Энциклопедия пожаробезопасности

Понятие горения. Режимы возникновения горения. Общие сведения о процессе горения, пожаре и его развитии

1.1. Краткие сведения о процессе горения и характере горения наиболее распространенных горючих.

Горение – сложный физико-химический процесс, в основе которого лежат быстро текущие реакции окисления, сопровождаемые выделением тепла и, как правило, световым излучением. Горение возникает и протекает при наличии горючего вещества, окислителя (обычно кислорода) и источника зажигания.

Различают два вида горения: гомогенное и гетерогенное. Гомогенное горение происходит в случае нахождения горючего вещества в газообразном состоянии. Если же реакция идет между твердым горючим веществом и газообразным окислителем, то говорят о гетерогенном горении.

Внешним признаком гомогенного горения является пламя, гетерогенного – накал. Пламя представляет собой область, где происходит реакция соединения паров (газов) горящего вещества с кислородом. Температура пламени – это и температура горения. При пожарах в жилых и административных зданиях она составляет в среднем 850-900°, в лесу – 500-900°.

Продолжительность и интенсивность горения зависят от многих факторов и в первую очередь от обеспеченности процесса кислородом, от количества и состояния материала. Скорость горения твердых горючих веществ в значительной степени зависит от их удельной поверхности и степени влажности. Особенно опасно горение торфа. Торф имеет низкую температуру самовоспламенения (225 - 280°С) и высокую раздробленность, что обусловливает его утойчивое горение. При безветрии или слабом ветре торф горит очень медленно. На местах торфодобычи горение торфа начинается на поверхности торфа, добытого из залежей, и постепенно распространяется в глубь добытого слоя. Возгарание торфа может происходить в процессе его сушки. В жаркое летнее время на высоких местах торф высыхает на столько, что может воспламениться от малейшей искры. Горение торфа сопровождается обильным выделением густого белого дыма. При затяжном горении торфа на больших площадях во время усиления ветра с мест добытого торфа могут подыматься огромные массы сухого торфа и торфянной пыли, которые сгорают пламенем, образуя так называемые смерчи. Огненные смерчи могут привести к гибели людей, а также к уничтожению расположенных в близи населенных пунктов.

Горение пыли (мучной, угольной, сахарной и т.п.) происходит со скоростью взрыва, массивные куски этих веществ загораются с трудом. Увеличение количества влаги в горючих материалах снижает скорость горения.

Особую опасность при горении представляют легковоспламеняющиеся жидкости (ЛВЖ) и горючие жидкости (ГЖ), к которым относятся нефть и нефтепродукты Скорость горения ЛВЖ и ГЖ определяется их способностью испаряться. Это связано с тем, что горит не сама жидкость, а ее пары. Нефть и нефтепродукты как правило хранятся вернтикально в цилиндрических резервуарах, а также в мелкой таре (бочки,бидоны). Горение в резервуаре с ЛВЖ и ГЖ начинается, как правило, со взрыва паровоздушной смеси, соправождающегося частично или полным отрывом крыши резервуара и воспламенения жидкости по всей свободной поверхности. Горение нефти и нефтепродуктов на свободной поверхности после взрыва происходит сравнительно спокойно. Температура светящей части пламени в зависимости от вида горючей жидкости колеблятся в пределах 1000-1300°С. Бензин и другие светлые нефтепродукты горят относительно спокойно. Скорость горения темных нефтепродуктов весьма неравномерна. Еще более резко может изменяться скорость горения газообразных веществ. При выходе горючих газов под давлением они горят в виде факела, если же газ накапливается постепенно с образованием горючей смеси с воздухом, то происходит взрыв.

Нефть и мазуты при длительном горении в резервуарах прогреваются вглубь по этому горение сопровождается вскипанием и выбросом горящей жидкости. Бензин ти другие светлые нефтепродукты при горении в крупных резервуарах не прогреваются.

При горении нефтепродуктов дым черный, от горения древесины - серовато-черный, фосфорные и магниевые дымы имеют белый цвет.

В том случае, когда процесс горения находится под наблюдением человека – это не опасно. Однако, вырвавшись из под его контроля, огонь превращается в страшное бедствие, имя которому – пожар.

1.2. Общие понятия о пожаре и его развитии.

Пожар – это неконтролируемое горение, вне специального очага, сопровождающиеся уничтожением материальных ценностей и создающий опасность для жизни людей.

Основными параметрами, характеризующими пожар, являются: площадь очага пожара, интенсивность горения, скорость распространения и продолжительность пожара.

Под очагом пожара понимают место (участок) наиболее интенсивного горения при трех основных условиях:

непрерывное поступление окислителя (воздуха);

непрерывная подача топлива (горючих материаллов);

непрерывное выделение теплоты, необходимой для поддержания процесса горения.

В очаге пожара выделяют три зоны: зона горения, зона теплового воздействия и зона задымления.

Зона горения – часть пространства в котором происходит подготовка горючих веществ к горению.

Зона теплового воздействия – часть пространства, примыкающего к зоне горения, в котором тепловое воздействие делает невозможным пребывание в нем людей без специальной тепловой защиты.

Зона задымления – часть пространства, примыкающая к зоне горения и задымления дымовыми газами в концентрациях, создающих угрозу жизни и здоровья людей или затрудняющих действия подразделения спасателей.

Интенсивность пожаров во многом зависит от огнестойкости объектов и их составных частей.

Все пожары можно квалифицировать по внешним признакам горения, месту возникновения пожара и времени прибытия первых пожарных подразделенний.

А) По внешним признакам горения пожары делятся на наружные, внутренние, одновременно наружные и внутренние, открытые и скрытые.

К наружным относятся пожары, у которых признаки горения (пламя, дым) можно установить везуально. Такие пожары бывают при горении зданий и их конструкций, штабелей лесопиломатериаллов, угля, торфа и других материальных ценностей, размещенных на открытых складских площадках; при горении нефти и нефтепродуктов в резервуарах и т.д. Наружные пожары всегда бывают открытыми.

К внутренним относятся пожары, которые возникают и развиваются внутри зданий. Они могут быть открытыми и скрытыми.

Признаки горения при открытых пожарах можно установить осмотрами помещений (например, горение имущества в зданиях различного назначения; горение оборудования и материаллов в производственных цехах и т.д.).

У скрытых пожарах горение протекает в пустотах строительных конструкций, вентиляционных каналах и шахтах, внутри тонрфяной заляжи или штабелей торфа и т.д. Признаки горения обнаруживаютс по выходу дыма через щели, изменению цвета штукатурки и т.д.

Наиболее сложними являются пожары одновременно наружные и внутренние, открытые и скрытые. С изменением обстановки изменяется вид пожара. Так, при развитии пожара в здании скрытое внутреннее горение может перейти в окрытое внутреннее, а внутреннее – в наружное и наоборот.

Б) По месту возникновения пожары бывают в зданиях, сооружениях, на открытых площадках складов и на згораемых массивах (лесные, степные, торфенные и хлебные поля).

В) По времени прибытия первых пожарных подразделенний пожары подразделяются на запущенные и незапущенные.

К запущенным относятся пожары, которые ко времени прибытия первых пожарных подразделенний получили значительное развитие по различным причинам (например, в связи с поздним обнаружением пожара или сообщением в пожарную охрану). Для тушения запущенных пожаров, как правило, оказывается недостаточно сил и средств первых подразделенний.

Незапущенные пожары в большинстве случаев ликвидируются силами и средствами первого прибывшего подразделения, населением или рабочими объекта.

Процесс развития пожара можно разделить на три фазы. В первой фазе происходит распространнение горения, когда огонь охватывает основную часть горючих материаллов (не менее 80%). Вовторой фазе после достижения максимальной скорости выгорания материаллов пожар характеризуется активным пламенным горением с постоянной скоростью потери горючих материаллов. В третьей фазе скорость выгорания резко падает и происходит догарание тлеющих материаллов и конструкций.

1.3. Способы прекращения горения. Классификация основных огнетушащих средств, общие сведения о них: виды, краткая характеристика, области и условия применения.

Основным и наиболее распространенным огнетушащим средством тушения пожаров на лесоскладах является вода. Однако, более эффективна воздушно-механическая пена, которая, покрывая поверхность горящей древесины, защищает ее от лучистой теплоты, а содержащийся в пенообразователе смачиватель способствует лучшему прониканию воды в поры древесины, а следовательно, более быстрому снижению температуры.

В зависимости от сгорающих материалов различают 3 основных вида лесных пожаров: низовые, верховые, почвенные и подземные.

Низовым называется лесной пожар, при котором основным горючим материалом является напочвенный покров, подрост, подлесок или валежник.

К верховым относят такие пожары, при которых сгорает полог древостоя. Эти пожары возникают из низовых как дальнейшая стадия их развития.

Лесными почвенными пожарами называют беспламенное горение верхнего торфянистого слоя почвы. Почвенные пожары наблюдаются на участках с торфянистыми почвами.

