Энциклопедия пожаробезопасности

Занимательная физика: вращающееся магнитное поле на уроке. Вращающееся магнитное поле

Под ВМП (Вращающееся Магнитное Поле) подразумевается то поле, градиент магнитного возбуждения которого, не меняясь по модулю, циркулирует со стабильной угловой скоростью.

Наглядный пример

Практическое действие магнитных полей поможет продемонстрировать установка, собранная в домашних условиях. Это вращающийся диск из алюминия, закрепленный на неподвижном импосте.

Если поднести к нему магнит, то можно убедиться, что он не увлекается за магнитом, то есть не намагничивается. Но, если разместить в непосредственной близи вращающийся магнит, то это вызовет неизбежное вращение алюминиевого диска. Почему?

Ответ может показаться простым – вращение магнита вызывают вихревые воздушные потоки, раскручивающие диск. Но все, на самом деле иначе! Поэтому, для доказательства, между диском и магнитом устанавливается органическое или обычное стекло. И, тем не менее, диск вращается, увлекаясь вращением магнита!

Причина в том, что при перемене магнитного поля (а вращающийся магнит именно его и создает) появляется ЭДС (электрическая движущая сила) возбуждения (индукции) , которое способствует возникновению электротоков в алюминиевом диске, обнаруженные впервые физиком А. Фуко (чаще всего их так и называют «токи Фуко») . Появившиеся в диске токи, своим влиянием создают свое, отдельное магнитное поле. А взаимодействие двух полей, вызывает их противодействие и спин алюминиевого диска.

Принцип работы электродвигателя

Проведенный эксперимент порождает вопрос – можно ли без вращения магнита, но с использованием природы переменного тока создать ВМП? Ответ – да, можно! На этом физическом законе построена целая отрасль электротехнического оборудования, в том числе электродвигатели.

Для этого можно взять четыре катушки и расположить их попарно, под 900 относительно друг друга. Затем подавать переменный ток, посменно на одну, а затем на другую пару катушек, но уже через конденсатор. В этом случае на второй паре катушек напряжение сдвинется касательно тока на π/2. Так образуется двухфазный ток.

Если на одной паре катушек нулевое напряжение – магнитное поле отсутствует. На второй паре, в это время напряжение пиковое и МП (магнитное поле) максимально. Попеременное подключение и отключение катушек будет создавать ВМП с изменением направления и постоянной величиной. По сути, был создан электродвигатель, тип которого называется однофазным конденсаторным.

Как создаются трехфазные токи?

Они протекают по четырехжильным проводам. Один играет роль нулевого, а по трем другим подается синусоидальный ток с фазовым сдвигом на 120º. Ели по тому же принципу расположить три обмотки на одной оси под углом 120º и подать на них ток из трех фаз, то результатом будет возникновение трех магнитных вращающихся полей или принцип трехфазного электродвигателя.

Практическое применение

Подача электрического тока по трем фазам, наиболее широко распространена в промышленности, как эффективный способ трансляции энергии. Двигатели и генераторные установки, приводимые в движение трехфазным током, более надежны в эксплуатации, чем однофазные. Их простота в использовании, обусловлена отсутствием необходимости строгой регулировки постоянной частоты вращения, а так же достижение большей мощности.

Тем не менее, двигатели такого типа можно использовать не во всех случаях, так как их обороты зависят от частоты вращения магнитного поля, которое составляет 50Гц. При этом отставание скорости оборотов двигателя, должно быть меньше от вращения магнитного поля вдвое, так как в противном случае не появится эффект магнитного возбуждения. Корректирование скорости вращения ротора электрического двигателя, возможно только при постоянном токе, с помощью реостата.

По этой самой причине трамваи и троллейбусы оснащены двигателями постоянного тока, с возможностью управления частотой вращения. Этот же принцип управления используется на электропоездах, где напряжение переменного тока, в силу перемещения тысячетонных грузов, соответствует 28000V. Преобразование переменного тока в постоянный, происходит за счет выпрямителей, которые и занимают большую часть электровоза.

