Энциклопедия пожаробезопасности

Тема: средства измерения прямолинейности, плоскостности, горизонтальности и шероховатости поверхности. Тема: средства измерения прямолинейности, плоскостности, горизонтальности и шероховатости поверхности Проверка плоскостей больших размеров с помощью ли

По проведенному обзору методов и приборов контроля плоскостности можно сделать выводы.

В основу методов и приборов, применяемых в настоящее время для высокоточного контроля плоскостности, положены механические и оптические принципы. Однако только оптические приборы и методы могут обеспечить высокую точность контроля плоскости и поверхностей большого протяжения.

Механические методы в основном применяются в машиностроении и станкостроении.

При контроле плоскостности с помощью поверочных плит погрешность измерения имеет большой разброс. Она обусловлена не только отклонением формы контролируемой поверхности, но и состоянием поверхности поверочной плиты.

При контроле плоскостности с помощью уровня основными недостатками метода является большая чувствительность к температурным колебаниям.

Оптические методы измерения плоскостности имеют широкое распространение и отличаются универсальностью и надежностью контроля.

Оптические методы контроля плоскостности можно разделить на оптико-механические и оптико-электронные методы.

К оптико-механическим относят измерение отклонений от плоскостности коллимационным и автоколлимационным методам, метод визирования.

Оптико-электронные методы осуществляются с помощью визуальных и фотоэлектронных автоколлиматоров. Оптико-электронными называются приборы, позволяющие получать информацию о геометрических параметрах, пространственном положении и энергетическом состоянии излучающего объекта с помощью энергии излучения, преобразованной в электрический сигнал с последующей его отработкой и регистрацией. Информация об исследуемых объектах переносится оптическим излучением, а первичная обработка сопровождается преобразованием энергии оптического излучения в электрическую при помощи приемника оптического излучения.

Оптико-электронные приборы и методы являются на сегодняшний день самыми перспективными.

Таким образом, по проведенному обзору методов и приборов контроля было разработано оптико-электронное устройство для измерения контроля плоскостности поверхностей. За основу устройства был выбран плоскомер, так как у этого прибора высокая точность измерений, большая протяженность проверяемых поверхностей, надежность в работе и простота в эксплуатации. Измерение отклонений от плоскостности разработанного устройство выполняется шаговым методом контроля. Сущность шагового метода заключается в последовательном измерении смещения отдельных точек проверяемой поверхности относительно предыдущей точки.

При шаговом методе контроля выбор базы зависит от конструкции прибора. При использовании шагового мостика со щупом за базу принимают горизонтальную плоскость, проходящую через начало координат, находящуюся в точке А (рис.18).

Оси X и Y лежат в этой плоскости, а Z перпендикулярна к ней. Проверяемую поверхность изделия устанавливают грубо в горизонтальном положении.

Шаговый мостик передвигается по прямым ADи DC (с окончанием измерения в точке С), а затем по прямым ABи BC (то же с окончанием в точке С).

Значения всех точек шагового измерения подсчитываются по формуле(1)

Pi- текущие показания измерительного прибора при шаговом измерении;

i - любая из точек (на которые опираются ножки шагового мостика).

После нахождения всех точек сетки контролируемой поверхности заносят в таблицу и приступают к построению графиков в трех координатах, а затем к построению прилегающей плоскости.

При проведении ремонтных работ очень важной процедурой является проверка ровности настенной поверхности. Особенно в старых зданиях, в сталинках и хрущевках подобный фактор является очень актуальным, так в момент постройки данному вопросу не уделялось должного внимания. Наличие кривых стен, присутствие на них вмятин и бугров и других недочетов способны полностью испортить впечатление даже при самом шикарном ремонте. В нашей статье мы рассмотрим, как проверить ровность стен.

Что такое нивелир?

Лазерный уровень, или так называемый нивелир, является прибором, благодаря которому можно качественно строить горизонтальные и вертикальные полосы. Кроме того, он является незаменимым помощником при постройке сооружений и во время внутренних отделочных работ.

В составе нивелира находятся светодиоды и призмы, которые характеризуются видимыми вертикальными и горизонтальными линиями. Благодаря лазерному уровню, присутствует возможность возведения ровных стен, выставления по уровню маяков, выравнивания пола, потолка и остальных поверхностей, быстрого и ровного выкладывания плитки, ламината и выполнения прочих работ.

Оценка кривизны черновой стены

Оценка кривизны черновой стены помогает определить количество работ и составить примерный перечень будущего расхода материалов. Работа нивелира происходит путем построения виртуальной плоскости, которая параллельна настенной поверхности и измерения расстояния от вертикальной плоскости до предварительно отмеченных точек.