На первых стадиях просыхания торфянистый слой выгорает только под деревьями, которые беспорядочно падают, и лесной участок, поврежденный пожаром, выглядит, как изрытый. Низовые пожары за короткий срок охватывают большую площадь, а затем продолжаются как почвенные, углубляясь отдельными воронками в торф.

При крупных торфяных пожарах большую опасность представляет неожиданное изменение ветра, увеличение скорости распространения огня, переброска искр через участки, где работают люди, и образование в тылу новых очагов горения, в результате чего люди могут потерять ориентировку и оказаться окруженными огнем.

Возникновение и развитие пожара в резервуаре с нефтью или нефтепродуктами, как правило, начинается со взрыва паровоздушной смеси, частичного или полного отрыва (обрушения) крыши емкости и воспламенения жидкости на всей свободной поверхности.

Полный отрыв крыши и сбрасывание ее силой взрыва на землю (иногда она отбрасывается на несколько десятков метров) наиболее благоприятен для последующего тушения пожара.

Горение обогащенной нефти и нефтепродуктов на свободной поверхности происходит достаточно спокойно.

Боевые действия подразделений спасателей по тушению пожара в резервуаре хранения нефти и нефтепродуктов организуют в зависимости от сложившейся обстановки, а именно:

проводят разведку пожара;

немедленно организуют охлаждение горящего и соседних с ним резервуаров;

организовывают подготовку пенной атаки с помощью передвижных средств.

При горении нескольких резервуаров и недостатке сил и средств для тушения всех резервуаров одновременно необходимо все силы и средства сконцентрировать на тушении одного резервуара, расположенного с наветренной стороны или того резервуара, пожар которого больше всего угрожает соседним негорящим резервуарам. После прекращения горения подачу пены в резервуары продолжают примерно 3-5 мин. для предупреждения повторного воспламенения нефтепродукта. При этом следует, чтобы вся поверхность нефтепродукта была покрыта пеной. Охлаждение продолжают до полного остывания резервуара.

В начале подачи пены тушении нефти и тёмных нефтепродуктов возможны вскипания горящих жидкостей и их выбросы. В таких случаях заблаговременно принимаются меры по обеспечению безопасности людей, участвующих в тушении, и по защите струями воды рукавных линий, находящихся в зоне активного воздействия пламени.

Иногда горящий нефтепродукт выбрасывается на значительную высоту и растекается на расстоянии 70-120 м от горящего резервуара, создавая угрозу не только соседним резервуарам, но и отдельным установкам, сооружениям, пожарной технике и личному составу. Для обеспечения личного состава и техники при угрозе выброса пожарные автомобили устанавливаются с наветренной стороны на расстоянии не менее 100 м.

Пожары в резервуарах хранения сжиженных углеводородных газов (СУГ) и нестабильного бензина, хранящегося под повышенным давлением могут возникнуть при разгерметизации аппаратуры и коммуникаций резервуаров, а также в результате других аварийных ситуаций. Как правило, пожары начинаются с факельного горения СГУ в местах их пропуска или со взрыва и горения разлитых жидкостей.

В процессе горения сжиженного газа почти всегда имеется опасность разрыва емкостей и трубопроводов в результате быстрого нарастания в них давления вследствие обогрева.

При пожарах на стадиях сжиженного газа необходимо принять меры к понижению давления в емкостях и трубопроводах, подвергающихся тепловому воздействию пожара, стравливание газа на факел и перекачкой (пропуском) газа в свободные емкости.

Борьба с пожарами каучука и радиотехнических изделий представляет ряд трудностей, связанных главным образом с физико-техническими свойствами этих веществ. Как показали опыт и практика тушения пожаров, горящий каучук и резинотехнические изделия можно тушить водой, хотя смачиваемость их нельзя признать удовлетворительной.

Локализация пожара – это действия, направленные на ограничение распространения горения. При тушении (ликвидации) пожара достигается полное прекращение горения. Как правило, локализация является составной частью, первым этапом мероприятий по тушению пожара.

Прекращение горения может быть достигнуто либо разделением реагирующих веществ, либо путем охлаждения горящих материалов ниже температуры их воспламенения. С этой целью применяются различные средства тушения пожара. К ним относятся огнетушащие средства и различные приборы, машины, агрегаты.

Все огнетушащие средства в зависимости от принципа прекращения горения разделяются на виды:

охлаждающие зону реакции или горящие вещества (вода, водные растворы смесей и другие);

разбавляющие вещества в зоне реакции горения (инертные газы, водяной пар, тонкораспыленная вода и другие);

изолирующие вещества от зоны горения (химическая и воздушно-механические пены, огнетушащие порошки, несгорающие сыпучие вещества, листовые материалы и другие).

Все существующие огнетушащие средства оказывают комбинированное воздействие на процесс горения вещества. Вода, например, может охлаждать и изолировать (или разбавлять) источник горения; пенные средства действуют изолирующе и охлаждающе; порошковые составы изолируют и тормозят реакцию горения; наиболее эффективные газовые средства действуют одновременно как разбавители и как тормозящие реакцию горения. Однако любое огнетушащее средство обладает каким-либо одним доминирующим свойством.

Вода – основное огнетушащее средство охлаждения, наиболее доступное и универсальное. При попадании на горящее вещество вода частично испаряется и превращается в пар (1 л. воды превращается в 1700 л. пара), благодаря чему кислород воздуха вытесняется из зоны очага пожара водяным паром. Огнетушащая эффективность воды зависит от способа подачи ее в очаг пожара (сплошной или распыленной струей). Наибольший огнетушащий эффект достигается при подаче воды в распыленном состоянии, т.к. увеличивается площадь одновременного равномерного охлаждения. Распыленная вода быстро нагревается и превращается в пар, отнимая большое количество теплоты. Распыленные водяные струи применяют также для снижения температуры в помещениях, защиты от теплового излучения (водяные завесы), для охлаждения нагретых поверхностей строительных конструкций, сооружений, установок, а также для осаждения дыма.

Как огнетушащее средство, вода имеет недостатки: реагирует с некоторыми веществами и материалами, которые поэтому нельзя тушить водой; плохо смачивает твердые материалы из-за высокого поверхностного напряжения, что препятствует быстрому распределению ее по поверхности, проникновению в глубь горящих твердых материалов и замедляет охлаждение. При тушении пожара водой надо помнить, что она электропроводна.

К огнетушащим средствам, оказывающим изолирующее действие, относятся: пена, огнетушащие порошки, негорючие сыпучие вещества (песок, земля, графит и другие), листовые материалы (войлочные, асбестовые, брезентовые покрывала, щиты).

Пена – наиболее эффективное и широко применяемое огнетушащее средство изолирующего действия – представляет собой коллоидную систему из жидких пузырьков, наполненных газом. Пены подразделяются на воздушно-механическую и химическую. Пены – достаточно универсальное средство и используются для тушения жидких и твердых веществ, за исключением веществ, взаимодействующих с водой. Пены электропроводны и коррозируют металлы. Наиболее электропроводна и активна химическая пена. Воздушно-механическая пена менее электропроводна, чем химическая, однако, более электропроводна, чем вода, входящая в состав пены.

Огнетушащие порошковые составы (ОПС) находят все более широкое применение для тушения пожаров. В настоящее время промышленность выпускает ОПС марок ПС, ПСБ-3, СИ-2 и П-14.

Огнетушащие порошки не токсичны, не электропроводны и не оказывают вредного воздействия на материалы, они не замерзают, поэтому их применяют при низкой температуре.

Огнетушащее действие ОПС заключается в основном в изоляции горящей поверхности от воздуха, а при объемном тушении – в ингибирующем действии порошков, связанной с обрывом цепей реакции горения. Необходимое условие прекращение горения поверхности – покрытие ее слоем ОПС толщиной не более 2 см.

Огнетушащие средства разбавления понижают концентрацию реагирующих веществ ниже пределов, необходимых для горения. В результате уменьшается скорость реакции горения, скорость выделения тепла, снижается температура горения. Наиболее распространены диоксины углерода, водяной пар, азот и тонкораспыленная вода.

Диоксин углерода применяется для тушения пожаров в складах, аккумуляторных станциях, сушильных печах, архивах, книгохранилищах, а также электрооборудования и электроустановок.

Азот применяется для тушения пожаров натрия, калия, берилия и кальция, а также некоторых технологических аппаратов и установок.

Водяной пар наиболее эффективно применять при тушении пожаров в достаточно герметизированных помещениях объемом до 500 м 3 (трюмах судов, сушильных и окрасочных камерах, насосных по перекачке, нефтеперерабатывающих установках и т.п.).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • РЕФЕРАТ
  • на тему

Понятие горения. Режимы возникновения горения

  • г. Санкт-Петербург, 2012 г.
  • СОДЕРЖАНИЕ

Введение

1. Общие сведения о горении

1.1 Источники теплоты

1.3 Полное и неполное горение

1.4 Пламя и дым

Заключение

Литература

ВВЕДЕНИЕ

Под горением обычно понимают совокупность физических и химических процессов, основой которых является быстро-распространяющаяся реакция окисления, сопровождающаяся выделением теплоты и излучением света. Область газообразной среды, в которой интенсивная химическая реакция вызывает свечение и тепловыделение, называют пламенем.