Все же коэффициент полезного действия в асинхронных двигателях переменного электрического тока достигает 98%. Стоит, так же отметить, что ротор такого двигателя переменного тока состоит из немагнитного материала с преобладающей алюминиевой составляющей. Причина в том, что токи, лучше всего вызывают эффект индукции магнитного поля, именно в алюминии. Пожалуй, единственным ограничением в использовании трехфазного двигателя, является нерегулируемая величина количества оборотов. Но с этой задачей справляются добавочные механизмы такие, как вариаторы или коробки передач. Правда, это ведет к удорожанию агрегата, как и в случае с использованием выпрямителя и реостата для двигателя постоянного тока.

Вот таким образом занимательная физика, вращающееся магнитное поле в частности, помогает человечеству создавать двигатели, и не только, для более комфортного нашего существования.

Электрогравитация это просто

Вступление. В статье описана простейший генератор электрогравитации способный как уменьшай свой вес так и увеличивать. На сегодняшний день рабочая установка способна изменять вес в весьма маленьком диапазоне до 50 % от изначального веса. Поэтому даны рекомендации по ее доработке. Опыты Сергея Година и Василия Рощина Два российских физика создали очень интересный генератор. По факту это постоянные магниты помещенные в специальный диск с полостями для магнитов. При вращении "диска с магнитами" по часовой стрелке вес генератора уменьшался, а при вращении против часовой стрелки уменьшался.



Ученые ставят опыт ы но никаких теорий своим экспериментам пока не предлагают.



Все их опыты свелись к тому, что ученые изменяют скорость вращения и наблюдают за изменением веса. По их данным вес уменьшался до 50 % Летающая тарелка, это просто. На первый взгляд усилить антигравитационный эффект можно просто быстрее раскрутив "барабан" с магнитами. Увы центробежные силы просто разорвут барабан. Что и наблюдали экспериментаторы. Поэтому первый шаг это кроме основного электродвигателя поставить небольшой электродвигатель на каждый магнит. Диаметр каждого магнита много меньше целого барабаны и сама по себе конструкция отдельно взятого магнита прочнее сборного "барабана" поэтому и раскрутить каждый магнит по отдельности можно до больших скоростей.



А усилить дополнительно антигравитационный эффект можно за счет добавления новых способных вращаться магнитов оснащенных мини электродвигателями. Второй шаг, следует

, заменить в "барабане" постоянные магниты на электромагниты. Что такое постоянный магнит? По сути это набор кольцевых токов таких себе маленьких электромагнитиков "вшитых" в тело магнита.



Текущих в одной плоскости . Таким образом мы можем все магниты в барабане Рощина Погодина заменить на электромагниты. И подать к ним напряжение, через скользящие или жидкие контакты и раскрутить при помощи отдельных мини электромагнитных двигателяей.



Вот и все устройство "летающей тарелки" согласно опытам Рощина Година и двум описанным в статье электромагнитным парадоксам. Хотим увеличения веса, вращаем электромагниты и "барабан" в одну сторону хотим уменьшения веса крутим в другую. Далее надо отметить очень инт е ресный факт , обнаруженный физиками, это охлаждение магнитов . То же самое обнаружил и Серл в своих экспериментах . Это позволит избежать вероятного перегрева электромагнитных катушек. Литература -7- Экспериментальное исследование нелинейных эффектов в динамической магнитной системе Владимир РОЩИН , Сергей ГОДИН

Начало современного этапа в развитии электротехники относится к 90-м годам прошлого столетия, когда решение комплексной энергетической проблемы вызвало к жизни электропередачу электропривод. Электрификация началась тогда, когда оказалось возможным строить крупные электрические станции в местах, богатых первичными энергоресурсами, объединять их работу на общую сеть и снабжать электроэнергией любые центры и объект электропотребления.

Техническая сторона электрификации заключалась в разработ­ке многофазных систем, из которых практика сделала выбор в пользу системы трехфазной. Наиболее важным» и во всяком случае новыми элементами трехфазной системы были электродвига­тели, действие которых основано на использовании явления вращающегося магнитного поля.

