Энциклопедия пожаробезопасности

Для чего нужны вертикальные связи. Вертикальные связи по колоннам. Конструкции металлических связей стального каркаса

Металлический каркас состоит из многих несущих элементов (ферма, рама, колонны, балки, ригели), которые необходимо «связывать» друг с другом для сохранения устойчивости сжатых элементов, жесткости и геометрической неизменяемости конструкции всего здания. Для соединения конструктивных элементов каркаса служат металлические связи . Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости. Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам.

Саратовский резервуарный завод производит связи из горячекатаных сортовых уголков, гнутых уголков, гнутых профильных труб, горячекатаных профильных труб, круглых труб, горячекатаные и гнутых швеллеров и двутавр. Общая масса используемого металла должна составлять приблизительно 10% от общей массы металлоконструкции здания.

Основными элементами, которые соединяют связи, являются фермы и колонны.

Металлические связи колонн

Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Назначение жестких дисков - крепление колонн к фундаменту здания. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы, например, межэтажные перекрытия, подкрановые балки.

Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн . Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.

Схема вертикальных связей между колоннами

Металлические связи ферм

Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм , а по стойкам решетки - вертикальными связями ферм .

Горизонтальные связи ферм по нижним и верхним поясам

Горизонтальные связи ферм бывают также продольными и поперечными.

Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы.

Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы/связи предотвращают от смещения распорки.

Вертикальные связи ферм необходимы в процессе возведения здания или сооружения. Их как раз и называют зачастую монтажными связями. Вертикальные связи способствуют сохранению устойчивости ферм из-за смещения их центра тяжести выше опор. Вместе с промежуточными фермами они образуют пространственно-жесткий блок с торцов здания. Конструктивно вертикальные связи ферм представляют собой диски, состоящие из распорок и ферм, которые располагаются между стойками стропильных ферм по всей длине здания.

Вертикальные связи колонн и ферм

Конструкции металлических связей стального каркаса

По конструкции металлические связи также бывают:

    перекрестные связи, когда элементы связей пересекаются и соединяются между собой посередине

    угловые связи, которые располагаются несколькими частями в ряд; применяются в основном для строительства малопролетных каркасов

    портальные связи для каркасов П-образного вида (с проемами) имеют большую площадь поверхности

Основным типом соединения металлических связей - это болтовое, так как такой вид крепления максимально эффективен, надежен и удобен в процессе монтажа.

Специалисты Саратовского резервуарного завода спроектируют и изготовят металлические связи из любого профиля в соответствии с механическими требованиями к физико-химическим свойствам материала в зависимости от технико-эксплуатационных условий.

Надежность, устойчивость и жесткость металлического каркаса Вашего здания или сооружения во много зависит от качественного изготовления металлических связей.

Как заказать изготовление металлических связей на Саратовском резервуарном заводе?

Для расчета стоимости металлоконструкций нашего производства, Вы можете:

Специалисты Завода предлагают комплексные услуги:

  • инженерные изыскания на объекте эксплуатации
  • проектирование объектов нефтегазового комплекса
  • производство и монтаж различных металлоконструкций

Стальные конструкции одноэтажных промышленных зданий

Стальной каркас промышленного здания состоит из тех же элементов, что и ж/б, только материал каркаса - сталь.

Применение стальных конструкций целесообразно при:

1. для колонн: при шаге 12 м и более, высоте здания более 14,4 м., двухъярусном расположение мостовых кранов, при грузоподъемности кранов 50 т и более, при тяжелых режимах работ;

2. для стропильных конструкций: в отапливаемых зданиях пролетом 30 м и более; в неотапливаемых зданиях 24 м и более; над горячими цехами, в зданиях с большими динамическими нагрузками; при наличии стальных колонн.

3. для подкрановых балок, фонарей, ригелей и стоек фахверка

Колонны

Колонны разработаны:

· одноветвевыми сплошностенчатыми постоянного сечения при высоте зданий 6 - 9,6 м, пролетом 18, 24 м.(серия 1,524-4, вып.2),

· двухветвевыми при высоте здания 10,8-18 м., пролетом 18,24,30,36 м. (серия 1,424-4, вып.1 и 4),

· раздельного типа , применяемые в зданиях большой грузоподъемностью и высотой более 15 м.

Подвесное оборудование

При высоте зданий до 7,2 не предусмотрены мостовые краны, только подвесное оборудование с грузоподъемностью до 3,2 т.; в зданиях 8,4-9,6 могут применяться мостовые краны грузоподъемностью до 20 т.

Колонны разработаны в двух вариантах: с проходами и без проходов. Для колонн без проходов расстояние от разбивочной оси до оси кранового рельса 750 мм, для колонн с проходами -1000 мм. Верхняя часть колонны двутавровая, нижняя из двух ветвей, соединенных решеткой из прокатных уголков, которые приваривают к полкам ветвей.