Как лазерным уровнем проверить ровность стены:

  1. Выбираем на лазерном уровне режим, который помогает построить вертикальную плоскость, поскольку настенная поверхность расположена вертикально. В случае проведения подобных работ на полу отображается горизонтальная плоскость.
  2. Нивелир продвигаем как можно ближе к стене, при этом плоскость должна оказаться параллельно стене, луч не должен нигде ее касаться.
  3. Подготавливаем линейку (рулетка не подходит), которую в разных точках прикладываем к стене. Полученный след от лазерного уровня определяет расстояние от настенной поверхности до виртуальной плоскости.
  4. На разных уровнях, через каждые 40-50 см делаем замеры, которые заносим в таблицу.

Таким образом можно определить точку, которая соответствует самой выпуклой и самой вогнутой линии, найти общую неровность по сравнению с базовой вертикалью и определиться с объемом штукатурных работ.

Оценка ровности стены с помощью правила

Не применяя лазерный уровень, проверить ровность настенной поверхности после финишной отделки можно при помощи правила.

Как проверить стены на ровность после оштукатуривания с помощью правила:

  1. Прикладываем прибор к настенной поверхности, определяем, присутствует ли зазор между стеной и правилом.
  2. При помощи линейки измеряем величину просвета. В основном неровность готовой стены соответствует нескольким миллиметрам, поэтому линейкой очень сложно определить значение.
  3. Применяем лазерный нивелир, благодаря которому можно провести более точное измерение.
  4. При определении ровности по вертикали включаем режим построения вертикальной оси. Если необходимо определить ровность по горизонтали, то пользуемся горизонтальной осью.
  5. Для удобства вычерчиваем соответствующую линию на поверхности стены.
  6. Нивелир располагаем под углом 45 градусов к настенной поверхности.
  7. Получившаяся лазерная линия выглядит прямой только в том случае, если настенная поверхность будет идеально ровной:
    • Если на стене находится пузырь, то на этом участке произойдет отклонение линии в направлении к нивелиру.
    • Если присутствует вогнутость, то в этом месте наблюдается отклонение луча от вертикальной линии в сторону от прибора.
  8. При установке инструмента под углом 45 градусов определяется размер неровности, который соответствует расстоянию от нарисованного луча до отогнутой линии.

Важно! Также нивелир можно применять для определения ровности углов. При этом луч наводим на стык стен и таким образом проверяем его вертикальность. Если присутствует ровный угол, то луч будет находиться строго находиться. В противном случае — сразу видно неровность угла, когда он завален в какую-либо сторону.

В настоящее время нивелир является очень удобным инструментом. В прежние времена применяли дедовские методы и как-то обходились без этого прибора, но теперь использование нивелира во многом экономит время и силы, облегчает процесс ремонта, поэтому стоит применять новейшие технологии и не отказываться от современных разработок.

Проверка ровности на большой площади стены

Данной методикой удобно пользоваться при определении объема штукатурных работ, но также можно использовать в момент окончания малярных и штукатурных работ, чтобы оценить качество выполненного процесса. В основном перед проведением штукатурки визуально можно определить перепады на стене, которые и так заметны.

Как проверить ровность стены после штукатурки на большой площади:

  • Подготавливаем лазерный линейный нивелир (построитель плоскостей) и включаем вертикальную плоскость.
  • Устанавливаем лазерный уровень возле края стены, при этом вертикальная лазерная плоскость должна располагаться параллельно настенной поверхности.
  • На полу вдоль всей стены делаем отметки, которые должны находиться на одном расстоянии от настенной поверхности А и В.

Важно! Построитель выстраивает плоскость, которая является параллельной планируемой поверхности стены, обработанной штукатуркой (не саму оштукатуренную поверхность, а плоскость, которая ей параллельна).

  • Оцениваем работу. Если на стене противоположной от нивелира появляется фрагмент стены, не имеющий лазерный луч, то это свидетельствует о том, что происходит прерывание луча из-за присутствия выпуклости на стене.
  • Передвигаем лазерный нивелир от настенной поверхности и отмечаем новые точки А и В.
  • Чтобы на одном вертикальном участке (от напольной поверхности до потолка) проверить перепады на поверхности стены, берем деревянный или стальной метр, имеющий миллиметровую шкалу. На инструменте не должно быть подвижных частей.

Важно! Практически каждая рулетка оборудована подвижным зацепом, поэтому рулетка не подходит.

  • На выбранном вертикальном участке в 1-2 см, устанавливаем метр параллельно настенной поверхности. При этом свободный конец метра должен упираться в стену под прямым углом к настенной поверхности, а лазерная линия должна проявиться на плоскости метра. Таким образом находится первое значение, соответствующее расстоянию от базовой лазерной плоскости до настенной поверхности.
  • Затем на этом же вертикальном отрезке переставляем метр немного ниже, определяем новое значение.
  • Измеряем столько раз, сколько необходимо.
  • Теперь полученные размеры по вертикальной линии сравниваем с данными по вертикальному отрезку настенной поверхности через 40-50 см, таким образом образом находится искривление стены относительно базовой вертикали.