Ранее упоминался опыт Араго, в котором диск и вращающийся магнит отражали принцип асинхронного электродвигателя с вра­щающимся магнитным полем. Од­нако это поле создавалось не неподвижным устройством, каким в современных машинах является статор, а вращающимся магнитом (рис. 4.2).

Долгое время явление, откры­тое Араго, не находило практиче­ского применения. Только в 1879 г. У. Бели (Англия) сконструиро­вал прибор (рис. 6.1), в котором пространственное перемещение магнитного поля осуществлялось с помощью неподвижного уст­ройства - путем поочередного намагничивания четырех расположснныхпо периферии круга электромагнитов. Намагничива­ние производилось импульсами постоянного тока, посылаемыми в обмотки электромагнитов специально приспособленным для этого коммутатором. Полярность верхних концов стержней из­менялась в определенной последовательности так, что через каждые восемь переключений коммутатора магнитный поток изменял свое направление п пространстве на 360. Над полюсами электромагнитов, как и в опытах Араго, был подвешен медный диск 2. Бели указывал, что при бесконечно большом числе элект­ромагнитов можно было бы обеспечить равномерное вращение магнитного поля. Прибор Бели не нашел никакого применения. Тем не менее, он был некоторым связующим звеном между опы­том Араго и более поздними исследованиями. С позиций сегод­няшнего дня представляется крайне простым осуществление вращающегося поля в установке Бели или в подобном прибо­ре иной конструкции путем питания электромагнитов синусои­дальными токами с различными начальными фазами. Однако в 80-х годах прошлого столетия на это ушло несколько лет ра­боты и поисков многих ученых, среди которых были француз­ский физик Марсель Депре, разработавший в 1883 г. систему синхронной связи двух движений, авторы одной из конструк­ций индукционных электросчетчиков Борель и Шалленбергер, изобретатель репульсионного двигателя И. Томсон, американский электротехник Ч. Бредли, немецкий инженер Ф. Хазельвандер и др. В связи с этим интересно привести фразу Илайю Томсона: «Трудно составить такую комбинацию из маг­нитов, переменного тока и кусков меди, которая не имела бы тенденции к вращению».



История открытия вращающегося магнитного поля и многофаз­ных систем до крайности запутана. В 90-е годы прошли многие су­дебные процессы, на которых разные фирмы, скупившие патенты изобретателей, пытались утвердить свои права на многофазные системы. Только американская фирма Вестингауз провела более 25 судебных процессов.

Однако исчерпывающие и получившие наибольшую извест­ность экспериментальные и теоретические исследования вращаю­щегося магнитного поля выполнили независимо друг от другавыдающиеся ученые итальянец Галилео Феррарис (1847-1897 гг.) и серб Цикола Тесла (1856-1943 гг.).

Г. Феррарис утверждал, что суть явления вращающегося магнитного поля он осознал еще в 1885 г., но доклад «Электродинами­ческое вращение, произведенное с помощью переменных токов» он сделал в Туринской академии (членом которой он состоял с 1880 г.) 18 марта 1888 г.

Н. Тесла в своей автобиографии рассказывал, что идея двух­фазного асинхронного двигателя родилась у него еще в 1882 г., когда он работал в Будапештской телеграфной компании. Гуляя в парке с другом, он, осененный идеей, «тростью сделал на песке на­бросок принципа, который изложил шесть лет спустя на конфе­ренции в Американском институте электроинженеров». Доклад в этом институте состоялся 16 мая 1888 г., т.е. на два месяца позд­нее доклада Феррариса. Но первую заявку на получение патента на многофазные системы Тесла подал еще 12 октября 1887 г., т.е. ранее выступления Феррариса.