Пламя является внешним проявлением интенсивных реакций окисления веществ. Один из видов горения твердых веществ - тление (беспламенное горение).

В процессе горения наблюдаются два этапа: создание молекулярного контакта между горючим и окислителем (физический) и образование продуктов реакции (химический). Возбуждение молекул при горении происходит за счет их нагревания. Таким образом, для возникновения и развития горения необходимы три компонента: горючее вещество, окислитель и источник воспламенения (т.е. источник теплоты).

Пламенное диффузионное горение всех видов горючих материалов и веществ в воздушной среде возможно при содержании кислорода в зоне пожара не менее 14% по объему, а тление твердых горючих материалов продолжается до содержания 6%.

Источник воспламенения должен обладать тепловой энергией, достаточной для зажигания горючего материала. Горение любого материала происходит в газовой или паровой фазе. Жидкие и твердые горючие материалы при нагревании превращаются в пар или газ, после чего воспламеняются. При установившемся горении зона реакции выполняет роль источника воспламенения для остального горючего материала.

1. Общие сведения о горении

Различают следующие виды горения:

Полное - горение при достаточном количестве или избытке кислорода;

Неполное - горение при недостатке кислорода.

При полном горении продуктами сгорания являются двуокись углерода (CO 2), вода (H 2 O), азот (N), сернистый ангидрид (SO 2), фосфорный ангидрид. При неполном горении обычно образуются едкие, ядовитые горючие и взрывоопасные продукты: окись углерода, спирты, кислоты, альдегиды.

Горение веществ может протекать не только в среде кислорода,но также в среде некоторых веществ, не содержащих кислорода, хлора,паров брома, серы и т.д.

Горючие вещества могут быть в трех агрегатных состояниях:жидком, твердом, газообразном. Отдельные твердые вещества при нагревании плавятся и испаряются, другие - разлагаются и выделяют газообразные продукты и твердый остаток в виде угля и шлака, третьи не разлагаются и не плавятся. Большинство горючих веществ независимо от агрегатного состояния при нагревании образуют газообразные продукты, которые при смешивании с кислородом воздуха образуют горючую среду.

По агрегатному состоянию горючего и окислителя различают:

Гомогенное горение - горение газов и горючих парообразующих веществ в среде газообразного окислителя;

Горение взрывчатых веществ и порохов;

Гетерогенное горение - горение жидких и твердых горючих веществ в среде газообразного окислителя;

Горение в системе «жидкая горючая смесь - жидкий окислитель».

1.1 Источники теплоты

Большинство сгораемых материалов при обычных условиях, как известно, в реакцию горения не вступает. Она может начаться лишь с достижением определенной температуры. Объясняется это тем, что молекулы кислорода воздуха, получившие необходимый запас тепловой энергии, приобретают способность лучше соединяться с другими веществами, окислять их. Таким образом, тепловая энергия стимулирует реакцию окисления. Поэтому, как правило, любая причина пожара связана с воздействием теплоты на горючие материалы и вещества. Сложные физико-химические и многие другие явления, протекающие на пожарах, также определяются прежде всего развитием тепловых процессов.

Процессы (импульсы), способствующие развитию тепла, разделяются на три основные группы: физические (тепловые), химические и микробиологические. Протекая в определенных условиях, они могут вызвать нагревание горючих материалов до температуры, при которой наступает горение материалов.

К первой группе импульсов, вызывающих загорание, главным образом следует отнести открытое пламя, нагретое тело -- твердое, жидкое или газообразное, искры (различного происхождения), сфокусированные солнечные лучи. Эти импульсы проявляются внешним воздействием тепла на материал и могут быть иначе названы тепловыми.

Подавляющее большинство пожаров, которые происходят от обычных, т. е. наиболее распространенных причин, связано с загоранием веществ и материалов под влиянием преимущественно первых трех из отмеченных источников воспламенения.

Несомненно, что указанное деление импульсов физической, тепловой группы до некоторой степени условно. Искры металла или горящих органических материалов также представляют собой тела, нагретые до температуры свечения. Но с точки зрения оценки их как причины пожаров искры всех видов целесообразно выделить в отдельную группу.

Нагрев и искрообразование могут быть результатом трения, сжатия, удара, различных электрических явлений и т. д.

При развитии химического или микробиологического импульсов накопление тепла происходит за счет химической реакции или жизнедеятельности микроорганизмов. В отличие от теплового источника, действующего извне, в данном случае процесс накопления тепла идет в массе самого материала.

Примером процессов второй группы могут быть экзотермические реакции взаимодействия некоторых химических веществ с влагой или между собой, процессы окисления растительных масел, не редко вызывающие их самовозгорание, и т. д.

Третий вид теплового импульса -- микробиологический -- приводит к накоплению тепла в материале и самовозгоранию за счет ряда последовательно развивающихся процессов. Начальным из них может явиться деятельность растительных клеток в том случае, если растительные продукты высушены не полностью. Образующееся при этом некоторое количество тепла при наличии условий для его аккумуляции способствует развитию жизнедеятельности микроорганизмов, ведущей в свою очередь к дальнейшему развитию теп лоты. Растительные же клетки при температуре свыше 45°С погибают. С повышением температуры до 70--75°С погибают и микро организмы. При этом образуются пористые продукты (пористый желтый уголь), способные поглощать (адсорбировать) пары и газы. Поглощение последних происходит с выделением тепла (тепло ад сорбции), которое может сопровождаться развитием значительной температуры при наличии условий, благоприятных для накопления тепла. При температуре 150--200° С активизируется процесс окисления, способный при дальнейшем его развитии привести к самовозгоранию материала.

В практике хорошо известны случаи самовозгорания непросушенного сена, комбикормов и т. п. продуктов растительного происхождения.

Микробиологический процесс может возникнуть также в растительных материалах, у которых деятельность клеток уже прекратилась. В этих случаях благоприятным для развития такого процесса может быть увлажнение материала, что также способствует развитию жизнедеятельности микроорганизмов.

Перечисленные процессы, приводящие к развитию теплоты, в ряде случаев существуют в тесной взаимосвязи. За микробиологическим процессом следует физико-химическое явление адсорбции, последнее с повышением температуры уступает место химической реакции окисления.

1.2 Возникновение процесса горения

Несмотря на разнообразие источников теплоты, способных в определенных условиях вызвать горение, механизм возникновения процесса горения в большинстве случаев одинаков. Он не зависит от вида источника воспламенения и горючего вещества.

Всякому горению предшествует, прежде всего, повышение температуры горючего материала под действием какого-либо источника теплоты. Разумеется, что такое повышение температуры должно протекать в условиях доступа кислорода (воздуха) в зону начинающегося горения.

Допустим, что нагревание происходит под действием внешнего источника тепла, хотя, как известно, это не является для всех случаев обязательным. При достижении определенной температуры, которая для различных веществ неодинакова, в материале (веществе) начинается процесс окисления. Поскольку реакция окисления протекает экзотермически, т. е. с выделением тепла, то материал (вещество) далее продолжает нагреваться уже не только в результате воздействия внешнего источника теплоты, которое может спустя некоторое время и прекратиться, но и за счет процесса окисления.

Нагревающееся вещество (твердое, жидкое или газообразное) имеет определенные размеры, объем, поверхность. Поэтому одно временно с накоплением теплоты массой этого вещества происходит рассеивание ее в окружающую среду за счет теплоотдачи.

Дальнейшие результаты процесса будут зависеть от теплового баланса нагревающегося материала. Если количество тепла, которое рассеивается, превысит количество тепла, получаемого материалом, повышение температуры прекратится, и она может понизиться. Другое дело, если количество теплоты, получаемое материалом при его окислении, станет превышать количество рассеивающейся теп лоты. В этом случае температура материала будет неуклонно повышаться, что в свою очередь активизирует и реакцию окисления, в результате чего процесс может перейти в стадию горения материала.

При анализе условий возникновения пожаров, происходящих по некоторым причинам, указанный механизм начала горения следует принимать во внимание. Особенно его нужно учитывать в тех случаях, когда исследуется возможность самовоспламенения или самовозгорания. Последнее может происходить иногда за счет длительного воздействия тепла при сравнительно невысокой температуре и вызывать пожары, например, от систем центрального отопления и т. п.

Твердые и жидкие вещества до того, как наступает процесс горения их, под действием тепла разлагаются, испаряются, превращаются в газо- и парообразные продукты. Поэтому горение твердых и жидких веществ, как правило, протекает в виде выделения паров и газов. Таким образом, теплота не только активизирует кислород. Часть тепла, выделяющегося при горении, расходуется на подготовку к горению следующих участков горючего вещества, т.е. на их нагревание, превращение в жидкое, паро - или газообразное состояние.

