следы дефектов. При правильной технологии проявления ширина следа в 10 ... 20 и более раз может превосходить ширину дефекта, а яркостный контраст возрастает на 30 ... 50 %. Этот эффект увеличения позволяет опытным специалистам даже невооруженным глазом выявлять очень маленькие трещины.

Последовательность операций при капиллярном контроле:

Предварительная очистка

Механически, щеткой

Струйным методом

Обезжиривание горячим паром

Очистка растворителем

Предварительная просушка

Нанесение пенетранта

Погружение в ванну

Нанесение кистью

Нанесение из аэрозоли / распылителя

Нанесение электростатическим способом

Промежуточная очистка

Пропитанной водой не ворсистой тканью или губкой

Пропитанной водой кистью

Сполоснуть водой

Пропитанной специальным растворителем не ворсистой тканью или губкой

Сушка

Высушить на воздухе

Протереть не ворсистой тканью

Обдуть чистым, сухим воздухом

Высушить теплым воздухом

Нанесение проявителя

Погружением (проявитель на водной основе)

Нанесение из аэрозоли / распылителя (проявитель на спиртовой основе)

Электростатическое нанесение (проявитель на спиртовой основе)

Нанесение сухого проявителя (при сильной пористости поверхности)

Проверка поверхности и документирование

Контроль при дневном или искусственном освещении мин. 500 Lux (EN 571-1/ EN 3059)

При использовании флуоресцентного пенетранта:

Освещение: < 20 Lux

Интенсивность УФ: 1000μ W / cm 2

Документация на прозрачной пленке

Фотооптическое документирование

Документирование с помощью фото- или видеосъемки

Основные капиллярные методы неразрушающего контроля подразделяют в зависимости от типа проникающего вещества на следующие:

· Метод проникающих растворов - жидкостный метод капиллярного неразрушающего контроля, основанный на использовании в качестве проникающего вещества жидкого индикаторного раствора.

· Метод фильтрующихся суспензий - жидкостный метод капиллярного неразрушающего контроля, основанный на использовании в качестве жидкого проникающего вещества индикаторной суспензии, которая образует индикаторный рисунок из отфильтрованных частиц дисперсной фазы.

Капиллярные методы в зависимости от способа выявления индикаторного рисунка подразделяют на:

· Люминесцентный метод , основанный на регистрации контраста люминесцирующего в длинноволновом ультрафиолетовом излучении видимого индикаторного рисунка на фоне поверхности объекта контроля;

· контрастный (цветной) метод , основанный на регистрации контраста цветного в видимом излучении индикаторного рисунка на фоне поверхности объекта контроля.

· люминесцентно-цветной метод , основанный на регистрации контраста цветного или люминесцирующего индикаторного рисунка на фоне поверхности объекта контроля в видимом или длинноволновом ультрафиолетовом излучении;

· яркостный метод , основанный на регистрации контраста в видимом излучении ахроматического рисунка на фоне поверхности объекта контроля.

Физические основы капиллярной дефектоскопии. Люминесцентная дефектоскопия (ЛД). Цветная дефектоскопия (ЦД).

Изменить соотношение контрастностей изображения дефекта и фона можно двумя способами. Первый способ заключается в полировке поверхности контролируемого изделия с последующим травлением ее кислотами. При такой обработке дефект забивается продуктами коррозии, чернеет и становится заметным на светлом фоне полированного материала. Этот способ имеет целый ряд ограничений. В частности, в производственных условиях совершенно нерентабельно полировать поверхность изделия, особенно сварных швов. К тому же способ неприменим при контроле прецизионных полированных деталей или неметаллических материалов. Способ травления чаще применяют для контроля каких-то локальных подозрительных участков металлических изделий.

Второй способ состоит в изменении светоотдачи дефектов заполнением их с поверхности специальными свето- и цветоконтрастными индикаторными жидкостями - пенетрантами. Если в состав пенетранта входят люминесцирующие вещества, т. е. вещества, дающие яркое свечение при облучении их ультрафиолетовым светом, то такие жидкости называют люминесцентными, а метод контроля соответственно - люминесцентным (люминесцентная дефектоскопия - ЛД). Если же основой пенетранта являются красители, видимые при дневном свете, то метод контроля называют цветным (цветная дефектоскопия - ЦД). В цветной дефектоскопии используют красители ярко-красного цвета.