Остановимся сначала на работе Г. Феррариса исходя не из при­оритетных соображений, а из того, что в его работе дан более об­стоятельный теоретический анализ и еще потому, что именно перевод доклада Феррариса в английском журнале попал в свое время в руки М. О. Доливо-Добровольскому и вызвал первый им­пульс в серии последующих замечательных изобретений. Галилео Феррарис был известным в Европе ученым, представ­лявшим Италию на разных международных выставках и конгрес­сах.

Профессор разрабатывал теорию переменных токов и умел в очень ясной форме объяснять трудные физические процессы. Вот как в переложении им было объяснено явление враща­ющегося магнитного поля.

Рассмотрим показанную на рис. 6.2. пространствен­ную диаграмму, на которой ось x: представляет собой положительное направление вектора магнитной индукций создаваемой одной из катушек, а ось у положительноенаправление поля другой катушки. Для момента времени, ког­да индукция одного поля в точке О изображается отрезком OA, а другого - ОВ, суммарная результирующая индукция изобразит­ся отрезком OR. При изменениях OA и ОБ точка R перемещается но кривой, форма которой определяется законами изменений во времени двух полей. Если два поля имеют одинаковые амплитуды и сдвинуты по фазе на четверть периода, то геометрическим мес­том точки R станет окружность. Налицо вращение магнитного поля. Если фазу одного из полей или возбуждающего его тока изменить на 180 , то изменится и направление вращения резуль­тирующего поля. Если поместить в это поле снабженный валом и подшипниками медный цилиндр, то он будет вращаться. Позднее асинхронные двигатели с полым ротором в виде медного стакана получили название двигателей Фер­рариса.

Но как получить два переменных тока, сдвинутых относительно друг друга по фазе Феррарис предложил метод «расщепления фаз», при кото­ром искусственным путем создавался сдвиг по фазе при включении в цепи двух взаимоперпендикулярно распо­ложенных катушек фазосмещающих устройств. На рис. 6.3. показан внеш­ний вид модели двухфазного асинх­ронного двигателя, хранящейся в музее г. Турина, директором которого конца жизни был Галилео Феррарис.

В своем теоретическом анализе Феррарис, находясь в плену методов «слаботочной техники», предположил, что асинхронный Читатель должен работать в режиме, согласованном с источником "чтения, то есть в режиме передачи от источника к двигателю Максимальной мощности. Отсюда вытекало условие работы двига­ла при 50-процентном скольжении, и, как следствие, кпд такого двигателя мог быть только ниже 50 %. «Эти вычисления, - пола­гал Феррарис, - и экспериментальные результаты подтвержда­ет очевидное a priori заключение, что аппарат, основанный на этом принципе, не может иметь какого-либо практического значения...». Эта досадная и поучительная ошибка выдающегося уче­ною снижала ценность открытия и ограничивала область его при­менения только измерительными устройствами. Но именно эта злополучная для Феррариса фраза оказалась счастливой нахшкоЙ дл я Дат 11 по-Доб ронол и-кот.

Никола Тесла, одни из самых известных и плодовитых ученых в области электротехники, начинавший и 80-х подах прошлого ве­ка свою научную карьеру, получил только н области многофазных систем 41 патент. Некоторое время Тесла работал и Эднсоновской компании в Париже (1882-1884 гг.>, а затем переехал в США. В 1888 г. псе своп патенты по многофазным системам Тесла продал главе известной фирмы Джорджу Всстннгаузу, который в своих планах развития техники переменною тока (в противовес компа­нии Эдисона) сделал станку иа работы Тесла. Впоследствии Тесла мною внимания уделял технике высоких частот ("трансформатор Тесла") и идее передачи электроэнергии без проводов. Интересная деталь: прн решении вопроса о стандартизации промышленной частоты, а диапазон предложении был от 25 до 133 Гц, Тесла реши­тельно высказался за принятую им для своих опытных установок частоту 60 Гц. Тогда отказ инженерен Вестннгауза от предложе­ния Тесла послужили начальным импульсом для ученого, решив­шего расстаться с Вестингаулом. Но вскоре именно эта частота бы.1.1 принята н США в качестве стандартной.