При исследовании причин пожаров часто приходится иметь дело с целлюлозными материалами. Продукты механической и химической обработки древесины, хлопка, льна в качестве главной со ставной части содержат целлюлозу и ее производные. При подогреве целлюлозные материалы подвергаются разложению, процесс которого протекает в две стадии. На первой -- подготовитель ной -- стадии происходит поглощение тепловой энергии массой материала.

По данным ЦНИИПО целлюлозные материалы при температуре 110°С высыхают и начинают выделять летучие вещества, имеющие запах. При температуре 110--150°С наблюдается пожелтение этих материалов и более сильное выделение летучих составных частей. Наличие запаха иногда может быть признаком, который с учетом других обстоятельств дела следует учесть при установлении места и времени возникновения пожара, а также при проверке версий о причине пожара. При температуре 150--200°С целлюлозные материалы в результате обугливания приобретают коричневую окраску. При температуре 210--230°С они выделяют большое количество газообразных продуктов, самовоспламеняющихся на воздухе. При этом наступает вторая стадия термического разложения материала -- тление его или пламенное горение. Эта стадия характеризуется выделением тепловой энергии, т. е. реакция является экзотермической. Выделение тепла и повышение температуры происходит главным образом за счет окисления продуктов разложения горящего материала.

Горение целлюлозных материалов протекает в два периода. Вначале сгорают главным образом газы и другие продукты, образующиеся при термическом разложении материала. Это фаза пламенного горения, хотя уже на ней происходит также и сгорание угля.

Второй период -- он особенно показателен для древесины -- характеризуется преимущественным тлением угля. Интенсивность и тепловой эффект второй стадии горения древесины связаны с тем, в какой мере контактируется поверхность угольной массы с кислородом воздуха, какова ее пористость. Последняя в значительной степени определяется условиями горения на его первой фазе.

Чем хуже газообмен в зоне горения и ниже температура горения на пламенной его фазе, тем медленнее протекает процесс горения, больше летучих и других продуктов термического разложения (сухой перегонки) задерживается в массе угля, заполняя его поры. Это наряду с недостаточным газообменом в свою очередь препятствует окислению, т.е. сгоранию угля на второй фазе горения.

В таких условиях образуется крупный уголь, причем переугливание, например, деревянного элемента конструкции может произойти во всем сечении элемента без последующего сгорания массы угля.

Сказанное позволяет сделать три вывода:

1. Скорость выгорания зависит от условий, в которых протекает процесс горения. Условия же горения (например, доступ воздуха, температура) на различных участках пожара и даже в одном месте, но в разное время неодинаковы. Поэтому сведения, встречающиеся в литературе, о средней скорости горения древесины, равной 1 мм/мин, не могут быть достаточными для выводов о продолжительности горения в конкретных случаях.

2. Степень обгорания деревянных конструкций, т. е. потерю сечения их вследствие пожара, нельзя устанавливать только по глубине обугливания, поскольку уголь начинает выгорать уже в период пламенного горения древесины. Различная степень обгорания, определяемая на практике иногда по толщине слоя угля, может лишь относительно характеризовать неравномерность повреждения огнем конструкций или их элементов. Фактическая потеря сечения будет, как правило, всегда большей.

3. Крупный, малопористый уголь, который иногда обнаруживается при вскрытии конструкций, свидетельствует о том, что процесс горения был неполным и неинтенсивным. Этот признак с учетом обстоятельств дела можно принимать во внимание при установлении очага пожара и времени возникновения пожара, при проверке версий о причине пожара.

Для характеристики начальной, подготовительной стадии горения твердых материалов будем употреблять два основных термина -- возгорание и самовозгорание.

Возгорание твердого горючего материала возникает в условиях воздействия теплового импульса с температурой, превышающей температуру самовоспламенения продуктов разложения материала. Для процесса возгорания решающим фактором является источник поджигания.

Горение отеплительного материала, например, войлока, возникшее под действием пламени паяльной лампы при неосторожном отогревании водопроводных труб, -- один из случаев возгорания твердого горючего материала.

Самовозгорание твердого горючего материала возникает при отсутствии внешнего теплового импульса или в условиях его действия при температуре, которая ниже температуры самовоспламенения этих продуктов. Для процесса самовозгорания решающими являются условия аккумуляции теплоты.

Чем лучше условия аккумуляции теплоты, меньше ее рассеивание в начальной стадии процесса горения, тем при более низких температурах окружающей среды возможно самовозгорание целлюлозных материалов. Большое значение в этих случаях приобретает длительность нагревания. Известно немало пожаров, возникавших, например, в деревянных конструкциях зданий в результате воздействия паропроводов систем центрального отопления при температуре теплоносителя 110--160°С, длившегося на протяжении ряда месяцев. Такие случаи иногда называют тепловым самовозгоранием. Напомним, что температура самовоспламенения материалов при быстром нагревании находится в пределах 210--280°С. Указанную выше особенность этих материалов нужно учитывать, исследуя причины пожаров.

Понятия воспламенение, самовоспламенение и тление твердых горючих материалов являются производными от предыдущих двух понятий -- возгорания и самовозгорания.

Воспламенение является результатом возгорания материала и проявляется пламенным горением.

Самовоспламенение представляет собой результат самовозгорания веществ и проявляется также пламенным горением.

Тление является беспламенным горением и может быть результатом как возгорания, так и самовозгорания материала.

Иными словами, если в нашем примере войлок под действием пламени паяльной лампы возгорится с образованием пламени, в этом случае можно сказать: произошло воспламенение войлока. При отсутствии же необходимых условий для пламенного горения возгорание войлока может ограничиться его тлением. То же следует заметить и о воспламенении или тлении какого-либо самовозгоревшегося материала.

Возгорание и самовозгорание твердых материалов различаются по характеру вызвавшего их теплового импульса. Но каждый из них, представляя собой определенный вид начальной стадии загорания, может привести как к тлению, так и к воспламенению твердых горючих материалов.

Процесс тления может перейти в пламенное горение с активизацией окислительного процесса за счет дальнейшего повышения температуры или увеличения количества кислорода, участвующего в горении, т. е. при лучшем доступе воздуха.

Таким образом, возникновение процесса горения не зависит только от одного импульса теплоты. Действие последнего может вызвать горение лишь в том случае, если окажется благоприятной совокупность всех условий, необходимых для процесса горения. Поэтому, если в одном случае может быть недостаточным большой огневой импульс, то в другом горение возникнет в результате очень слабого источника поджигания.

1.3 Полное и неполное горение

Роль окислительного процесса при горении на пожарах. Выше отмечалась роль теплоты в развитии горения. При этом была очевидной тесная взаимосвязь, существующая между тепловыми и окислительными процессами. Однако последним при горении веществ и материалов принадлежит своя очень большая роль.

Окисление веществ при горении чаще всего происходит за счет кислорода, находящегося в воздухе.

Для полного горения одинакового количества различных веществ, требуется разное количество воздуха. Так, для сгорания 1 кг древесины необходимо 4,6 м 3 воздуха, 1 кг торфа -- 5,8 м 3 воздуха, 1 кг бензина -- около 11 м 3 воздуха и т. д.

На практике однако, при горении полного поглощения кислорода воздуха не происходит, как так не весь кислород успевает соединиться с горючим. Необходим избыток воздуха, который может достигать 50% и более сверх теоретически необходимого для горения количества воздуха. Горение большинства веществ становится невозможным, если содержание кислорода в воздухе понизится до 14--18%, а для жидкостей -- до 10% по объему.

Газовый обмен на пожаре. Поступление воздуха к зоне горения определяется условиями газового обмена. Продукты горения, на гретые до значительной температуры (порядка нескольких сот градусов) и в результате этого имеющие меньший объемный вес по сравнению с объемным весом окружающей среды, перемещаются в верхние слои пространства. Менее нагретый воздух в свою очередь поступает к зоне горения. Возможность и интенсивность та кого обмена, конечно, зависят от степени изолированности зоны горения от окружающего пространства.

В условиях пожаров горение чаще всего является неполным, особенно если оно связано с развитием пожара в массе материалов или в частях зданий. Неполное, замедленное горение характерно для пожаров, развивающихся, например, в конструкциях сооружений с пустотелыми элементами. Неблагоприятные условия газового обмена вызывают недостаточное поступление воздуха, чем затрудняется развитие пожара. Аккумуляция тепла и взаимообогрев горящих элементов конструкций при этом не компенсируют тормозящего действия пониженного газообмена.

Известны случаи, когда с прекращением топки отопительного прибора, в дымоходе которого образовалась трещина на уровне перекрытия, с прекращением температурного воздействия на элементы перекрытия горение «самопроизвольно» прекращалось. Решающими при этом являлись недостаток кислорода и прекращение дополнительного поступления теплоты, необходимых для поддержания горения в этих условиях.