Проектирование колонн

Шаг колонн рекомендован для бескрановых зданий и с подвесным оборудованием по крайним рядам-6 м., средним- 6, 12 м.; с мостовыми кранами по крайним и средние рядам- 12 м. В целях унификации колонн их нижние торцы нужно располагать на отметке - 0,6 м. Для защиты от коррозии подпольную часть колонн вместе с базой покрывают слоем бетона.

Основные параметры колонны по высоте:

· Н в - высота верхней части,

· Н н -высота нижней части, отметка головки кранового рельса, высота сечения ветви h.

В средних рядах с перепадом высоты в каркасах можно установить один ряд колонн, но по линии перепада необходимо предусмотреть две разбивочные оси со вставкой между ними. Верхняя часть таких колонны принята одинаковая с верхней часть крайних колонн, т.е. имеет привязку 250 мм. Вторая разбивочная ось совмещена с наружной гранью верхней части колонн.

Фермы

Фермы покрытия используются в одно и многопролетных зданиях с ж/б или стальными колоннами длиной 18,24,30,36 м., шаг колонн принимается 6,12 м. состоят из самой фермы и опорных стоек. Опирание фермы на колонны или подстропильные фермы приняты шарнирными.

Изготавливаются трех типов: с параллельными поясами, полигональные, треугольные.

Конструкции ферм:

· Фермы с параллельными поясами пролетом 18 м. имеют уклоны 1,5 % только верхнего пояса, остальные как верхнего, так и нижнего поясов. Высота фермы на опоре 3150 мм.- по опушкам, и 3300 мм.-полная высота со стойкой, номинальная длина меньше пролета на 400 мм. (по 200 мм крайних отсеков). Ж/б плиты непосредственно опираются на верхний пояс стропильной фермы, усиленной накладками в местах опирания и привариваются. В покрытиях с проф. настилом применяют прогоны длиной 6 м., которые устанавливаются на верхний пояс и крепятся болтами, решетчатые прогоны длиной 12 м. привариваются.

· Фермы из круглых труб (экономичнее на 20%, менее повержены коррозии из-за отсутствие щелей и пазух) серия 1,460-5. предназначены только под проф. настил, нижний пояс горизонтален, верхний с уклоном 1,5%, высота на опоре 2900 мм., полная 3300, 3380 мм., номинальная длина также на 400 мм. короче.

· Фермы с уклоном верхнего пояса 1:3,5 (треугольные) , предназначены для однопролетных бесфонарных, неотапливаемых складских помещений с наружным водоотводом, серия ПК-01-130/66 для покрытия с прогонами.

· Подстропильные фермы запроектированы с параллельными поясами, высота по обушкам 3130 мм., полная 3250 мм. Опорную стойку подстропильной фермы выполняют из сварного двутавра со столиком в нижней части для опирания стропильных ферм. Подстропильные конструкции пролетом 12 м устанавливают на ж/б или стальные фермы. Пролетом 18,24 м только на стальные.

· Фахверк в стальном каркасе устраивают: при стенах из листового материала или панелей, в зданиях высотой более 30 м независимо от конструкции стены, в зданиях с тяжелым режимом работы кранов при кирпичных стенах, в сборно-разборных зданиях, для временных переносных торцевых стен при строительстве здания в несколько очередей. Фахверк состоит их стоек и ригелей. Их количество и месторасположение определяется шагом колонн, высотой здания, конструкцией стенового заполнения, характером и величиной нагрузки, расположением проемов. Верхние концы стоек фахверка крепятся к фермам покрытия или связям с помощью изогнутых пластин.

Система связей:

Система связей в покрытие состоит из горизонтальных в плоскости верхних и нижних поясов стропильных ферм и вертикальных между фермами.

Система предназначена для обеспечения пространственной работы и придания пространственной жесткости каркаса, восприятия горизонтальных нагрузок, обеспечения устойчивости во время монтажа, если здание состоит из нескольких блоков, каждый блок имеет самостоятельную систему.

Если покрытие здание из ж/б плит, то связи по верхнему поясу состоят из распорок и растяжек, горизонтальные связи предусмотрены только в фонарных зданиях и располагаются в подфонарном пространстве. Крепятся связи на болтах.

Горизонтальные связи по нижним поясам

Горизонтальные связи по нижним поясам различают двух типов:

Первый тип поперечных связевых ферм применяется при шаге крайних колонн 6 м. и располагается в торцах температурного отсека, при длине отсека более 96 м. устанавливаются дополнительные фермы с шагом 42-60 м. кроме того применяют продольные горизонтальные фермы, которые располагаются по крайним колоннам, по необходимости и по средним.