В патентах Тесла были описаны различные варианты много­фазных систем, В отличие от Феррариса Тесла полагал, что мно­гофазные токи следует получать от многофазных источников, а не пользоваться фазосмещающими устройствами. Утверждая, что двухфазная система, являясь минимальным вариантом системы многофазной, окажется и наиболее экономичной, Тесла, а вслед за ним и фирма Вестннгауза, основное внимание сосредоточили именно на этой системе.

Схематически система Тесла в ее наиболее характерной фор­ме представлена на рис, 6.4, слепа изображен синхронный гене­ратор, справа - асинхронный двигатель. В генераторе между полюсами вращались две взаимно перпендикулярные катушку в которых генерировались дна тока, сдвинутые по фазе на 90. Концы каждой катушки были выведены на кольца, расположен­ные на валу генератора (на чертеже для ясности эти кольцаимеют различные диаметры).

Ротор двигателя тоже имел обмотку в виде двух расположенных под прямым углом друг к другу замкнутых на себя катушек. Основным недостатком двигателя Тесла, который впоследствии сделал его неконкурентоспособным, было наличие выступающих полюсов с сосредоточенной обмоткой. Эти двигатели имели боль­шое магнитное сопротивление и крайне неблагоприятное распре­деление намагничивающей силы вдоль воздушного зазора, что приводило к ухудшению характеристик машины. Таковы были следствия механического переноса в технику переменного тока конструктивных схем машины постоянного тока.

Конструкция обмотки ротора, как выяснилось позднее, тоже оказалась неудачной. Действительно, выполнение обмоток сосре­доточенными (а не распределенными по всей окружности ротора) при выступающих полюсах на статоре приводило к ухудшению пусковых условий двигателя (зависимость пускового момента от начального положения ротора), а то обстоятельство, что обмотки ротора имели сравнительно большое сопротивление, ухудшало ра­бочие характеристики.

Неудачным оказался и выбор двухфазной системы токов из всех возможных многофазных систем. Известно, что значитель­ную долю стоимости установки для передачи электроэнергии со­ставляют затраты на линейные сооружения и в частности на линейные провода. В связи с этим казалось очевидным, что чемменьше принятое число фаз, тем меньшим будет число прово­дов и тем, следовательно, экономичнее устройство электропе­редачи. Двухфазная система требовала применения четырех проводов, а удвоение числа проводов по сравнению с установ­ками постоянного или однофазного переменного токов пред­ставлялось нежелательным. Поэтому Тесла предлагал в некоторых случаях применять в двухфазной системе трехпроводную линию, то есть делать один провод общим. В этом слу­чае число проводов уменьшалось до трех. Однако расход металла на провода при этом снижался меньше, чем можно было ожидать, так как сечение общего провода должно быть примерно в 1,5 раза (точнее, в 2 раз) больше сечения каж­дого из двух других проводов.

Встретившиеся экономические и технические трудности за­держивали внедрение двухфазной системы в практику. Фирма Вестингауз построила несколько станций по этой системе, из которых наибольшей по масштабам была Ниагарская гидроэлект­ростанция.

Было показано, что его попытка создать практически «вечный двигатель» удалась потому, что автор интуитивно понимал, а может прекрасно знал, но тщательно скрывал истину, как правильно надо создать магнит нужной формы и как правильно надо сопоставить магнитные поля магнитов ротора и статора, чтобы взаимодействие между ними привело к практически вечному вращению ротора. Для этого ему пришлось изогнуть роторные магниты так, что этот магнит в разрезе стал похож на бумеранг, слабоизогнутую подкову или банан.

Благодаря такой форме магнитные силовые линии роторного магнита оказались замкнутыми уже не в виде тора, а в виде «бублика», пусть и сплюснутого. И размещение такого магнитного «бублика» так, чтобы его плоскость была при максимальном приближении магнита ротора к магнитам статора приблизительно или преимущественно параллельна силовым линиям, исходящих от магнитов статора, позволило получить за счет эффекта Магнуса для эфирных потоков силу, которая обеспечила безостановочное вращение арматуры вокруг статора...