Случаи замедленного, неполного горения, вызванного не достатком кислорода, и даже самопроизвольного прекращения горения могут наблюдаться не только в частях зданий, но и в помещениях, лишенных необходимого воздухообмена. Такие условия наиболее характерны для помещений подвальных, кладовых и т. п., особенное плотно закрытыми оконными и дверными проемами.

Способствует этому также и большой объем выделяющихся газообразных продуктов, поскольку они препятствуют поступлению в зону горения воздуха извне. Так, при сгорании 1 кг древесины в условиях пожара образуется до 8 м 3 газообразных продуктов. Хотя при неполном горении выделяется их меньше, однако и в этом случае количество продуктов горения исчисляется кубическими мет рами из каждого килограмма сгоревшего вещества (теоретический объем газообразных продуктов сгорания 1 кг древесины, приведенный к нормальным условиям, т. е. при давлении 760 мм рт. ст. и температуре 0°С, составляет около 5 м 3).

Это обстоятельство приводит к заметному снижению интенсивности горения и увеличивает его продолжительность внутри помещений с недостаточным воздухообменом.

В продуктах неполного горения содержатся вещества, образующиеся в результате термического разложения и окисления горючих материалов. В их числе -- окись углерода, пары уксусного альдегида, уксусной кислоты, метилового спирта, ацетона и не которых других веществ, придающих месту пожара, обгоревшим предметам специфический вкус и запах, а также сажа.

Продукты неполного горения способны гореть, а при определенных соотношениях в смеси с воздухом образовывать взрывоопасные смеси. Этим объясняются происходящие иногда во время пожаров случаи взрывообразных воспламенений. Причины таких явлений нередко представляются загадочными. Интенсивное воспламенение, подчас весьма близкое по своему эффекту к взрыву, происходит в помещениях, в условиях, в которых, казалось бы, не должно быть никаких взрывчатых веществ.

Образование взрывоопасных концентраций продуктов неполного сгорания (главным образом окиси углерода) и заполнение ими отдельных замкнутых объемов непроветриваемых помещений воз можно даже в процессе тушения пожара. Последние случаи, однако, являются весьма редкими. Чаще взрывообразное воспламенение можно наблюдать на первой стадии тушения пожара, возникшего в закрытых помещениях при плохом газообмене, когда при вскрытии проемов концентрация продуктов неполного горения может оказаться во взрывоопасных пределах, если до этого она находилась за их верхним пределом.

Выяснение условий, в которых протекал процесс горения на пожаре, особенно до обнаружения его, имеет непосредственное отношение к определению периода начала пожара, а поэтому к исследованию тех или иных версий о причине его возникновения.

Горение, протекающее на пожарах при недостаточном газовом обмене, иногда очень напоминает процесс сухой перегонки. Такие пожары, будучи своевременно не обнаруженными, могут длиться часами. Как правило, они происходят ночью в учреждениях и на объектах, в которых ослаблен надзор в нерабочее и ночное время, а также отсутствует автоматическая пожарная сигнализация.

Иногда можно было наблюдать, как в результате подобных пожаров ограждающие конструкции помещений и предметы, находящиеся в них, покрывались черным блестящим слоем сконденсировавшихся продуктов термического разложения тлеющих материалов.

Случаи неполного горения, происходящие в небольших жилых помещениях, например, в результате неосторожного курения в постели, бывают связаны с последствиями, роковыми для их виновников. Содержание в воздухе 0,15% окиси углерода по объему уже опасно для жизни, а содержание 1% окиси углерода вызывает смерть. При расследовании таких дел о пожарах необходимо учитывать, таким образом, вероятность и ненасильственной смерти, которая может наступить в результате несчастного случая от действия окиси углерода. Непосредственную причину смерти устанавливает судебно-медицинская экспертиза.

Недостаточный газообмен может обусловить малозаметное и длительное тление материалов не только в стадии начинающегося пожара, но и после тушения его, когда по тем или иным причинам остались не ликвидированными отдельные небольшие очаги. По следующий, повторный выезд пожарной команды в этих случаях связан с ликвидацией одного и того же ранее недотушенного пожара. Такие случаи более вероятны при горении волокнистых и сыпучих материалов, в массе которых газообмен затруднен.

1.4 Пламя и дым

Процесс горения обычно вызывает образование пламени и дыма, которые, как правило, и являются первыми признаками пожара. Пламя представляет собой газовый объем, в котором происходит экзотермическая реакция соединения газообразных продуктов разложения или паров горючего материала с кислородом. Поэтому пламенем горят те вещества, которые при нагревании способны выделять пары и газы. К ним относятся целлюлозные материалы, нефтепродукты и некоторые другие вещества.

Светящееся пламя содержит раскаленные несгоревшие частицы углерода, входившего в состав горящего вещества. Последующее остывание этих частиц образует копоть. Копоть, оседающая на поверхности конструкций и материалов во время пожара, выгорает на участках с более высокой температурой и сохраняется там, где температура для сгорания копоти оказалась недостаточной. Поэтому отсутствие закопчения на отдельных, иногда резко очерченных участках ограждающих конструкций, предметах или наличие следов копоти с учетом характера этих признаков принимается во внимание при установлении очага пожара.

Температура светящегося пламени зависит не только от характера и состава горящего вещества, но и от условий горения. Так, температура пламени древесины может быть от 600 до 1200°С в зависимости от ее породы, полноты и скорости сгорания.

Температура пламени обычно соответствует практической температуре горения данного вещества. Последняя определяется теплотворной способностью горящего материала, полнотой и скоростью сгорания, избытком воздуха. Именно избыток воздуха приводит к тому, что практическая температура горения всегда бывает ниже теоретической.

Тление материалов, а также горение тех из них, которые не выделяют газообразных горючих продуктов термического разложения, представляют собой примеры беспламенного горения. В частности, без пламени сгорают, раскаляясь до высокой температуры, кокс и древесный уголь, излучая при этом тепло и свет.

По такому косвенному признаку, как цвет раскаленных стальных предметов, конструкций, кирпичей, камня, а также пламени, иногда можно получить ориентировочное представление о температуре в зоне горения на пожаре.

Цвета нагретой стали соответствуют следующей температуре (ориентировочно):

темно-красный 700°С;

светло-оранжевый 1200°С

вишнево-красный 900°С;

белый 1300°С

ярко-вишнево-красный 1000°С;

ярко-белый 1400°С

темно-оранжевый 1100°С;

ослепительно-белый 1500°С

Дым сопутствует горению на пожаре подчас в большей степени, чем открытое пламя, особенно на стадиях начинающегося пожара.

Горение может происходить еще в виде тления, но оно уже будет сопровождаться выделением дыма. Поэтому в тех случаях, когда пожар протекает без пламенного горения или оно происходит скрыто в конструкциях здания, дымообразование может явиться одним из первых признаков возникающего пожара.

Дым содержит продукты полного и неполного горения, разложения горящего материала, азот и частично кислород воздуха (в зависимости от избытка его при горении), а также сажу и золу, образующиеся в процессе сгорания материала.

Таким образом, дым представляет собой смесь горючих и негорючих паров и газов, твердых органических и минеральных частиц, паров воды.

Составом и особенностями горящих материалов, а также условиями горения определяются состав, а следовательно, запах, вкус и другие внешние признаки дыма, образующегося при горении. Иногда такие данные очевидцев начинающегося пожара облегчают установление очага пожара и его причины, если известно расположение определенных материалов и веществ в зоне пожара. Необходимо отметить, однако, что при совместном горении разных веществ, особенно в условиях развившегося пожара, характерные признаки каждого из них могут быть незаметны. В таких случаях по дыму далеко не всегда можно заключить о характере горящего вещества.

2. Передача теплоты и особенности распространения горения на пожарах

С началом процесса горения начинается распространение теплоты, которое может происходить теплопроводностью, излучением и конвекцией. Также происходит передача теплоты и распространяется горение на пожарах.

Передача теплоты теплопроводностью имеет место при неодинаковой температуре различных участков какого-либо тела (мате риала, конструкции) или различных тел, соприкасающихся между собой. Поэтому такой способ передачи теплоты еще носит название контактного. Теплота непосредственно передается от более нагретых участков тела к менее нагретым, более нагретыми телами менее нагретым телам.

Оставленный под напряжением электрический утюг на сгораемом основании, горящие угли или части конструкций, упавшие во время пожара на горючие материалы, -- примеры возникновения или распространения пожаров за счет контактной передачи теплоты.

При анализе причин пожаров иногда приходится учитывать теплопроводность материалов, с которыми могут быть связаны те или иные версии о причине пожара или условия его развития.

Теплопроводность различных материалов различна и обычно находится в прямом отношении к их объемному весу. Наиболее высокая теплопроводность у металлов. Небольшой теплопроводностью обладают волокнистые и пористые материалы, очень низ кой -- газы, в частности воздух. С повышением температуры или влажности теплопроводность материалов и веществ несколько возрастает.