Эти связи применяются в зданиях: одно-, двухпролетных с кранами грузоп. 10 т. и более; в зданиях трех- и более пролетных с общей грузоп. 30 т. и более.

В остальных случаях используют связи типа 2 - второй тип используется при шаге крайних колонн 12 м. и распологаются аналогично первому типу.

Крепятся связи на болтах, при тяжелом режиме работ на сварке.

Вертикальные связи

Вертикальные связи располагаются вдоль пролетов, в местах размещения поперечных горизонтальных ферм через 6 м., крепятся на болтах или сварке, в зависимости от усилий.

При использование в покрытие проф. настила применяют прогоны, которые располагаются с шагом 3 м., при наличии перепадов высот допускается 1,5 м. проф. настил крепится к прогонам с помощью саморезов.

Вертикальные связи между стальными колоннами , предусматриваемые в каждом продольном ряду колонн, подразделяются на основные и верхние.

Основные обеспечивают неизменяемость каркаса в продольном направление, располагаются по высоте подкрановой части колонны в середине здания или температурного отсека. Проектируются крестовые, портальные или полупортальные.

Верхние связи, обеспечивающие правильность установки оголовков колонн в период монтажа и передачу продольных усилий с верхних участков торцевых стен на основные связи, размещаются в пределах надкрановой части колонны по краям температурного отсека. Кроме этого, эти связи устраивают в тех панелях, где расположены вертикальные и поперечные горизонтальные связи между фермами покрытия. Их проектируют в виде подкосов, крестов, распорок и ферм.

Изготавливают связи из швеллеров и уголков, крепят к колоннам черными болтами, в зданиях большой грузоподъемностью тяжелого режима работы – монтажной сваркой, чистыми болтами или заклепками.

Подкрановые конструкции

Подвесные пути выполняют обычно из прокатных двутавров типа М с устройством стыков вне опор. Эти пути подвешиваются к нижним поясам несущих конструкций с помощью болтов с последующей обваркой.

Подкрановые конструкции для мостовых кранов состоят из подкрановых балок, воспринимающие вертикальные и местные усилия от катков кранов; тормозных балок или ферм, воспринимающих горизонтальные воздействия кранов; вертикальных и горизонтальных связей , обеспечивающих жесткость и неизменяемость конструкций.

Подкрановые стальные балки в зависимости от статической схемы делятся на разрезные и неразрезные. Преимущественно используются разрезные. Они просты в конструктивном отношении, менее чувствительны к осадкам опор, несложны в изготовлении и монтаже, но по сравнению с неразрезными имеют большую высоту и осложняют условия эксплуатации подкрановых путей и требуют большего расхода стали.

По типу сечения подкрановые балки могут быть сплошного и сквозного (решетчатого) сечения

Подкрановые балки серия 1,426-1 в виде сварного двутавра с симметричными поясами или нет, пролетом 6, 12, 24 м., высоты: при длине 6 м.-800, 1300 мм.; при длине 12 м.-1100,1600 мм. Высота сечения сплошных балок 650-2050 мм с градацией 200 мм. Балки снабжены ребрами жесткости для обеспечения устойчивости стенок, располагаемые через 1,5 м. Балки бывают средние и крайние (располагаются по торцам и у температурного шва, одна из опор отодвинута на 500 мм). Опирание балок на консоли колонн приняты шарнирным: к рядовым – на болтах, к связевым- на болтах и монтажной сварке.

Тормозные конструкции представляют собой связи по верхним поясам подкрановых балок, которые выбираются в зависимости от наличия проходов и пролета балки.

В уровне подкрановых путей пролетов с мостовыми кранами тяжелого режима работы предусматриваются площадки для сквозных проходов . Площадки принимаются шириной не менее 0,5 м. с перилами и лестницами. В местах расположения колонн проходы устраивают сбоку или через проемы в них.

В зависимости от грузоподъемности кранов и типа ходовых колес для подкрановых путей применяются железнодорожные рельсы, рельсы профиля КР или брускового профиля. Крепление рельсов к балкам может быть неподвижным и подвижным.

Неподвижное крепление, допускаемое при легком режиме работы кранов грузоподъемностью до 30 т и среднем ежимее грузоподъемностью до 15 т, обеспечивается приваркой рельса к балке. В большинстве случаев рельсы крепят к балкам подвижным способом, позволяющим производить рихтовку рельсов. На концах подкрановых путей устраивают упоры-амортизаторы, исключающие удары о торцевые стены здания.

В промышленных зданиях используют смешанные каркасы (ж/б колонны и мет. фермы) при условиях:

· необходимости создания больших пролетов;

· для снижения веса от элементов покрытия.