Проверка ровности на небольшом участке

После окончания штукатурных работ и подготовки настенной поверхности под покраску или поклейку обоями, на стене, как правило, присутствуют неровности, составляющие 1-3 мм, которые неудобно находить линейкой. Особенно явно проявляются дефекты на стенах, подготовленных под покраску и окрашенных в темные цвета, на которые под углом падают прямые солнечные лучи. Существует несложная методика, которую применяют для определения ровности стены после окончательной отделки до момента поклейки обоев или покраски.

Как проверить вертикальность стены на небольшом участке:

  1. У начала измеряемой стены, на напольной поверхности визуально проводим разметку квадрата, который можно обозначить какими-либо предметами или начертить мелом. Такая фигура нужна для того, чтобы впоследствии поставить построитель под таким углом к стене, который вам необходим.
  2. Делаем метки: точка А соответствует лазерной плоскости перпендикулярной стене, точка В определяет лазерную плоскость под углом 45° к настенной поверхности.
  3. Затем находим точки С, D, E, которые определяются при делении соответствующего отрезка между стеной и ранее выбранной меткой. В результате — получаются значения углов: 45/2 =22,5, 22,5/2 = 11,25, 11,25/2 = 5,62.
  4. В момент падения плоскости на стену она является ровной под любым углом наклона только в том случае, если стена характеризуется идеально ровной поверхностью. Присутствие неровности изгибает луч, при этом, чем острее угол, тем большее наблюдается искривление.
  5. На участках неровностей произойдет изгибание луча относительно центральной точки измеряемого фрагмента:
    • Если луч согнулся от построителя, то есть точка А1, в этом месте на стене присутствует яма.
    • Если луч изогнулся в направлении построителя, что соответствует точке А2, то стена характеризуется выпуклостью.
  6. При наклонении горизонтального луча под углом к стене (в этом случае построитель должен быть наклонен относительно горизонтальной плоскости), то на стене определится неровность слева-направо, которая соответствует горизонтальному искривлению, а не сверху-вниз, которое наблюдается при вертикальном искривлении.

Важно! Провал или выпуклость можно рассчитать в миллиметрах. Для этого придется вспомнить тригонометрическую формулу из курса средней школы. Мы воспользуемся котангенсом, который определяется как отношение прилежащего к углу катета (что соответствует расстоянию А1), к противоположному катету (что является искомой величиной, то есть неровностью Х).

Изменяя угол падения луча на настенную поверхность, происходит изменение соотношения А1 к искомому значению Х. Чем меньше угол падения, тем большим будет величина А1 или А2, значит большим будет коэффициент: A1 / ctg “угла падения луча на стену” = Х.

Оштукатуривание с помощью маяков и нивелира

Данный способ является одним из самых точных и быстрых современных методов, при котором в сжатые сроки образуется идеально ровная поверхность.

Как выполнить работу при помощи нивелира и маяков:

  • Предварительно подготавливаем и обрабатываем поверхность грунтовкой.
  • Размечаем вертикальные линии, на которых будут находиться маяки, отступив от угла 10 см таким образом, чтобы расстояние между соседними соответствовало на 15-20 см меньше, чем длина правила.
  • На лазерном нивелире включаем режим, благодаря которому оформляем вертикальную плоскость.
  • На смежных стенах, которые примыкают к ремонтируемой настенной поверхности, отмечаем точки, имеющие расстояние 5 см от углов.
  • По меткам выставляем плоскость нивелира.
  • На расстоянии 4 см от края делаем метки на правиле.
  • При помощи нивелира выставляем вертикально по меткам правило, в результате — между ним и стеной получается зазор, который, в зависимости от неровности, соответствует плюс-минус 1 см.
  • В полученный зазор устанавливаем маяки и убеждаемся в том, что они будут проходить в любой точке установки, даже в случае необходимости передвижения лазерной вертикальной плоскости.
  • После окончательной разметки и контроля за выполненными действиями подготавливаем штукатурку и небольшим количеством обрабатываем настенную поверхность, соблюдая при этом разметку через каждые полметра.
  • Приставляем маяк к настенной поверхности и обрабатываем штукатуркой.
  • Присоединяем правило к маяку, в необходимых местах подправляем, подбиваем, чтобы произошло совмещение меток на правиле с лазерным лучом. Если эту процедуру выполнять руками, а не правилом, то можно согнуть маяки.
  • С маяка и правила снимаем излишки штукатурки.
  • Еще раз контролируем вертикальность маяка и оставляем на некоторое время, чтобы маяк смог застыть.

Важно! На время высыхания влияет количество штукатурки и материал поверхности.

  • Переходим к следующему маяку.
  • После высыхания всех маяков подготавливаем штукатурную смесь, которую наносим между двумя маяками.
  • Медленными движениями снизу вверх прижимаем правило к маякам и, покачивая инструмент вправо-влево, разглаживаем штукатурку.
  • С правила убираем излишнюю смесь.
  • При помощи мастерка или шпателя заполняем щели в настенной поверхности.
  • При помощи правила совершаем финишный проход.
  • Переходим к следующим двум маякам.
  • В результате выполненной работы наблюдается практически идеально ровная поверхность, которая готова под финишную отделку.