Материалы, имеющие низкую теплопроводность особенно в условиях недостаточного газообмена, даже при длительном горении способны выгорать относительно небольшими, иногда строго ограниченными участками. К числу таких материалов следует отнести древесину, хлопок, бумагу, текстильные материалы и другие при массивном сечении или при плотной укладке.

Наряду с этим в практике хорошо известны случаи передачи теплоты металлическими элементами, проходящими сквозь несгораемые части зданий -- перекрытия, стены, покрытия и т. д.

Иногда это являлось причиной возникновения пожаров, в некоторых случаях способствовало дальнейшему их развитию с образованием вторичных изолированных очагов горения.

Передача теплоты излучением поверхностями нагретых твердых или жидких тел, а также газов (радиация) происходит на всех пожарах. Но в зависимости от условий действие лучистой теплоты проявляется в различной степени. Источником наиболее сильного излучения в таких случаях является пламя, в меньшей степени нагретые тела и дым. Важная особенность этого способа передачи теплоты состоит в том, что излучение не зависит от направленности движения окружающей среды, например от конвекции или ветра.

тепловой конвекция горение пожар

3. Конвекция. Основная закономерность распространения горения на пожарах

Передача тепла конвекцией на пожарах имеет наибольшее распространение.

Конвекция -- перемещение более нагретых частиц -- происходит в газах и жидкостях. Она образуется за счет разности в объемных весах с изменением температуры на отдельных участках жидкости или газа.

Нагретые по какой-либо причине объемы такой среды перемещаются вверх (если отсутствуют отклоняющие конвекцию течения или препятствия), уступая место менее нагретым и поэтому более тяжелым участкам среды.

Конвекция возникает сразу, как только повышается темпера тура с развитием процесса горения. Действие конвекции стимулирует газообмен, способствует развитию начинающегося пожара.

В условиях пожара конвекцией передаются основные массы тепла.

В случае пожара, происшедшего в одном из магазинов и описанного ранее, к числу характерных явлений следовало отнести значительную протяженность конвекционных потоков. Их путь -- от очага пожара к потолку помещения торгового зала, под потолком к проему в перекрытии у лестницы и через этот проем во второй этаж (всего около 20 м). По обугливанию отделки помещений и де формации плафонов, оформленных с применением органического стекла, можно было проследить путь конвекции и судить о значительной температуре этих потоков.

Конвекционные потоки с температурой в несколько сот градусов, омывая на своем пути конструкции и материалы, нагревают их, что может вызвать возгорание материалов, деформации и разрушения несгораемых элементов и частей здания.

Таким образом, конвекция, независимо от масштабов ее, в каждом отдельном случае определяет одну из основных закономерностей распространения горения на пожарах. Происходит ли горение в объеме здания или отдельного помещения, развивается ли оно, например, в мебели, оборудовании и т. д., во всех случаях конвекция имеет восходящий характер. Эту тенденцию в распространении горения необходимо учитывать при расследовании пожаров.

Нередко в ходе предварительного следствия или на суде можно слышать утверждения очевидцев пожара о том, что огонь был вначале замечен в верхней части постройки. Однако это не означает, что очаг возникновения пожара расположен там, где обнаружено появление огня. Очаг пожара может быть у основания сооружения, но горение, следуя указанной закономерности, может прежде всего распространиться вверх, например, по пустотным элементам конструкций и там принять открытый характер.

Наличие проемов и отверстий, в том числе случайных и незначительных по своим размерам, неплотностей и щелей, местное отсутствие защитного слоя (например, штукатурки) или ослабление его в процессе пожара способствуют восходящему развитию горения. Поэтому можно сказать, что схема распространения горения на пожарах в ее общем виде прямо противоположна свободному движению жидкости. Последняя всегда стремится стекать вниз, просачиваясь подчас в самые незначительные отверстия, неплотности. Конвекция же нагретых продуктов горения и связанное с этим его распространение, как мы отмечали, имеют восходящий характер.

Иногда конвекция вызывает перенос горящих предметов: тлеющую бумагу, угли, на открытых пожарах -- головни («галки») и даже горящие лесоматериалы, бревна. Горение в таких случаях приобретает вихревой характер. В районе пожара возникает ветер как результат гигантского, газового обмена, вызванного пожаром стихийного характера. Вынос таких тлеющих и горящих предметов конвекцией может образовывать новые очаги горения.

Попутно отметим, что к подобным результатам при развитии открытого пожара может привести ветер. Роль ветра при развитии открытых пожаров достаточно хорошо известна.

Направление конвекции в процессе пожара как на отдельных участках его, так и на основном может меняться. Происходит это в результате нарушения оконного остекления, образования прогаров и неплотностей, разрушения конструкций, а также в результате специального вскрытия их пожарными частями.

Конвекция на пожарах образует признаки, по которым можно устанавливать направленность и пути развития горения, а следовательно, и очаг возникновения пожара. Это связано с тем, что в конвекционном потоке происходит более интенсивное разрушение конструкций и материалов. Особенно характерным в этом отношении является движение конвекционных потоков в отверстиях и проемах.

Говоря о роли на пожарах естественно возникающей конвекции, необходимо отметить также и влияние на распространение горения движения воздуха, не связанного с пожаром. Воздушные потоки могут быть до возникновения пожара в конструкциях здания или в помещении, а также в атмосфере, окружающей объект, на котором возник пожар.

Разность температуры в различных частях здания, связь между ними, допускающая циркуляцию, направление и сила ветра будут определять местные условия движения воздушной среды так же, как и влиять на возникновение пожара и особенности его развития.

С возможностью существования воздушных течений приходится считаться, расследуя конкретные обстоятельства дел о пожарах. Именно этим условием иногда объясняется отсутствие первых признаков начавшегося загорания в одном месте или обнаружение их в другом, направленность развития горения в конструкциях (главным образом в горизонтальном направлении), скорость распространения пожара, его масштабы, когда пожар принял открытый характер.

4. Факторы, определяющие характер горения на пожарах и его результаты

Выше мы кратко рассматривали раздельно условия, необходимые для горения, и способы передачи теплоты. Отметили влияние этих факторов на процессы распространения горения во время пожаров. Однако следует подчеркнуть, что на пожарах в подавляющем большинстве случаев имеет место совокупность этих факторов или различные их сочетания.

Сложные и многообразные условия, в которых протекает процесс горения на пожарах, приводят к тому, что горение сооружений и материалов происходит неравномерно. Неравномерность, в частности, состоит в том, что скорость распространения огня и площадь, охваченная горением, увеличиваются не пропорционально времени горения, а прогрессивно, т. е. время, необходимое для развития огня на той или иной площади, не находится в прямой зависимости от ее размеров. Объясняется это тем, что с увеличением площади горения и его интенсивности прогрессивно нарастают тепловые и другие факторы, влияющие на развитие пожара.

5. Тепловые процессы, протекающие при горении в очаге пожара и их влияние на образование очаговых признаков

В результате горения, происходящего на пожаре, материалы, конструкции, оборудование и отдельные предметы, оказавшиеся в зоне действия высокой температуры, претерпевают различные разрушения, деформации или уничтожаются полностью. Как правило, в месте возникновения пожара происходят наиболее сильные выгорания и разрушения. На других участках пожара на конструкциях, оборудовании и материалах, в результате теплового воздействия, образуются характерные признаки, свидетельствующие о направленности горения. Причиной образования очаговых признаков являются закономерно протекающие тепловые процессы при горении в очаге пожара. К основным закономерностям тепловых процессов в очаге пожара относятся:

более продолжительное время горения в очаге по сравнению с другими участками пожара;

повышенный температурный режим;

передача тепла восходящим конвективным потоком.

Продолжительность тепловых процессов в очаге пожара

Продолжительность горения при пожаре в помещении определяется многими факторами, среди которых наиболее важными являются величина горючей нагрузки помещения, скорость выгорания материалов и условия газообмена.

Результаты исследования пожаров свидетельствуют о том, что продолжительность горения в очаге пожара, как правило, превышает продолжительность горения на других участках пожара, причём разница может составлять значительное время.

Это объясняется характером протекания процесса развития горения, который можно разделить на три последовательных периода (рис.1).

Первый период (ОА) соответствует развитию горения из небольшого очага до общего воспламенения в объёме помещения. В этот период пожар развивается при нестационарных условиях, когда скорость выгорания и условия газообмена меняются во времени. В конечной стадии этого периода резко увеличивается площадь горения, происходит быстрое нарастание среднеобъёмной температуры в помещении, в результате практически одновременного (в течение 30-б0с) воспламенения основной части горючего материала.

Рис. 1. Кривая ""Температура-время", характеризующая периоды развития пожара

Время первого периода изменяется в широких пределах и может достигать нескольких часов при ограниченных условиях газообмена. Для помещений средних размеров (административные, жилые и т.д.) при недостаточном газообмене время первого периода составляет 30-40 минут, а при оптимальном газообмене и негорючей облицовке стен - 15-28 минут.