Крепление стальных ферм к ж/б колоннам выполняется с помощью болтовых соединений с последующей обваркой. Для этого в оголовке колонны предусмотрены анкерные болты.

Вертикальные связи, как наиболее экономичные конструкции, в большинстве случаев надежно обеспечивают жесткость зданий со стальным каркасом.

1.1. Со статической точки зрения они являются защемленными в земле изгибаемыми консольными балками.

1.2. В узких вертикальных связях возникают значительные усилия, а сами стержни претерпевают большие деформации по длине, что способствует большим деформациям фасада при малом шаге колонн.

1.4. Жесткость узких ветровых связей может быть повышена объединением их с наружными колоннами.

1.5. Такое же действие оказывает высокая горизонтальная балка (например, в техническом этаже высотного здания). Она уменьшает перекос верхнего ригеля фахверка и отклонение здания от вертикали.

Расположение вертинальных связей в плане

В плане вертикальные связи необходимы в двух направлениях. Сплошные или решетчатые вертикальные связи внутри здания препятствуют свободному использованию помещений; их располагают внутри стен или перегородок с небольшим числом проемов.

2.1. Вертикальные связи окружают лестничную клетку.

2.2. Здание с тремя поперечными связями и одной продольной связью. При узком ядре жесткости в высоких зданиях обеспечение жесткости целесообразно по схемам 1 .4 или 1.5.

2.3. Поперечные связи в безоконных торцовых стенах экономны и эффективны; продольная связь в одном пролете между двумя внутренними колоннами.

2.4. Вертикальные связи расположены в наружных стенах. Таким образом, вид здания находится в прямой зависимости от конструкций.

2.5. Высотное здание с квадратным планом и вертикальными связями между четырьмя внутренними колоннами. Необходимая жесткость в обоих направлениях обеспечивается применением схем 1.4 или 1.5.

2.6. В высотных домах с квадратным или близким к квадратному планом расположение связей в наружных стенах позволяет получить особенно рентабельные строительные конструкции.

Расположение связей в каркасе

3.1. Все связи расположены друг над другом.

3.2. Вертикальные связи отдельных этажей не лежат друг над другом, а взаимно смещены. Междуэтажные перекрытия передают горизонтальные усилия от одной вертикальной связи к другой. Жесткость каждого этажа должна быть обеспечена в соответствии с расчетом.

3.3. Решетчатые связи вдоль наружных стен, участвующие в передаче вертикальных и горизонтальных нагрузок.

Влияние вертикальных связей на основание

Колонны здания, как правило, являются одновременно элементами вертикальных связей. Они испытывают усилия от ветра и от нагрузки на перекрытия. Ветровая нагрузка вызывает в колоннах усилия растяжения или сжатия. Усилия в колоннах от вертикальных нагрузок всегда сжимающие. Для устойчивости здания нужно, чтобы в подошве всех фундаментов преобладали усилия сжатия, однако в некоторых случаях усилия растяжения в колоннах могут быть больше, чем усилия сжатия. В этом случае вес фундаментов учитывается как балласт.

4.1. Угловые колонны воспринимают незначительные вертикальные нагрузки, однако при большом шаге связей усилия, возникающие в этих колоннах от ветра, также незначительны, а потому искусственной пригрузки угловых фундаментов обычно не требуется.

4.2. Внутренние колонны воспринимают большие вертикальные нагрузки, а из-за незначительной ширины ветровых связей и большие усилия от ветра.

4.3. Ветровые усилия такие же, как на схеме 4.2, но уравновешиваются небольшими вертикальными нагрузками благодаря наружным колоннам. Пригрузка фундаментов в этом случае необходима.

4.4. Пригрузка фундаментов необязательна, если наружные колонны стоят на высокой подвальной стене, которая в состоянии уравновесить силы растяжения от действия ветра.

5. Жесткость зданий в поперечном направлении обеспечивается с помощью решетчатых связей в безоконных торцовых стенах. Связи скрыты между наружной стеной и внутренней огнестойкой облицовкой. В продольном направлении здание имеет вертикальные связи в коридорной стене, но расположены они не друг над другом, а смещаются в разных этажах. - Ветеринарно-медицинский факультет в Западном Берлине. Архитекторы: д-р Люкхардт и Вандельт.

6. Жесткость каркаса обеспечивается в поперечном направлении решетчатыми дисками, которые проходят через оба корпуса здания, выходя наружу в промежутках между зданиями. Жесткость здания в продольном направлении обеспечена связями между внутренними рядами колонн. - Высотный дом «Феникс-Рейнрор» в Дюссельдорфе. Архитекторы: Хентрих и Петчниг.