Конечно было бы лучше, если бы магнитный «бублик» роторного магнита был бы совсем параллельным силовым линиям, исходящих из полюсов магнитов статора, и тогда эффект Мёбиуса для магнитных потоков, которые есть потоки эфира, проявился бы с бОльшим эффектом. Но для того времени (более 30 лет назад) даже такое инженерное решение было огромным достижением, что, несмотря на запрет выдавать патенты на «вечные двигатели», Говарду Джонсону через несколько лет ожидания, патент получить удалось, так как, видимо, ему удалось убедить патентоведов реально действующим образцом своего магнитного мотора и магнитной дорожки. Но даже по прошествии 30 лет кто-то из власть имущих упорно не желает принять решение о массовом применении подобных двигателей в промышленности, в быту, на военных объектах и т.д.

Убедившись, что мотор Говарда Джонсона использует тот принцип, который понят мной, исходя их теории Эфира, я попытался проанализировать с этих же позиций еще один патент, который принадлежит русскому изобретателю Алексеенко Василию Ефимовичу. Патент был выдан еще в 1997 году, но поиск по Интернету показал, что наша власть и промышленники фактически игнорируют изобретение. Видимо в России еще много нефти и денег, поэтому чиновники предпочитают мягко спать и сладко есть, благо у них зарплата это позволяет. А в это время на нашу страну надвигается экономический, политический, экологический и идеологический кризис, которые могут перерасти в продовольственный и энергетические кризисы, а при нежелательном для нас развитии породить демографическую катастрофу. Но, как любили говорить некоторые царские военноначальники - не беда, бабы новых нарожают…

Предоставляю возможность самим читателям познакомиться с патентом Алексеенко В.Е. Он предложил 2 конструкции магнитных двигателей. Их недостатком является то, что их роторные магниты имеют довольно сложную форму. Но патентоведы, вместо того, чтобы помочь автору патента упростить конструкцию, ограничились формальной выдачей патента. Мне неизвестно, как Алексеенко В.Е. обошёл запрет на «вечные двигатели», но и на том спасибо. А вот то, что это изобретение фактически оказалось никому не нужным, это уже очень плохо. Но это, к сожалению, суровая правда бытия нашего народа, которым управляют недостаточно компетентные или слишком корыстные существа. Пока жаренный петух не клюнет…


ИЗОБРЕТЕНИЕ

Патент Российской Федерации RU2131636

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ

Изучая диск Фарадея и т.н. "парадокс Фарадея", провел несколько простых опытов и сделал несколько интересных выводов. В первую очередь о том, на что следует обращать больше всего внимания для того, чтобы лучше понять процессы происходящие в этой (и подобных) униполярной машине.

Понимание принципа работы диска Фарадея помогает понять также то, как работают вообще все трансформаторы, катушки, генераторы, электродвигатели (в т.ч. униполярный генератор и униполярный двигатель) и т.п.

В заметке рисунки и подробное видео с разными опытами, иллюстрирующими все выводы без формул и подсчетов, "на пальцах".

Все нижеизложенное - попытка осмысления без претензий на академическую достоверность.

Направление силовых линий магнитного поля

Главный вывод который я для себя сделал: первое, на что стоит всегда обращать внимание в подобных системах - это геометрия магнитного поля , направление и конфигурация силовых линий.

Только геометрия силовых линий магнитного поля, их направление и конфигурация могут внести определенную ясность в понимание процессов, происходящих в униполярном генераторе или униполярном двигателе, диске Фарадея, а также любом трансформаторе, катушке, электродвигателе, генераторе и т.п.

Я для себя распределил степень важности так - 10% физики, 90% геометрии (магнитного поля) для понимания происходящего в этих системах.

Более подробно все описано в видео (см. ниже).

Надо понимать что диск Фарадея и внешняя цепь со скользящими контактами так или иначе образуют хорошо известную со школьных времен рамку - ее образует участок диска от его центра к месту соединения со скользящим контактом у его края, а также вся внешняя цепь (подходящие к контактам проводники).