Кроме того, нивелир находит применение при построении прямого угла в ванной или на кухне, а также для установки мебели, имеющей крупные размеры. В этом случае необходим инструмент, позволяющий выстраивать вертикальные перпендикулярные плоскости. В настоящее время практически каждая модель обладает подобным режимом. Как проверить ровность стен и провести необходимые перпендикулярные плоскости:

  1. По меткам, которые отмечались при выравнивании стены, выставляем уровень относительно подготовленной настенной поверхности. Можно также отметить новые метки, после чего проконтролировать, чтобы лазерная плоскость была идеально параллельна настенной поверхности и отбить прямой угол.
  2. После этого размечаем смежную стену.
  3. Следуя вышеперечисленным указаниям, отбиваем и выставляем маяки.
  4. Обрабатываем настенную поверхность штукатурным составом.
  5. В этой статье мы разобрали много этапов строительных и ремонтных работ, в ходе которых уместно применять правило и лазерный нивелир, чтобы проверить ровность стен. Не игнорируйте все перечисленные выше моменты, чтобы качество нового дизайна вашего жилья соответствовало вашим ожиданиям.

Проверка плоскостей больших размеров с помощью линейки и индикатора.

Распространенным способом контроля прямолинейности плоскостей является проверка их с помощью контрольных линеек. Эта проверка может быть проведена «на краску» или с применением концевых мер и индикатора. Проверка «на краску» производится обычно линейками завода «Калибр» двутаврового сечения. Однако для поверхностей больших размеров такая проверка не может быть рекомендована вследствие прогиба длинных линеек от собственного веса. Этот метод может успешно применяться для проверки плоскостей длиною до 2500 мм, имеющих допуск на прямолинейность до 0,1 мм на 1 м длины. При более жестких допусках, например 0,03 мм на 1 м, длина проверяемой плоскости не должна превосходить 1500 мм.

Более объективным является способ проверки плоскостей больших размеров с помощью линейки и индикатора. В этом случае на проверяемую плоскость устанавливается контрольная линейка длиной 3—5 м на двух одинаковых опорах (например, на двух концевых мерах), расположенных от концов линейки на расстоянии, р,авном 0,22 общей ее длины. Отклонения поверхности замеряются по показаниям индикатора, скользящего измерительным наконечником по верху линейки и укрепленного на подставке, передвигающейся по проверяемой поверхности. Иногда отклонения поверхности от прямолинейности при таком способе проверки замеряют концевыми мерами, измеряя расстояния от нижней плоскости линейки до поверхности изделия.

Использование контрольных линеек и других измерительных инструментов больших размеров связано с необходимостью принятия специальных мер для устранения значительного прогиба их от воздействия собственного веса. Так, например, прогиб от собственного веса контрольной линейки двутаврового сечения, имеющей длину 3000 мм, при расположении опор на концах может достигнуть 0,3 мм, а для линеек длиною 6000 мм — до 1,5 мм.

При проверке, например, направляющих станины станка, имеющих в середине вогнутость, линейка, установленная непосредственно на плоскость, вследствие прогиба будет значительно искажать результаты проверки. Для получения наименьшего отклонения от прямолинейности контрольных линеек под влиянием собственного веса необходимо расположить точки опоры линейки от ее концов на расстояниях, равных 0,2232 общей длины линейки, или с достаточным приближением на расстояниях 0,22 длины линейки.

Стрела прогиба от собственного веса линейки, лежащей на двух опорах, расположенных на ее концах, выражается формулой

где Р — вес одного погонного сантиметра линейки в кг/см; l — длина линейки в см; Е — модуль упругости в кг/см 2 ; I — момент инерции в см 4 . Если же эту линейку положить на две опоры, расположенные от концов ее на расстояниях 0,2232 длины линейки, то стрела прогиба будет выражаться формулой

Сопоставляя величины f1 и f2 получим

Следовательно, указанное оптимальное расположение опор уменьшает влияние прогиба по сравнению с расположением опор на концах линейки приблизительно в 48 раз и для приведенного выше случая может уменьшить прогиб линейки длиною 6000 мм до 0,03 мм, а линейки длиною 3000 мм — до 0,006 мм. Плоскопараллельная концевая мера длиной 1000 мм и сечением 9X35 мм, подпертая таким образом, уменьшается по длине при прогибе от собственного веса только на 0,2 мк. Кстати, уменьшение ее от собственного веса при вертикальном положении тоже равно 0,2 мк. Такая же концевая мера длиной 3000 мм при оптимальном расположении опор уменьшается вследствие прогиба только на 2 мк . Такая величина погрешностей измерений не имеет практического значения, и ее можно не принимать во внимание. Предел применения длинных линеек ограничивается прогибом их от собственного веса; обычно на машиностроительных заводах контрольные линейки применяются длиной только до 5000 мм.