7. Трехпролетное здание с шагом колонн в поперечном направлении 7; 3,5; 7 м. Между четырьмя расположенными попарно внутренними колоннами узкие поперечные связи, между двумя внутренними колоннами одного ряда - продольная связь. Вследствие незначительной ширины поперечных связей расчетные горизонтальные деформации от действия ветра очень велики. Поэтому во втором и пятом этажах в четырех связевых плоскостях установлены напрягаемые раскосы к наружным колоннам.

Напрягаемые стержни выполнены в виде поставленных на ребро стальных полос. Они предварительно напрягаются (напряжение контролируется тензометрами) настолько, что при действии ветра напряжение растянутого раскоса одного направления удваивается, а в другом направлении обращается почти в нуль. - Здание главной администрации фирмы «Беваг» в Западном Берлине. Архитектор проф. Баумгартен.

8. Здание имеет только наружные колонны. Балки перекрывают пролет 12,5 м, шаг наружных колонн 7,5 м. В высокой части ветровые связи расположены на всю ширину здания между наружными колоннами. Наружные колонны воспринимают большие нагрузки, что компенсирует растягивающие усилия от ветра. Фронтон высокой части здания выдается перед колоннами на 2,5 м. Расположенные в торцовых стенах связи продолжаются в пределах первого скрытого этажа между колоннами с передачей горизонтальных усилий от верхней связи к нижней по горизонтальной связи в нижнем междуэтажном перекрытии. Для передачи суммарных опорных усилий служит сплошная балка из стальных листов на высоту этажа, расположенная в техническом этаже между предпоследней и последней колоннами. Эта балка образует консоль до фронтонной стены. - Высотное здание телецентра в Западном Берлине. Архитектор Тепец. Конструктор дипл. инж. Трептов.

9. Обеспечение жесткости здания с помощью наружных связей, передающих часть вертикальных нагрузок промежуточным колоннам. Детали - Административное здание фирмы «Алкоа» в Сан-Франциско. Архитекторы: Скидмор, Оуингс, Меррил.

10. Обеспечение жесткости здания в поперечном направлении: в нижней части благодаря тяжелой железобетонной стене, в верхней части с помощью расположенных перед фасадом связей, которые смещаются в шахматном порядке. В каждом этаже по шесть связей. Стержни связей изготовлены из трубчатых профилей. Жесткость в продольном направлении обеспечена установкой фахверковых связей в средних рядах колонн. Детали - Жилой высотный дом на улице Крулебарб в Париже. Архитекторы: Альбер-Буало и Лябурдет.

Поперечные элементы - рамы воспринимают нагрузки от стен, покрытий, перекрытий (в многоэтажных зданиях), снега, кранов, ветра, действующего на наружные стены и фонари, а также нагрузки от навесных стен. Продольные элементы каркаса - это подкрановые конструкции, подстропильные фермы, связи между колоннами и фермами, кровельные прогоны (или ребра стальных кровельных панелей).

Основные элементы каркаса - рамы. Они состоят из колонн и несущих конструкций покрытий - балок или ферм, длинномерных настилов и пр. Эти элементы соединяют в узлах шарнирно с помощью металлических закладных деталей, анкерных болтов и сварки. Рамы собирают из типовых элементов заводского изготовления. Другие элементы каркаса - фундаментные, обвязочные и подкрановые балки и подстропильные конструкции. Они обеспечивают устойчивость рам и воспринимают нагрузки от ветра, действующего на стены здания и фонари, а также нагрузки от кранов.

Составные элементы каркаса одноэтажных промышленных зданий

Как пример однопролетное здание, оборудованное мостовым краном (рис.1).

В состав каркаса входят следующие основные элементы:

  1. Колонны, расположенные с шагом Ш вдоль здания; основное назначение колонн поддерживать подкрановые балки и покрытие.
  2. Несущие конструкции покрытия (стропильные* балки или фермы), которые опираются непосредственно на колонны (если их шаг совпадает с шагом колонн) и образуют вместе с ними поперечные рамы каркаса.
  3. Если шаг несущих конструкций покрытия не совпадает с шагом колонн (например, 6 и 12 м), в состав каркаса вводят расположенные в продольных плоскостях подстропильные конструкции (также в виде балок или ферм), поддерживающие промежуточные несущие конструкции покрытия, расположенные между колоннами (рис.1,б).
  4. В некоторых (редких) случаях в состав каркаса вводятся прогоны, опирающиеся на несущие конструкции покрытия и располагаемые на расстояниях 1,5 или 3 м.
  5. Подкрановые балки, опирающиеся на колонны и несущие пути мостовых кранов. В зданиях с подвесными или напольными кранами подкрановые балки не нужны.
  6. Фундаментные балки, опирающиеся на фундаменты колонн и поддерживающие наружные стены здания.
  7. Обвязочные балки, опирающиеся на колонны и поддерживающие отдельные ярусы наружной стены (если она не по всей своей высоте опирается на фундаментные балки).
  8. При расстоянии между основными колоннами каркаса, в плоскостях наружных стен 12 м и более, а также в торцах здания устанавливают вспомогательные колонны (фахверк), облегчающие конструкцию стен.