Направление силы Лоренца, Ампера

Сила Ампера - частный случай силы Лоренца (см. Википедию).

Ниже на двух картинках показана сила Лоренца действующая на положительные заряды во всей цепи ("рамке") в поле магнита типа "бублик" для случая когда внешняя цепь жестко соединена с медным диском (т.е. когда скользящие контакты отсутствуют, и внешняя цепь напрямую припаяна к диску).

1 рис . - для случая когда вся цепь вращается внешним механическим усилием ("генератор").
2 рис . - для случая, когда через цепь подается постоянный ток от внешнего источника ("двигатель").

Нажмите на один из рисунков, чтобы увеличить.

Сила Лоренца проявляется (генерируется ток) только в участках цепи, ДВИГАЮЩИХСЯ в магнитном поле

Униполярный генератор

Итак, поскольку сила Лоренца, действующая на заряженные частицы диска Фарадея или униполярного генератора, будет действовать противоположно на разных участках цепи и диска, то для получения тока из этой машины следует приводить в движение (вращать) только те участки цепи (по возможности), направление силы Лоренца в которых будет совпадать. Остальные участки должны быть либо неподвижны, либо исключены из цепи, либо вращаться в противоположную сторону .

Вращение магнита не изменяет однородность магнитного поля вокруг оси вращения (см. последний раздел), поэтому стоит магнит или вращается - не играет роли (хотя идеальных магнитов не бывает, и неоднородность поля вокруг оси намагниченности, вызванная недостаточным качеством магнита , тоже оказывает некоторое влияние на результат).

Здесь важную роль играет то, какая часть всей цепи (включая подводящие провода и контакты) вращается, а какая неподвижна (т.к. только в движущейся части возникает сила Лоренца). А главное - в какой части магнитного поля находится вращающаяся часть, и из какого участка диска производится съем тока.

Например, если диск будет выступать далеко за пределы магнита, то в выступающей за край магнита части диска можно снять ток направления противоположного току который можно снять в части диска расположенной непосредственно над магнитом.

Униполярный двигатель

Все вышесказанное о генераторе справедливо и для режима "двигатель".

Подавать ток надо по возможности в те части диска, в которых сила Лоренца будет направлена в одну сторону. Именно эти участки надо освободить, предоставив возможность им свободно вращаться и "разорвать" цепь в соответствующих местах, поставив скользящие контакты (см. рисунки далее).

Остальные участки надо по возможности либо исключить, либо минимизировать их влияние.

Видео - опыты и выводы

Время разных этапов этого видео:

3 мин 34 сек - первые опыты

7 мин 08 сек - на что обращать главное внимание и продолжение опытов

16 мин 43 сек - ключевое объяснение

22 мин 53 сек - ГЛАВНЫЙ ОПЫТ

28 мин 51 сек - 2 часть, интересные наблюдения и еще опыты

37 мин 17 сек - ошибочный вывод одного из опытов

41 мин 01 сек - о парадоксе Фарадея

Что от чего отталкивается?

Мы с товарищем-электронщиком долго обсуждали эту тему и он высказал мысль построенную вокруг слова "отталкивается ".
Мысль, с которой я согласен - если что-то начинает движение, то оно от чего-то должно отталкиваться. Если что-то движется, то оно движется относительно чего-то.

Упрощенно говоря, можно сказать, что часть проводника (внешняя цепь или диск) отталкивается от магнита! Соответственно на магнит (через поле) действуют силы отталкивания. Иначе вся картина рушится и теряет логику. Про вращение магнита - см. раздел ниже.

На рисунках (можно кликнуть для увеличения) - варианты для режима "двигатель".
Для режима "генератор" работают те же принципы.

Здесь действие-противодействие происходит между двумя главными "участниками":

  • магнит (магнитное поле)
  • разные участки проводника (заряженные частицы проводника)

Соответственно, когда диск вращается, а магнит неподвижен , то действие-противодействие происходит между магнитом и частью диска .