Сущность капиллярной дефектоскопии заключается в следующем. Поверхность изделия очищают от грязи, пыли, жировых загрязнений, остатков флюса, лакокрасочных покрытий и т. п. После очистки на поверхность подготовленного изделия наносят слой пенетранта и некоторое время выдерживают, чтобы жидкость смогла проникнуть в открытые полости дефектов. Затем поверхность очищают от жидкости, часть которой остается в полостях дефектов.

В случае люминесцентной дефектоскопии изделие освещают ультрафиолетовым светом (ультрафиолетовый осветитель) в затемненном помещении и подвергают осмотру. Дефекты хорошо заметны в виде ярко светящихся полосок, точек и т. п.

При цветной дефектоскопии выявить дефекты на этой стадии не удается, так как разрешающая способность глаза слишком мала. Чтобы повысить выявляемость дефектов, на поверхность изделия после удаления с нее пенетранта наносят специальный проявляющий материал в виде быстро сохнущей суспензии (например, каолина, коллодия) или лаковые покрытия. Проявляющий материал (обычно белого цвета) вытягивает пенетрант из полости дефектов, что приводит к образованию на проявителе индикаторных следов. Индикаторные следы полностью повторяют конфигурацию дефектов в плане, но больше их по размерам. Такие индикаторные следы легко различимы глазом даже без использования оптических средств. Увеличение размеров индикаторного следа тем больше, чем глубже дефекты, т.е. чем больше объем пенетранта, заполнившего дефект, и чем больше времени прошло с момента нанесения проявляющего слоя.

Физической основой капиллярных методов дефектоскопии является явление капиллярной активности, т.е. способность жидкости втягиваться в мельчайшие сквозные отверстия и открытые с одного конца каналы.

Капиллярная активность зависит от смачивающей способности твердого тела жидкостью. В любом теле на каждую молекулу со стороны других молекул действуют молекулярные силы сцепления. В твердом теле они больше, чем в жидком. Поэтому жидкости в отличие от твердых тел не обладают упругостью формы, но обладают большой объемной упругостью. Молекулы, находящиеся на поверхности тела, взаимодействуют как с одноименными молекулами тела, стремящимися втянуть их внутрь объема, так и с молекулами окружающей тело среды и обладают наибольшей потенциальной энергией. По этой причине перпендикулярно к границе в направлении внутрь тела возникает нескомпенсированная сила, называемая силой поверхностного натяжения. Силы поверхностного натяжения пропорциональны длине контура смачивания и, естественно, стремятся его уменьшить. Жидкость на металле в зависимости от соотношения межмолекулярных сил будет растекаться по металлу или соберется в каплю. Жидкость смачивает твердое тело, если силы взаимодействия (притяжения) жидкости с молекулами твердого тела больше, чем силы поверхностного натяжения. В этом случае жидкость будет растекаться по твердому телу. Если же силы поверхностного натяжения больше, чем силы взаимодействия с молекулами твердого тела, то жидкость соберется в каплю.

При попадании жидкости в капиллярный канал ее поверхность искривляется, образуя так называемый мениск. Силы поверхностного натяжения стремятся уменьшить величину свободной границы мениска, и в капилляре начинает действовать дополнительная сила, приводящая к всасыванию смачивающей жидкости. Глубина, на которую жидкость проникает в капилляр, прямо пропорциональна коэффициенту поверхностного натяжения жидкости и обратно пропорциональна радиусу капилляра. Иными словами, чем меньше радиус капилляра (дефекта) и лучше смачиваемость материала, тем жидкость быстрее и на большую глубину проникает в капилляр.

У нас Вы можете купить материалы для капиллярного контроля (цветной дефектоскопии) по низкой цене со склада в Москве: пенетрант, проявитель, очиститель Sherwin , капиллярные системы Helling , Magnaflux , ультрафиолетовые фонари, ультрафиолетовые лампы, ультрафиолетовые осветители, ультрафиолетовые светилники и контрольные образцы (эталоны) для цветной дефектоскопии ЦД.

Доставляем расходные материалы для цветной дефектоскопии по России и СНГ транспортными компаниями и курьерскими службами.

Капиллярный контроль. Капиллярный метод. Неразрушающий контроль. Капиллярная дефектоскопия.