Рис. 1. Каркас одноэтажного однопролетного здания (схема):

а - при одинаковом шаге колонн и несущих конструкций покрытия; б - при неодинаковом шаге колонн и несущих конструкций покрытия; 1 - колонны; 2 - несущие конструкции покрытия; 3 - подстропильные конструкции; 4 -- прогоны; 5 - подкрановые балки; 6 - фундаментные балки; 7 - обвязочные балки; в - продольные связи колонн; 9 - продольные вертикальные связи покрытия; 10 - поперечные горизонтальные связи покрытия; 11 - продольные горизонтальные связи покрытия.

В стальных каркасах обвязочные балки также относят к фахверку (рис. 2, а). Каркас в целом должен надежно и устойчиво работать под действием крановых, ветровых и других нагрузок.

Рис. 2 Схемы фахверка

а - фахверк продольной стены, б - торцовой фахверк, 1 - основные колонны, 2 - колонны фахверка, 3 - ригель фахверка, 4 - ферма покрытия

Вертикальные нагрузки Р от мостового крана (рис.3), передаваемые через подкрановые балки на колонны с большим эксцентриситетом, вызывают внецентренное сжатие тех колонн, против которых расположен в данный момент мост крана.

Рис. 3. Схема мостового крана

1 - габарит крана, 2 - тележка, 3 - мост крана, 4 - крюк, 5 - колесо крана; 6 - крановый рельс; 7 - подкрановая балка; 8 - колонна

Торможение тележки мостового крана при ее движении вдоль кранового моста (поперек пролета) создает горизонтальные поперечные тормозные силы Т1 действующие на те же колонны.

Торможение мостового крана в целом при его движении вдоль пролета создает продольные тормозные силы Т2, действующие вдоль рядов колонн. При грузоподъемности мостовых кранов, достигающей 650 т и выше, передаваемые ими на каркас нагрузки бывают очень велики. Подвесные краны движутся по путям, подвешенным к несущим конструкциям покрытия, и через них передают свои нагрузки на колонны.

Ветровые нагрузки при различных направлениях ветра могут действовать на каркас как в поперечном, так и в продольном направлениях.

Для обеспечения устойчивости отдельных элементов каркаса в процессе его монтажа и совместной пространственной их работы при воздействии на каркас различных нагрузок в состав каркаса вводят связи.

Основные виды связей каркаса одноэтажных зданий

1. Продольные связи колонн, обеспечивающие их устойчивость и совместную работу в продольном направлении при продольном торможении крана и продольном действии ветра, устанавливаются в конце или посередине длины каркаса.

Устойчивость остальных колонн в продольной плоскости достигается креплением их к связевым колоннам горизонтальными продольными элементами каркаса (подкрановыми балками, обвязочными балками или специальными распорками).

Связи этого вида могут иметь различную схему в зависимости от требований, предъявляемых к проектируемому зданию. Самыми простыми являются крестовые связи (рис. 4, а). В тех случаях, когда они мешают установке оборудования или врезаются в габарит проезда (рис. 4, б), их заменяют портальными связями.

В бескрановых зданиях небольшой высоты такие связи не нужны. Работа колонн в поперечном направлении во всех случаях обеспечивается большими в этом направлении размерами их поперечного сечения и жестким креплением их к фундаментам.

Рис.4. Схема вертикальных связей по колоннам. 1 - колонны, 2 - покрытие, 3 - связи, 4 - проезд

2. Продольные вертикальные связи покрытия , обеспечивающие устойчивость вертикального положения несущих конструкций (ферм) покрытия на колоннах, поскольку крепление их к колоннам считается шарнирным, располагаются по концам каркаса. Устойчивость остальных ферм достигается креплением их к связевым фермам горизонтальными распорками.

3. Поперечные горизонтальные связи , обеспечивающие устойчивость верхнего сжатого пояса ферм против продольного изгиба, располагаются по концам каркаса и образуются путем объединения верхних поясов двух соседних ферм в единую конструкцию, жесткую в горизонтальной плоскости. Устойчивость верхних поясов остальных ферм достигается креплением их к связевым фермам в плоскости верхнего пояса при помощи распорок (или ограждающих элементов покрытия) .

4. Продольные горизонтальные связи покрытия , располагаемые вдоль наружных стен в уровне нижнего пояса ферм.