А когда магнит вращается вместе с диском, то действие-противодействие происходит между магнитом и внешней частью цепи (зафиксированными подводящими проводниками). Дело в том, что вращение магнита относительно внешнего участка цепи - это тоже самое, что вращение внешнего участка цепи относительно неподвижного магнита (но в противоположную сторону). В этом случае медный диск в процессе "отталкивания" почти не участвует.

Выходит так, что в отличие от заряженных частиц проводника (которые могут двигаться внутри него), магнитное поле жестко связано с магнитом. В т.ч. вдоль окружности вокруг оси намагниченности.
И еще один вывод: сила притягивающая два постоянных магнита - не какая-то загадочная сила перпендикулярная силе Лоренца, а это сила Лоренца и есть. Все дело во "вращении" электронов и той самой "геометрии ". Но это уже другая история...

Вращение "голого" магнита

В конце видео есть забавный опыт, и вывод о том, почему часть электрической цепи можно заставить вращаться, а заставить вращаться магнит "бублик" вокруг оси намагниченности - не получается (при неподвижной электрической цепи постоянного тока).

Проводник можно разорвать в местах противоположного направления силы Лоренца, а магнит разорвать нельзя

Дело в том что магнит и весь проводник (внешняя цепь и сам диск) образуют связанную пару - две взаимодействующие системы , каждая из которых замкнута внутри себя . В случае с проводником - замкнута электрическая цепь , в случае с магнитом - "замкнуты" силовые линии магнитного поля .

При этом, в электрической цепи проводник можно физически разорвать , не нарушая самой цепи (поставив диск и скользящие контакты ), в тех местах, где сила Лоренца "разворачивается" в обратном направлении, "отпустив" разные участки электрической цепи двигаться (вращаться) каждый в свою, противоположную друг другу сторону, а разорвать "цепь" силовых линий магнитного поля или магнита, так чтобы разные участки магнитного поля "не мешали" друг другу - видимо невозможно (?). Никаких подобий "скользящих контактов" для магнитного поля или магнита кажется еще не придумали.

Поэтому и возникает проблема с вращением магнита - его магнитное поле представляет собой цельную систему, которая всегда замкнута в себе и неразрывна в теле магнита. В ней противоположные силы на участках, где магнитное поле разнонаправленно, взаимно компенсируются, оставляя магнит неподвижным.

При этом, работа силы Лоренца, Ампера в неподвижно зафиксированном проводнике в поле магнита, уходит видимо не только на нагрев проводника, но и на искажение силовых линий магнитного поля магнита.

КСТАТИ! Интересно было бы провести опыт, в котором через неподвижный проводник, находящийся в поле магнита, пропустить огромный ток , и посмотреть - как будет реагировать магнит. Нагреется ли магнит, размагнитится ли, или может быть он просто разломается на куски (и тогда интересно - в каких местах?).


Все вышеизложенное - попытка осмысления без претензий на академическую достоверность.

Вопросы

Что осталось не до конца ясным и требует проверки:

1. Можно ли все-таки заставить вращаться магнит отдельно от диска?

Если дать возможность и диску, и магниту, свободно вращаться независимо друг от друга , и подать ток на диск через скользящие контакты, то будут ли и диск, и магнит вращаться? И если да, то в какую сторону будет вращаться магнит? Для эксперимента нужен большой неодимовый магнит - его у меня пока нет. С обычным магнитом не хватает силы магнитного поля.

2. Вращение разных частей диска в разные стороны

Если сделать свободно вращающимися независимо друг от друга и от неподвижного магнита - центральную часть диска (над "дыркой бублика" магнита), среднюю часть диска, а так же часть диска выступающую за край магнита, и подать ток через скользящие контакты (в т.ч. скользящие контакты между этими вращающимися частями диска) - будут ли центральная и крайняя часть диска вращаться в одну сторону, а средняя - в противоположную?

3. Сила Лоренца внутри магнита

Действует ли сила Лоренца на частицы внутри магнита, магнитное поле которого искажается внешними силами?


Похожие публикации