Для контроля перпендикулярности обрабатываемых поверхностей к базовой поверхности в отдельных случаях на крупных деталях используют шпиндель расточного станка, оснащенный индикатором (см. фиг. 219). Однако при значительном выдвижении шпинделя его прогиб от собственного веса сказывается на точности измерений, поэтому в этом случае применяют точные уровни, имея в виду, что базовая и контролируемая поверхности заранее проверены и прямолинейны. Если же базовая поверхность представляет из себя отдельные, небольшие по величине и удаленные друг от друга площадки (конструктивные или технологические), то проверку ее горизонтальности производят оптическим методом с помощью зрительной трубы и целевых знаков или же гидростатическим прибором—методом сообщающихся сосудов. Последний метод употребляется для проверки прямолинейности и горизонтальности поверхностей.

Фиг. 221. Проверка с помощью гидростатического прибора.

Так, например, для выверки на станке и для дальнейшего контроля больших станин по базовым площадкам в горизонтальной плоскости применяется гидростатический прибор. На базовые площадки 1, 5 и 7 станины рабочей клети прокатного стана (фиг. 221), расположенные в одной плоскости и обработанные за одну установку, устанавливают три сообщающихся измерительных сосуда 2, 4 и 8. В каждом сосуде (узел М) укреплена микрометрическая головка 11с заостренным измерительным наконечником. Головки во всех трех сосудах устанавливаются в нулевое положение от их шаброванных опорных поверхностей. Сосуды соединены гибкими шлангами с ресивером 3; вода при установке ресивера на подставку 9, расположенную на станине клети на балке между базовыми площадками, заполняет шланги и измерительные сосуды. Момент контакта измерительного наконечника с поверхностью воды в сосуде определяется визуально.

При касании измерительными наконечниками поверхности воды в сосудах по разности показаний всех трех микрометрических головок судят о правильности расположения базовых площадок в одной горизонтальной плоскости. После проверки горизонтальности базовой плоскости можно проверить перпендикулярность опорных поверхностей 6 лап станины и направляющих поверхностей 10 к базовой плоскости с помощью рамного уровня или шпинделя станка.

Точность прибора, не превышающая 0,02 мм, вполне достаточна. При работе нужно избегать появления воздушных пузырьков в шлангах, которые могут повести к грубым ошибкам. Отсчеты по всем трем микрометрическим головкам следует проводить непосредственно один за другим во избежание увеличения погрешностей.

Прямолинейность плоскостей при сборочных и монтажных работах проверяется методами, позволяющими замерять непосредственно линейные или угловые отклонения . К линейным методам относятся проверка с помощью водяного зеркала, способом струны, проверка зрительной трубой и целевыми знаками и др. С помощью уровня, зрительной трубы и коллиматора определяются угловые отклонения от прямолинейности.

Результаты измерения углов проходного резца

ЛАБОРАТОРНАЯ РАБОТА №6

1. Цель работы:

Изучить устройства и правила пользования средств измерения прямолинейно­сти, плоскостности, горизонтальности и шероховатости поверхности.

2. Регламент работы: 1 час 20 минут.

3. Оборудование рабочего места:

3.1 Методические указания по данной работе

3.2 Плакаты

3.3 Линейки, уровни, плиты, головка блока, гильзы, пальцы, краска, кисть, образцы.

4. Теоретическая часть:

Точность геометрических параметров деталей, характеризуется точностью не только размеров её элементов, но и точностью формы и взаимного расположения поверхностей. Отклонения (погрешности) формы и расположения поверхностей возникают в процессе обработки деталей из-за неточности и деформации станка, инструмента и приспособления; деформации обрабатывае­мого изделия; неравномерности припуска на обработку и т. д.

Форма плоских поверхностей характеризуется прямолинейностью и плоскостностью.


Отклонение от прямолинейности ∆ наибольшее расстояние от точек реального профиля 2 до прилегающей прямой 1 в пределах нормируемого участка (рис. 6.1, а. б.). Отклонение от плоскостности – наибольшее расстояние от точек реальной поверхности 2 до прилегающей поверхности 1 в пределах нор -

мируемого участка (рис. 6.1. в.). Частными видами отклонения от прямолинейности и плоскостности являются выпуклость (рис. 6.1. а.), при которой отклонения уменьшаются от краёв к середине и вогнутость (рис. 6.1 б.) – характер отклоне­ний обратный.

Шероховатостью поверхности называется совокупность неровностей с относительно малыми шагами, образующих рельеф поверхности детали и рассмат­риваемых в пределах базовой длины.

Под горизонтальностью понимается – положение проверяемой плоскости относительно горизонта.

По значению отклонений плоские поверхности делят на 16 степеней точно­сти в соответствии с установленными допусками плоскостности и прямолинейности в пределах нормируемого участка. С увеличением степени точности размер допуска увеличивается.