Все три вида связей покрытия имеют целью объединить отдельные плоские несущие элементы покрытия, жесткие только в вертикальной плоскости, в единую неизменяемую пространственную конструкцию, воспринимающую местные горизонтальные нагрузки от кранов, нагрузки от ветра и распределяющую их между колоннами каркаса.

Каркасы одноэтажных промышленных зданий возводят чаще всего из сборного железобетона, стальные конструкции допускаются лишь при наличии особенно больших нагрузок, пролетов или других условий, делающих нецелесообразным применение железобетона. Расход стали в железобетонных конструкциях меньше, чем в стальных: в колоннах - в 2,5-3 раза; в фермах покрытия- в 2-2,5 раза. Виды промзданий в один этаж .

Однако стоимость стальных и железобетонных конструкций одинакового назначения отличается незначительно и в настоящее время каркасы делают в основном стальные.

Описанный выше комплекс связей в наиболее полной и четкой форме встречается в стальных каркасах, отдельные элементы которых имеют особенно малую жесткость. Более массивные элементы железобетонных каркасов имеют и большую жесткость. Поэтому в железобетонных каркасах отдельные виды связей могут отсутствовать. Например, в здании без фонарей, с несущими конструкциями покрытия в виде балок и настилом из крупнопанельных плит связи в покрытии не делают.

В монолитных железобетонных каркасах (которые в отечественной практике встречаются очень редко) жесткое соединение элементов каркаса в узлах и большая массивность элементов делают все виды связей ненужными.

Связи чаще всего делают металлические - из прокатных профилей. В железобетонных каркасах встречаются и железобетонные связи, в основном в виде распорок.

Каркас многопролетного здания отличается от каркаса однопролетного здания в первую очередь наличием внутренних средних колонн, поддерживающих покрытие и подкрановые балки. Фундаментные балки по внутренним рядам колонн устанавливают только для опирания внутренних стен, а обвязочные - при большой их высоте. Связи проектируются по тем же принципам, что и в однопролетных зданиях.

При сезонных колебаниях температуры конструкции каркаса испытывают температурные деформации, которые при большой длине каркаса и значительном температурном перепаде могут быть весьма существенными. Например, при длине каркаса 100 м, коэффициенте линейного расширения α = 0,00001 и температурном перепаде 50° (от +20° летом до -30° зимой), т. е. для конструкций, находящихся на открытом воздухе, деформация равна 100 0,00001 50 = 0,05 м - 5 см.

Свободным деформациям горизонтальных элементов каркаса препятствуют колонны, жестко закрепленные к фундаментам.

Во избежание появления в конструкциях значительных напряжений от этой причины, каркас делят в надземной части температурными швами на отдельные самостоятельные блоки.

Расстояния между температурными швами каркаса по длине и ширине здания выбирают так, чтобы можно было не считаться с усилиями, возникающими в элементах каркаса от климатических колебаний температуры.
Предельные расстояния между температурными швами для каркасов из различных материалов установлены СНиПом в пределах от 30 м (открытые монолитные железобетонные конструкции) до 150 м (стальной каркас отапливаемых зданий).

Температурный шов, плоскость которого расположена перпендикулярно к пролетам здания, называется поперечным, шов, разделяющий два смежных пролета - продольным.

Конструктивное выполнение температурных швов бывает различное. Поперечные швы всегда осуществляются путем установки парных колонн, продольные швы выполняются как путем установки парных колонн (рис. 5, а), так и путем устройства подвижных опор (рис. 5, б), обеспечивающих независимую деформацию, конструкций покрытия соседних, температурных блоков. В каркасах, разделенных температурными швами на отдельные блоки, связи устанавливают в каждом блоке, как в самостоятельном каркасе.

Рис.5. Варианты продольного температурного шва

а - с двумя колоннами, б - с подвижной опорой, 1 - балки, 2 - столик, 3 - колонна, 4 - каток

К каркасу относят также несущие конструкции рабочих площадок, которые бывают необходимы внутри основного объема здания (если они связаны с основными конструкциями здания).

Конструкции рабочих площадок состоят из колонн и опирающихся на них перекрытий. В зависимости от технологических требований рабочие площадки могут располагаться на одном или нескольких уровнях (рис. 6).

Рис. 6. Многоярусная рабочая площадка.

Таким образом, при строительстве одноэтажных и многоэтажных промышленных зданий в качестве несущей принимается, как правило, каркасная система. Каркас позволяет наилучшим образом организовать рациональную планировку производственного здания (получить большепролетные пространства, свободные от опор) и наиболее приемлем для восприятия значительных динамических и статических нагрузок, которым подвержено промышленное здание в процессе эксплуатации.