Существенные изменения относительно второго периода развития пожара наблюдаются и в характере теплообмена. В первый период распространение пожара происходит преимущественно за счёт передачи тепла конвекцией и теплопроводностью. При этом температуры в различных зонах помещения заметно отличаются между собой.

Во второй (основной) период развития пожара (кривая АВ) сгорает основная часть горючего материала (до 80% от общей загрузки) практически с постоянной скоростью. При этом среднеобъёмная температура повышается до максимального значения. В этот период передача тепла происходит, главный образом, излучением.

Третий период соответствует периоду затухания пожара, в течение которого происходит медленное догорание угольного остатка, и температура в помещении снижается.

Таким образом, продолжительность горения в очаге пожара превышает аналогичные величины на других участках пожара на время первого периода развития пожара.

Температурный режим в очаге пожара

Формирование в очаге пожара более высокого температурного режима по сравнению с другими зонами пожара вызывается следующими факторами:

большим тепловыделением в очаге пожара по сравнению с другими зонами пожара,

характером распределения температурного поля при пожаре в помещении;

физическими законами формирования температурного поля в конвективных потоках.

Выделяющееся при горении тепло является основной причиной развития пожара и возникновения сопровождающих его явлений. Выделение тепла происходит не во всём объёме зоны горения, а только в светящемся слое, где совершается химическая реакция. Распределение тепла в зоне пожара постоянно изменяется во времени и зависит от большого количества факторов. Выделяющееся тепло воспринимается продуктами горения, которые передают тепло путем конвекции, теплопроводности и излучения, как в зону горения, так и в зону теплового воздействия, где смешиваются с воздухом и нагревают его. Процесс смешения происходит на всём пути движения продуктов горения, поэтому температура в зоне теплового воздействия понижается по мере удаления из зоны горения. В начальной стадии развития пожара расход тепла на нагрев воздуха, строительных конструкций, оборудования и материалов является наибольшим. Тепло, воспринимаемое строительными конструкциями, вызывает их нагрев, что приводит к деформациям, обрушению и воспламенению горючих материалов.

Продолжительность горения в очаге пожара превышает аналогичные величины на других участках пожара на время первого периода развития. Это вызывает большее выделение количества тепла и обуславливает повышенную температуру в очаге по сравнению с другими участками пожара.

Характер распределения температурного поля при пожаре в помещении также предопределяет формирование наивысшей температуры в очаге в начальный период развития пожара. Максимальная температура, которая обычно выше среднеобъёмной, бывает в зоне горения (очага пожара), а по мере удаления от неё температура газов снижается за счёт разбавления продуктов горения воздухом и других потерь тепла в окружающую среду.

Более высокая температура в очаге пожара обусловлена и характером формирования температурного поля в поперечном сечении конвективной струи.

Конвективные потоки образуются всюду, где имеются источники тепла и пространство для их развития. Возникновение конвективных потоков обусловлено следующими причинами. При горении воздух поступает в зону горения, часть его участвует в реакции горения, а часть нагревается. Образующийся у источника слой газа имеет плотность меньше плотности окружающей среды, в результате чего он подвергается действию подъёмной (Архимедовой) силы и устремляется вверх. Освободившееся место занимает плотный ненагретый воздух, который, участвуя в реакции горения и, нагреваясь, также устремляется вверх. Таким образом, возникает регулярный восходящий конвективный поток нагретого газа из зоны горения. Газовая среда, поднимаясь над зоной горения, вовлекает в движение воздух из окружающей среды, вследствие чего в её поперечном сечении формируется температурное поле. Температурное поле в поперечном сечении восходящих конвективных потоков распределяется симметрично относительно вертикальной оси с максимумом по оси струи. По мере удаления от оси температуры уменьшаются до температур окружающей среды на границе струи.

Указанные закономерности имеют место в первый период развития, т.е. при горении в очаге пожара. В этот период площадь горения незначительна и конвективная струя распространяется по законам восходящего потока в неограниченном пространстве, и максимальные температуры будут формироваться в центре над очагом пожара.

В дальнейшем, когда площадь пожара резко увеличивается, характер формирования температуры в конвективных потоках изменятся. При таких условиях конвективная струя распространяется в ограниченном пространстве, что меняет картину температурного поля в струе. Однако общий закон распределения температуры от максимума на оси до температуры окружающей среды на границе струи сохраняется.

Таким образом, все три указанные фактора обуславливают повышенную температуру в очаге пожара по сравнению с другими зонами, и это обстоятельство является характерной особенностью тепловых процессов в очаге пожара.

Характер передачи тепла из очага пожара

К закономерностям тепловых процессов в очаге пожара относится и расширяющийся характер распространения конвективных потоков из очага пожара и вследствие этого своеобразное поражение конструкций за счёт тепла, содержащегося в массе конвективной струи.

При горении движение конвективной струи над очагом пожара имеет турбулентный характер. Вихревые массы при своём поперечном перемещении за пределы струи увлекают слои неподвижной среды. При перемешивании происходит теплообмен между струёй и неподвижной средой. В результате этого масса струи растет, ширина её увеличивается, и форма конвективной струи принимает расширявшийся характер по мере движения вверх. Степень начальной турбулентности конвективной струи предопределяет угол её раскрытия. Чем выше степень турбулентности струи, тем интенсивнее подмешивается к ней окружающая среда и тем больше получается угол начального её расширения.

Таким образом, физические законы обмена тепла и движения предопределяют расширяющийся характер распространения восходящих конвективных потоков, а происходящий при этом теплообмен характерен для тепловых процессов в очаге пожара.

Рассмотренные основные закономерности тепловых процессов (более продолжительное время протекания их, повышенный температурный режим по отношению к другим участкам горения и характер передачи тепла путём конвективных потоков) присущи только горению в очаге пожара. Знание природы физических явлений, лежащих в основе формирования тепловых процессов, позволяет более обоснованно подходить к вопросу установления очага пожара.

Указанные закономерности тепловых процессов в очаге пожара носят более выраженный характер в начальном периоде развития пожара или при ликвидации горения в начале второго периода. При ликвидации горения в более поздние сроки происходит постепенное сглаживание различий между тепловыми процессами в очаге и на других участках пожара, что естественно отражается на характере поражений конструкций, материалов и оборудования. Это обстоятельство необходимо учитывать при установлении очага пожара.

ЗАКЛЮЧЕНИЕ

Горение представляет собой химическую реакцию, сопровождающуюся выделением тепла и света. Оно возможно при сочетании следующих трех условий:

Присутствие горючего материала;

Наличие теплоты, достаточной для воспламенения горючего материала и поддержания процесса горения;

Присутствие кислорода (воздуха) в количествах, необходимых для горения.

С началом процесса горения начинается распространение теплоты, которое может происходить теплопроводностью, излучением и конвекцией.

Продолжительность горения при пожаре определяется многими факторами, среди которых наиболее важными являются величина горючей нагрузки, скорость выгорания материалов и условия газообмена. Скорость выгорания зависит от условий, в которых протекает процесс горения. Условия же горения (например, доступ воздуха, температура) на различных участках пожара и даже в одном месте, но в разное время неодинаковы.

После возникновения горения постоянным источником воспламенения является зона горения. Возникновение и продолжение горения возможно при определенном количественном соотношении горючего вещества и кислорода, а также при определенных температурах и запасе тепловой энергии источника воспламенения. Наибольшая скорость стационарного горения наблюдается в чистом кислороде, наименьшая - при содержании в воздухе 14-15% кислорода. При меньшем содержании кислорода в воздухе горение большей части веществ прекращается.

ЛИТЕРАТУРА

Мегорский Б.В. Методика установления причин пожаров, - М.: Стройиздат, 1966.

Зельдович Я.Б., Математическая теория горения и взрыва. - М.: Наука, 2000.

Вильямс Ф.А., Теория горения. - М.: Наука, 2001.

Расследование пожаров. Учебник. /Под ред. Г.Н. Кириллова, М.А. Галишева, С.А. Кондратьева. - СПб.: СПБ университет ГПС МЧС России, 2007 - 544 с.

Федотов А.Ж. и др. Пожарно-техническая экспертиза, - М., 1986.

Расследование пожаров, - М.: ВНИИПО МВД РФ, 1993.

Чешко И.Д. Экспертиза пожаров, - СПб.; СПб ИПБ МВД России, 1997.

В.Г. Донцов, В.И. Путилин. Пособие “Дознание и экспертиза пожаров”, ВСШ МВД СССР, Волгоград.

Чешко И.Д. Технические основы расследования пожаров, - М., 2002 г.

С.И. Таубкин. Основы огнезащиты целлюлозных материалов. Изд. МКХ РСФСР, 1960.

Справочное пособие для пожарно-технических экспертов, - Л., 1982 г.

С.И. Зернов. Первоначальные действия по факту пожара, М., 2005 г.