Измерение прямолинейности производится поверочными линейками (ГОСТ 8026-64) типов ЛД, лекальные с двухсторонним скосом, ЛТ – лекальные трёхгранные, ЛЧ – лекальные четырёхгранные (рис. 6.2.) «на просвет» и линейками типов ШП, ШД и ШМ – методом линейных отклонений. (ШП – с широкой ра­бочей поверхностью прямоугольного сечения; ШД – с широкой рабочей по­верхностью двутаврового сечения; ШМ – с широкой рабочей поверхностью, мостики).Проверка плоскостности производится поверочными линейками типов ШП, ШД и УТ – угловые трёхгранные, «на краску» и методом линейных отклонений («от плиты»).

1) Лекальные линейки бывают четырёх типов: с односторонним скосом длиной от 75 до 125 мм, с двухсторонним скосом от 175 до 225 мм, трёхгранные длиной 300 и 400 мм и четырёхгранные длиной 500 мм. Лекальные линей-

ки делятся на два класса 0 и 1.

2) Линейки с широкой рабочей поверхностью делятся на четыре типа: сталь­ные прямоугольного сечения от 500 до 2000 мм и чугунные мостики от 500x4 до 4000x100 мм.

В ремонтном производстве распространены линейки размером не более 1000 мм. линейки подразделяют на три класса: 1, 2 и 3.

Угловые линейки служат для одновременного контроля плоскостности и угла между двумя пересекающими поверхностями (например, при контроле «лас­точкина хвоста»). Эти линейки от 250 до 1000 мм применяются для проверки «на краску».

Угловые линейки имеют трёхгранное сечение и две шаброванные плоскости, образующие рабочий угол.

Плиты . Поверочная плита является основным средством проверки плоско­стности поверхности «на краску». Плиты изготавливают из чугуна размерами от 100x200 до 1000x1500 мм четырёх классов: 0, 1, 2 и 3. 0, 1, 2 классы отно­сятся к поверочным плитам, а 3 класса – к разметочным. Рабочая поверхность повероч ных плит, предназначенная для проверки «на краску» должна быть шаброванной или чисто шлифованной, а разметочная – строганной. Плиты про­веряют также «на краску». К 0 и 1 классам относятся плиты, у которых число пятен со стороной 25 мм – не менее 25, у плит 2 класса – не менее 20, а у плит 3 класса – не менее 12. Плиты на своей поверхности не должны иметь коррозий­ных пятен или раковин. Поверочные плиты используют в качестве базы для различных контрольных операций с применением универсальных средств из­мерения (рейсмусов, индикаторных стоек и т.д.).

Для контроля горизонтального, вертикального положения плоскостей различных деталей, а также для проверки прямолинейности и плоскостности длинных поверхностей применяют уровни. Они также применяются при мон­таже оборудования и для проверки точности станков.

В практике измерения наиболее распространены уровни брусковые (слесар­ные) и рамные ГОСТ 9392-60 (рис.6.3 а,б). Брусковые и рамные уровни имеют корпус 1 с измерительными поверхностями 4, основную ампулу 2 и установоч­ную ампулу 3. Уровень устанавливают на проверяемой поверхности с помощью ампулы 3 так, чтобы ампула 2 находилась в горизонтальной плоскости. По ам­пуле 2 измеряют отклонение поверхности от горизонтальности и вертикально­сти (только рамным уровнем). Ампула уровней (рис. 6.4) представляет собой цилиндрическую трубку, заполненную эфиром так, что внутри трубки остаётся пузырёк воздуха, насыщенный парами эфира. Внутренняя поверхность ампулы имеет бочкообразную форму, поэтому при горизонтальном расположении уровня пузырёк занимает верхнее положение.

На наружной поверхности ампулы нанесена шкала с интервалом делении 2 мм. при наклоне пузырёк перемещается относительно нейтрального положения (пульпункта) пропорционального угла наклона. По шкалам ампулы изме-

ряют наклон уровня в миллиметрах, отнесённый к длине равной 1 м. Цена деления ампул уровней составляет 0,02; 0,05; 0,10 и 0,15 мм-м и погрешность не должна превышать соответственно ± 0,004; 0,0075; 0,015 и 0,02 ммм. Наклон поверх­ности уровня на 0,01 ммм соответствует углу 2 градуса.

Можно пользоваться формулой: Еº = 200 Ƭ· n, где Ƭ – цена деления в (мм-м), а n – число делении, на которое сместится пузырёк.

Предел допускаемой погрешности рамных и брусковых уровней при установке их основанием на горизонтальную плоскость или на горизонтально расположенный цилиндр, а также при установке рамного уровня (любой из его вертикальных рабочих поверхностей по вертикальной плоскости или верти­кальному цилиндру) равен отклонению основной ампулы от среднего (нулевого) положения на 1-4 деления.

При установке рамного уровня верхней стороной корпуса по горизонтальной поверхности или горизонтальному цилиндру предел допускаемой погрешности равен ½ деления ампулы. Уровни по цене основной ампулы классифицируется (по ГОСТ 9392-60) следующим образом:

Оптические квадранты – приборы, в которых угломер соединён с уровнем. Они предназначены для измерения углов наклона плоских и цилиндрических поверхностей различных изделий.

Шероховатость поверхности –совокупность неровностей поверхности с от­носительно малыми шагами образующих рельеф поверхности детали выделен­ная на базовой длине ℓ.