Видео - поэтапная сборка металоконструкций

Металлический каркас, как многим известно, представляет собой основную структуру каркасно-панельных зданий. В его состав входят самые разнообразные конструктивные элементы: , балки, фермы, фахверки, распорки и другие. В данном обзоре мы рассмотрим такие конструктивные элементы, как связи.
Металлические связи предназначены для общей устойчивости металлокаркаса в продольном и поперечном направлениях, поэтому их значение достаточно велико. Именно они противодействуют основной горизонтальной нагрузке на каркас, происходящей от ветра. Наибольший эффект здесь заметен при использовании антикоррозийных материалов. Какие же факторы и материалы надо учитывать? Сайдинг серии "Mitten" и все виды сайдинга от производителя. Важны также септики из стеклопластика для канализации жилищного сектора или загородного дома, где предусмотрены ремонт и обустройство. Благодаря им можно достичь положительных результатов. И, конечно, важны фундаментные работы, предваряемые земельными мероприятиями. Какие из них выделить? Бурение скважин на воду, водоочистка и водоснабжение круглый год - все это актуально для промышленного здания. Впрочем, интересны любые объекты недвижимости. Мода на недвижимость позволяет купить квартиру в новостройке по удобным условиям. Чем это обосновано? Огромный выбор. Новостройки москвы от застройщиков. Без комиссии.
Связи в металлическом каркасе бывают трех видов: перекрестные, угловые и портальные. Такую продукцию сегодня легко приобрести не только у промышленных предприятий-производителей, особенно выделяется оборудование марки "Евростандарт". Эти изделия есть и в интернете. Согласно мнению специалистов, стоимость создания строительного интернет-магазина невелика, поэтому металлические изделия там покупать весьма выгодно. Оценить себестоимость поможет, независимо от расчетов, энергоаудит.
Перекрестные связи представляют классический и самый простой вариант, когда элементы связей пересекаются и крепятся между собой посередине длины. Такие технологии, как замечают профессионалы, часто применяются при монтаже подсобных помещений и сооружений. Что можно отметить? Кабины и контейнеры с биотуалетом. Туалетные кабины, по утверждениям специалистов, имеют широкий спектр. В настоящее время они очень популярны. Как свидетельствует практика, надо здесь только. Установка прочных металлических дверей при существующей модернизации за 4 часа будет отличным технологичным решением для данных конструкций. Актуально это и для фасада. Спешите купить при рациональном подходе фасадные термопанели с клинкерной и легкой плиткой по специальной цене! Закажите для этого машину. Вперед! Авто в кредит - это почти выкуп автомобилей. Юридические консультации здесь тоже уместны.
Угловые связи, как правило, применяются для небольших пролетов и располагаются в ряд по несколько частей. Они меньше по высоте, чем перекрестные связи. Конечно, здесь рекомендуется применять изоляционные материалы. Сегодня это не проблема. Достаточно посмотреть на рекламные заявки некоторых фирм, которые требуют покупать утеплитель "технологичный" на выгодных условиях - только с лучшим наполнением! И это, по утверждениям специалистов, правильный подход к строительству.
Портальные связи - самые большие по размерам рабочей площади. Они имеют П-образный вид и находят свое применение в тех пролетах металлического каркаса, где предусмотрены оконные или дверные проемы или элементы мебели. Узнайте все секреты мебельщиков: кухни на заказ с мебелью по индивидуальным заказам. Предусмотрен также отличный ремонт однокомнатной и сложной квартиры на заказ.
Если говорить о , которые используют для изготовления связей, то чаще всего это уголок или гнутый квадратный или прямоугольный профиль, реже - швеллер или двутавр.
Из существующих каркаса для связей наиболее применимы болтовые соединения, как технологически и конструктивно наиболее эффективные и удобные при монтаже.
В соответствии с правилами металлокаркаса связи располагаются как в продольном направлении проектируемого сооружения, так и в поперечном - по его торцам. В данном случае речь идет о вертикальных металлических связях. Они применяются во многих системах, даже в быту. Что можно взять в пример? Электрическая система парогенераторов и кондиционеров - вот уникальное сочетание. Это очень популярное современное технологическое устройство.
Иногда конструктивная схема металлокаркаса требует и использования горизонтальных связей. По большей части, это имеет место в крупных масштабов, с длинными пролетами и значительной для типовых колонн высотой. Горизонтальные связи здесь обычно бывают перекрестного типа и располагаются по нескольку модулей в ряд в продольных пролетах между фермами, которые всегда проектируются для крупноразмерных металлокаркасов.
Что же касается обозначений металлических связей в металлического каркаса, то для них обычно используется толстая штрих-пунктирная линия.

Похожие публикации