Наша приборная база

Специалисты организации Независимая Экспертиза готовы помочь как физическим, так и юридическим лицам в проведении строительно-технической экспертизы,техническое обследование зданий и сооружений, капиллярная дефектоскопия.

У Вас нерешенные вопросы или же Вы захотите лично пообщаться с нашими специалистами или заказать независимую строительную экспертизу , всю необходимую для этого информацию можно получить в разделе "Контакты".

С нетерпением ждем Вашего звонка и заранее благодарим за оказанное доверие

Неразрушающие испытания приобретают важное значение, когда разработка покрытия уже закончилась и можно переходить к его промышленному применению. Прежде чем изделие с покрытием поступит в эксплуатацию, его проверяют на прочность, отсутствие трещин, несплошностей, пор или других дефектов, которые могут вызвать разрушение. Вероятность наличия дефектов тем больше, чем сложнее покрываемый объект. В таблице 1 представлены и ниже описаны существующие неразрушающие методы определения качества покрытий.

Таблица 1. Неразрушающие методы контроля качества покрытий перед их эксплуатацией.

# Метод контроля Цель и пригодность испытания
1 Визуальное наблюдение Выявление поверхностных дефектов покрытия визуальным осмотром
2 Капиллярный контроль (цветной и люминесцентный) Выявление поверхностных трещин, пор и аналогичных дефектов покрытия
3 Радиографический контроль Выявление внутренних дефектов покрытия
4 Электромагнитный контроль Выявление пор и трещин, метод не пригоден для выявления дефектов в углах и кромках
5 Ультразвуковой контроль Выявление поверхностных и внутренних дефектов, метод не пригоден для тонких слоев и для выявления дефектов в углах и кромках

ВНЕШНИЙ ОСМОТР

Простейшая оценка качества - внешний осмотр изделия с покрытием. Такой контроль сравнительно прост, он становится особенно эффективным при хорошем освещении, при использовании увеличительного стекла. Как правило, внешний осмотр должен производиться квалифицированным персоналом и в сочетании с другими методами.

ОПРЫСКИВАНИЕ КРАСКОЙ

Трещины и углубления на поверхности покрытия выявляются по впитыванию краски. Испытуемая поверхность опрыскивается краской. Затем ее тщательно вытирают и на нее напыляют индикатор. Через минуту краска выступает из трещин и прочих мелких дефектов и окрашивает индикатор, выявляя таким образом контур трещины.

ФЛУОРЕСЦЕНТНЫЙ КОНТРОЛЬ

Этот метод аналогичен методу впитывания краски. Испытуемый образец погружается в раствор, содержащий флюоресцентную краску, которая попадает во все трещины. После очистки поверхности образец покрывается новым раствором. Если покрытие имеет какие-либо дефекты, флюоресцентная краска в этом месте будет видна под ультрафиолетовым облучением.

Обе методики, основанные на впитывании, применяют только для выявления поверхностных дефектов. Внутренние дефекты при этом не обнаруживаются. Дефекты, лежащие на самой поверхности, выявляются с трудом, поскольку при обтирании поверхности перед нанесением индикатора краска с них удаляется.

РАДИОГРАФИЧЕСКИЙ КОНТРОЛЬ

Контроль проникающим излучением используют для выявления пор, трещин и раковин внутри покрытия. Рентгеновские и гамма-лучи проходят через испытуемый материал и попадают на фотопленку. Интенсивность рентгеновского и гамма-излучения изменяется при прохождении их через материал. Любые поры, трещины или изменения толщины будут регистрироваться на фотопленке, и при соответствующей расшифровке пленки можно установить положение всех внутренних дефектов.

Радиографический контроль сравнительно дорог и протекает медленно. Необходима защита оператора от облучения. Трудно анализировать изделия сложной формы. Дефекты определяются, когда их размеры составляют более 2% от общей толщины покрытия. Следовательно, радиографическая техника непригодна для выявления мелких дефектов в крупных конструкциях сложной формы, она дает хорошие результаты на менее сложных изделиях.

ТОКОВИХРЕВОЙ КОНТРОЛЬ

Поверхностные и внутренние дефекты можно определять с помощью вихревых токов, индуцируемых в изделии внесением его в электромагнитное поле индуктора. При перемещении детали в индукторе, или индуктора относительно детали индуцированные вихревые токи взаимодействуют с индуктором и меняют его полное сопротивление. Индуцированный ток в образце зависит от наличия дефектов проводимости образца, а также его твердости и размера.