Шероховатость поверхности изделия оценивают сличением ее с образцами шероховатости.

Для этой цели обычно используют образцы плоской или цилиндрической

рабочей поверхностью. Их изготавливают из стали, чугуна, латуни и других материалов, обрабатывая с различной шероховатостью поверхности. Образцы из одного и того же материала и одного и того же вида обработки монтируют в специальной металлической рамке. Рамки комплектуют в набор, причем для каждого материала и вида обработки подбирают образцы разных классов точ­ности, которые могут получиться при данном виде обработки.

Сравнение поверхностей изделия и образцов обычно производят путём ос­мотра или на ощупь, проводя ногтем поперёк следов обработки. Контроль на ощупь имеет некоторое преимущество перед осмотром на глаз. Оба способа в состоянии обеспечить надёжную оценку в границах 3-5 классов шероховатости. Точность сравнения может быть повышена до 8 класса шероховатости, если применить лупу 4-6 кратного увеличения.

Контактные измерения шероховатости выполняются непрерывным ощупы­ванием поверхности изделия – при помощи профилометра (за счет перемеще­ния алмазной иглы).

5. Порядок выполнения работы.

5.1 Проверка прямолинейности по методу световой щели (на просвет) или по методу следа.


При проверке «на просвет» (методом световой щели) для сравнения исполь­зуют образец просвета (рис. 6,5). Лезвие линейки накладывают на поверхность проверяемую в нужном на­правлении. По световой щели между рабочим ребром и объектом судят о размере отклонений от прямолиней­ности.

Для повышения точности наблюдений необходимо создать достаточно яркое и равномерное освещение щели с другой стороны ли­нейки. Образец просвета вы­полняется из микронного набора концевых мер, дове­денного бруска с широ­кой рабочей поверхностью и лекальной линейки. На брусок устанавливают две одинаковые меры (по краям), а между ними располагают концевые меры таких размеров, чтобы создавалась щель с увеличением просвета 1, 2, 3 и т.д. мкм до необходимого наибольшего просвета. Погрешность измерения при-

мерно 1-3 мкм.

При проверке методом следа рабочее ребро линейки проводят по чистой доведённой поверхности изделия. После этого на поверхности контролируемого изделия остаётся тонкий световой след. Если поверхность имеет неплоскост­ность, то след будет прерывистым. При проверке плоскости необходимо уста­навливать лекальную линейку последовательно в нескольких положениях и определять отклонения от прямолинейности в каждом направлении.

5.2 При измерении по методу линейных отклонений линейку укладывают на две одинаковые опоры, расположенные на проверяемой поверхности и опреде­ляют расстояния от линейки до поверхности с помощью щупов концевых мер длины или специального прибора с измерительной головкой. Опоры распола­гают на расстоянии 0,21 длины линейки от её концов.

При измерении методом «на краску» рабочую поверхность линейки покры­вают тонким слоем краски. Затем линейку накладывают на проверяемую по­верхность. Линейке сообщают продольное перемещение и определяют плоско­стность по расположению пятен. Так как проверяемая поверхность прак­тически состоит из возвышенностей и впадин, то на возвышенностях тоже ос­таётся краска. При хорошей плоскостности изделия пятна располагаются равномерно по всей поверхности. Следовательно, количество пятен на заданной площади будет достаточно точно характеризовать плоскостность. За расчетную площадь, на которой рассматривают характер распределения пятен, принимают квадрат со стороной 25 мм.

Для металлообрабатывающих станков на указанном квадрате допускается не менее 9 пятен, для плит и приспособлений – 16, для контрольных плит и точ­ных станков – 25, для измерительных приборов 30 пятен.

Число пятен для различных поверхностей приведены в таблице 6.1.

Ремонт головки цилиндров как вы понимаете это долгий нудный, требующий особой внимательности труд. Если думаете что это как два пальца обоссать, сильно ошибаетесь. Расскажу почему. Для начала головку нужно снять, на некоторых автомобилях проще снять двигатель целиком, нежели же снять только головку. Снятую головку необходимо тщательно отмыть соляркой или лучше бензином,а совсем хорошо было бы положить ее в ванну с каустической содой.

Далее визуальный осмотр и диагностика. Алюминиевые головки имеют такую особенность или свойство - после перегрева плоскость головки цилиндров немного искривляется, после чего прокладка ГБЦ (головки блока цилиндров) начинает в небольших или больших количествах пропускать масло и воду. Масло и охлаждающая жидкость могут просачиваться как наружу (в результате двигатель становится грязным и всем своим видом показывает что нуждается в ремонте), так и во внутрь двигателя, где охлаждающая жидкость будет попадать в поддон картера и смешиваться с моторным маслом, превращаясь в моторный яд, который ушатает двигатель вашей машины очень быстро.

Необходимо проверить плоскость, у меня для этого есть специальная линейка идеально плоская, изготовленная на заводе сверхточных приборов специально для измерения неровностей плоских поверхностей. Чем может замерить плоскость ГБЦ человек у которого нет такого прибора я даже незнаю... Но если все же найдете что либо подходящее с идеально ровной поверхностью, то делаете следующее: 1. Отчищаете плоскость головки от нагара, накипи и остатков старой прокладки ГБЦ. 2. На очищенную плоскость ГБЦ ставите ваш "измерительный прибор" вдоль длины головки и смотрите зазор между прибором и плоскостью ГБЦ, двигаете прибор по всей плоскости, ставите по диагонали и снова высматриваете зазор. Если зазора нет, то плоскость ГБЦ в порядке; если есть зазор 0.5-1мм, то головку лучше торцануть или если позволяют финансы поставить новую. если зазор больше 2мм, то головку нужно реставрировать, то есть торцевать обязательно. При торцевании ГБЦ снимается искривленный слой плоскости, после чего ГБЦ можно снова использовать. P.S. Водитель, который проверяет масло в моторе хотя бы раз в неделю, увидев, что масла стало в два раза больше, а радиатор полупустой просто дольет в радиатор еще тосола и поедет дальше, через несколько дней попадет на ремонт и запчасти.

yamotorist.ru

Как проверить головку блока цилиндров на ваз 2114 - Ремонт 2114

Для выполнения работы по проверке головки блока цилиндров вам потребуются:

  • набор плоских щупов
  • специальный шаблон или широкая слесарная линейка

Видео по теме:

Remont2114.ru

Проверка головки блока цилиндров

Удалите весь нагар со стенок камер сгорания (рис. 2.121). Проверьте головку блока цилиндров на наличие трещин во впускных и выпускных каналах, камерах сгорания и на поверхности головки. Используя поверочную линейку и щуп, проверьте плоскостность поверхности разъема головки с блоком цилиндров в общей сложности в 6 местах. Если деформация превышает предельное значение, поправьте уплотняемую поверхность пластиной и наждачной бумагой примерно №400 (Водостойкая наждачная бумага с карбидом кремния): Оберните пластину наждачной бумагой и прошлифуйте уплотняемую поверхность, чтобы убрать выступающие места. Если после этого результаты измерения не соответствуют норме (превышают предельное значение), замените головку блока цилиндров. Утечка продуктов сгорания через плоскость разъема головки и блока цилиндров часто является следствием деформации уплотняемых поверхностей: такая утечка приводит к снижению мощности двигателя (рис. 2.122). Предельное значение отклонения уплотняемой поверхности головки блока цилиндров от плоскости: 0,03 мм. Деформация посадочных поверхностей коллекторов: Проверьте посадочные поверхности коллекторов на головке блока цилиндров, используя поверочную линейку и щуп, чтобы определить, возможна ли правка поверхностей или необходимо заменить головку блока цилиндров (рис. 2.123). Предельное значение деформации посадочных поверхностей впускного и выпускного коллекторов на головке блока цилиндров: 0,05 мм.

carmanz.com

Как проверить головку блока цилиндров после шлифовки?

Проверить головку блока цилиндров в принципе и не так уж и сложно.

Очистить ГБЦ от грязи, масла, стружки. Внимательно осмотреть со всех сторон головку на предмет того, чтобы не было раковин и трещин.

В специализированных мастерских плоскость головки блока проверяют специальным шаблоном.

В домашних условиях когда этого шаблона нет, можно проверить плоскостность металлической широкой длинной линейкой. Её надо прикладывать к плоскости головки ребром, на рисунке показано в каких местах делать прикладывания

И проверять зазоры щупом. Зазор проверяется по всему периметру В идеале - зазоров быть не должно. Но если зазор имеется не более 0,01 мм, то это допускается.

Подчеркну и выделю: новая или шлифованная головка блока цилиндров, зазор именно НЕ БОЛЕЕ 0,01 мм.

Потому как при оставленных зазорах в 0,1мм (в некоторых инструкциях по ремонту допущена именно эта опечатка) будет большая вероятность пробития прокладки головки блока. А это снова разбор и ремонт ГБЦ, а то и всего двигателя, вплоть до его замены.

Головку блока цилиндров надо также проверить на герметичность. Это можно сделать например залив керосин в полости охлаждения, заткнув отверстие подачи жидкости. Опрессовку делают ещё и сжатым воздухом примерно в 1,5 - 2 атмосферы, но это конечно нужен компрессор, ванна, то есть - определённые условия.

Когда головка проверена прошлифована, и снова проверена на плоскостность, на герметичность, тогда можно устанавливать клапана, предварительно притерев их, а после сборки, также проверить их на протекание керосином. Если керосин не протекает примерно в течении получаса, то это уже хорошо значит притёрты клапана.

Блок цилиндров ясное дело тоже не забыть почистить от нагара, промыть от грязи, прочистить и продуть все каналы. Помыть картер, приёмную сетку маслонасоса, убедиться в работоспособности самого маслонасоса. Ну и можно приступать к окончательной сборке мотора.

Похожие публикации