Применяя соответствующие индуктивности и частоты или их сочетание, можно выявить дефекты. Контроль вихревыми токами нецелесообразен, если конфигурация изделия сложна. Контроль этого вида непригоден для выявления дефектов на кромках и углах; в некоторых случаях от неровной поверхности могут поступать те же сигналы, что и от дефекта.

УЛЬТРАЗВУКОВОЙ КОНТРОЛЬ

При ультразвуковом контроле ультразвук пропускают через материал и измеряют изменения звукового поля, вызванные дефектами в материале. Энергия, отраженная от дефектов в образце, воспринимается преобразователем, который превращает ее в электрический сигнал и подается на осциллограф.

В зависимости от размеров и формы образца для ультразвукового контроля используют продольные, поперечные или поверхностные волны. Продольные волны распространяются в испытуемом материал прямолинейно до тех пор, пока они не встретятся с границей или несплошностью. Первая граница, с которой встречается входящая волна, -граница между преобразователем и изделием. Часть энергии отражается от границы, и на экране осциллографа появляется первичный импульс. Остальная энергии проходит через материал до встречи с дефектом или противоположной поверхностью, положение дефекта определяется измерением расстояния между сигналом от дефекта и от передней и задней поверхностей.

Несплошности могут быть расположены так, что их можно определить, направляя излучение перпендикулярно к поверхности. В этом случае звуковой луч вводится под углом к поверхности материала для создания поперечных волн. Если угол входа достаточно увеличить, то образуются поверхностные волны. Эти волны проходят по контуру образца и могут обнаруживать дефекты близ его поверхности.

Существуют два основных типа установок для ультразвукового контроля. При резонансном испытании используют излучение с переменной частотой. При достижении собственной частоты, соответствующей толщине материала, амплитуда колебаний резко возрастает, что отражается на экране осциллографа. Резонансный метод применяют главным образом для измерения толщины.

При импульсном эхо-методе в материал вводят импульсы постоянной частоты длительностью в доли секунды. Волна проходит через материал, и энергия, отраженная от дефекта или задней поверхности, падает на преобразователь. Затем преобразователь посылает другой импульс и воспринимает отраженный.

Для выявления дефектов в покрытии и для определения прочности сцепления между покрытием и подложкой применяют также трансмиссионный метод. В некоторых системах покрытий измерение отраженной энергии не позволяет адекватно установить дефект. Это обусловлено тем, что граница между покрытием и подложкой характеризуется настолько высоким коэффициентом отражения, что наличие дефектов мало меняет суммарный коэффициент отражения.

Применение ультразвуковых испытаний ограничено. Это видно из следующих примеров. Если материал имеет грубую поверхность, звуковые волны рассеиваются так сильно, что испытание теряет смысл. Для испытания объектов сложной формы необходимы преобразователи, повторяющие контур объекта; неправильности поверхности вызывают появление всплесков на экране осциллографа, затрудняющих определение дефектов. Границы зерен в металле действуют аналогично дефектам и рассеивают звуковые волны. Дефекты, расположенные под углом к лучу, выявляются с трудом, так как отражение происходит в основном не по направлению к преобразователю, а под углом к нему. Часто бывает трудно различить несплошности, расположенные близко одна к другой. Кроме того, выявляются только те дефекты, размеры которых сравнимы с длиной звуковой волны.

Заключение

Отборочные испытания предпринимают во время начальной стадии разработки покрытия. Поскольку в период поисков оптимального режима число разных образцов очень велико, применяют комбинацию методов испытаний, чтобы отсеять неудовлетворительные образцы. Эта отборочная программа состоит обычно из нескольких типов окислительных испытаний, металлографического исследования, испытаний в пламени и испытания на растяжение. Покрытия, успешно прошедшие отборочные испытания, испытывают в условиях, аналогичных эксплуатационным.

Когда установлено, что определенная система покрытия выдержала испытания в эксплуатационных условиях, ее можно применить для защиты реального изделия. Необходимо разработать технику неразрушающего контроля конечного изделия перед пуском его в эксплуатацию. Неразрушающую методику можно использовать для выявления поверхностных и внутренних нор, трещин и несплошностей, а также плохого сцепления покрытия и подложки.

Похожие публикации