Чешко И.Д. Осмотр места пожара, М., 2004 г.

Размещено на Allbest.ru

Подобные документы

    Физико–химические основы горения и взрыва. Тепловая, цепная и диффузная теории горения веществ, взрывчатые вещества. Свойства твердых топлив и продуктов сгорания, термодинамические свойства продуктов сгорания. Виды пламени и скорость его распространения.

    курс лекций , добавлен 05.01.2013

    Кинетика горения. Влияние влажности на горение капли углеводородных топлив. Критическое условие воспламенения капли и его зависимость. Метод Зельдовича. Гистерезис горения. Срыв пламени. Горение в потоке воздуха. Естественная и вынужденная конвекция.

    курсовая работа , добавлен 28.03.2008

    Основы теории диффузионного и кинетического горения. Анализ инновационных разработок в области горения. Расчет температуры горения газов. Пределы воспламенения и давления при взрыве газов. Проблемы устойчивости горения газов и методы их решения.

    курсовая работа , добавлен 08.12.2014

    Закономерности влияния внешних электрических полей на макроскопические характеристики горения органических топлив. Схемы наложения внешнего электрического поля на пламя. Воздействие организованных внешних полей на процесс горения углеводородных топлив.

    курсовая работа , добавлен 14.03.2008

    Схема устройства котла пульсирующего горения. Общий вид камеры сгорания. Технические характеристики котлов. Перспективные разработки НПП "Экоэнергомаш". Парогенератор пульсирующего горения с промежуточным теплоносителем паропроизводительностью 200 кг.

    презентация , добавлен 25.12.2013

    Методика расчета горения топлива на воздухе: определение количества кислорода воздуха, продуктов сгорания, теплотворной способности топлива, калориметрической и действительной температуры горения. Горение топлива на воздухе обогащённым кислородом.

    курсовая работа , добавлен 08.12.2011

    Определение теплоты сгорания для газообразного топлива как суммы произведений тепловых эффектов составляющих горючих газов на их количество. Теоретически необходимый расход воздуха для горения природного газа. Определение объёма продуктов горения.

    контрольная работа , добавлен 17.11.2010

    Полезная тепловая нагрузка печи. Расчет процесса горения топлива в печи. Коэффициент избытка воздуха. Построение диаграммы продуктов сгорания. Тепловой баланс процесса горения. Подбор котла-утилизатора. Расчет испарительной поверхности, экономайзера.

    курсовая работа , добавлен 03.12.2012

    Физико-химические основы горения, его основные виды. Характеристика взрывов как освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени, его типы и причины. Источники энергии химических, ядерных и тепловых взрывов.

    контрольная работа , добавлен 12.06.2010

    Определение расхода воздуха и количества продуктов горения. Расчет состава угольной пыли и коэффициента избытка воздуха при спекании бокситов во вращающихся печах. Использование полуэмпирической формулы Менделеева для вычисления теплоты сгорания топлива.

Горение — это физико-химический процесс взаимодействия горючего вещества и окислителя, сопровождающийся выделением теплоты и излучением света. В обычных условиях это процесс окисления или соединены; горючего вещества с кислородом, находящимся в свободном состоянии в воздухе или химических соединениях в связанном состоянии.
Некоторые вещества могут гореть в атмосфере хлора (водород), в парах серы (медь) или взрываться без кислорода (ацетилен, хлористый азот и др.).
Для пищевых предприятий наиболее характерно горение, происходящее при окислении горючих веществ кислородом воздуха и возникающее при наличии источника зажигания с достаточной для воспламенения температурой горения. Горение прекращается при отсутствии одного из этих условий. Следует иметь в виду, что для пищевых предприятий характерны все разновидности горения, в том числе и возникающие без внешнего источника теплоты: вспышка, воспламенение, самовоспламенение и самовозгорание.
Вспышка — процесс быстрого сгорания смеси газов или паров горючего вещества с воздухом от внешнего источника теплоты без перехода в горение.
Воспламенение— возгорание газов или паров горючего вещества от соприкосновения с источником теплоты с дальнейшим развитием процесса горения.
Самовоспламенение — возгорание без постороннего источника теплоты, возникающее при самостоятельном разложении горючего вещества с образованием паров и газов, соединяющихся с кислородом воздуха.
Самовозгорание— возгорание вещества в результате самонагревания под влиянием внутренних биологических, химических или физических процессов (влажное и сырое зерно, маслосемена и т.п.).
Различают два основных вида горения: полное и неполное. Полное происходит при достаточном или избыточном количестве кислорода и в основном сопровождается образованием паров воды и диоксида углерода. Неполное происходит при его недостатке и более опасно, так как при этом образуется токсичный оксид углерода и другие газы.

Рис. 54. Диффузионное пламя

Если кислород проникнет в зону горения вследствие диффузии, образующееся пламя называется диффузионным, и оно имеет 3 зоны (рис. 54). Находящиеся в зоне 1 газы или пары не горят (температура не превышает 500°С), в зоне 2 они сгорают частично, в зоне 5 полностью, и температура пламени здесь наиболее высокая.
Горение бывает гомогенным и гетерогенным. При гомогенном горении все реагирующие вещества имеют одинаковое агрегатное состояние, например газообразное. Когда они находятся в различных агрегатных состояниях и имеется граница раздела фаз в горючей системе, горение является гетерогенным. Гетерогенное горение, связанное с образованием потока горючих газообразных веществ, является одновременно и диффузионным.
В зависимости от скорости распространения пламени горение может происходить в форме дефлаграционного горения: взрыва и детонации. При первом нормальная скорость горения, представляющая скорость движения пламени на границе между сгоревшей и несгоревший частями смеси, изменяется от нескольких сантиметров до нескольких метров в секунду. Так, например, скорость горения 10,5% смеси метана с воздухом 37 см/с.
Медленное равномерное распространение горения устойчиво лишь в том случае, если оно не сопровождается повышением давления. Если оно происходит в замкнутом пространстве или когда выход газа затруднен, продукты реакции не только нагревают прилегающий к фронту пламени слой пестревшего газа путем теплопроводности, но и, расширяясь за счет высокой температуры, приводят несгоревший газ в движение. Неупорядоченное движение объемов газа в горящей смеси вызывает значительное увеличение поверхности фронта пламени, что приводит к взрыву. Взрыв — это быстрое превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных произвести работу. Скорость распространения пламени при взрыве достигает сотен метров в секунду.
При дальнейшем ускорении распространения пламени усиливается сжатие несгоревшего газа перед фронтом пламени. Оно распространяется по несгоревшему газу в виде последовательных ударных волн, которые на некотором расстоянии перед фронтом пламени соединяются в одну мощную ударную волну сильно сжатого и разогретого газа. В результате возникает устойчивый режим распространения реакции, называемый детонацией, т. е. разновидности горения, распространяющегося со скоростью, превышающей скорость звука. Детонация характеризуется резким скачком давления в месте взрывчатого превращения, обладающим большим разрушающим действием.

Горением называют физико-химический процесс, характеризую­щийся следующими признаками: химическими превращениями, выде­лением тепла и света. Для того чтобы возникло устойчивое горение, необходимо наличие трех факторов: горючего вещества (материала, смеси), окислителя и источника зажигания.

Химическая реакция горения, идущая с выделением значитель­ного количества тепла, почти всегда сопровождается различного рода физическими явлениями. Так, в процессе горения происходит перенос тепла реагирующих веществ и продуктов горения из одно­го места в другое. Все процессы, происходящие в зоне реакции горения, взаимосвязаны - скорость химических реакций определяется уровнем теплопередачи и скоростью диффузии вещества и, наоборот, физические параметры (температура, давление, скорость переноса вещества) зависят от скорости химической реакции.

Горючее вещество. Все вещества и материалы, обращающиеся в производстве, используемые в качестве сырья, полуфабрикатов, строительных конструктивных элементов, подразделяются на три группы: негорючие, трудногорючие и горючие.

Негорючими называются вещества и материалы, не способные к горению в воздухе нормального состава. Негорючие вещества и материалы составляют значительную группу. К ним относятся все естественные и искусственные неорганические вещества и материалы, применяемые в строительстве металлы, а также гипсовые или гипсо-волокнистые плиты при содержании органической массы до 8%, минерало-ватные плиты на синтетической, крахмальной или битумной связ­ке при содержании ее по массе до 6%.

Трудногорючими называются вещества (материалы), способные загораться под действием источника зажигания, но не способные самостоятельно гореть после его удаления. К ним относятся вещест­ва и материалы, состоящие из негорючих и горючих составляющих, например: асфальтобетон, гипсовые и бетонные материалы, содер­жащие более 8% по массе органического заполнителя; минерало-ватные плиты на битумной связке при содержании ее от 7 до 15%; глиносоломенные материалы объемной массой не менее 900 кг/м 3 ; войлок, пропитанный глиняным раствором; древесина, подвергнутая глубокой пропитке антипиренами; цементный фибролит; отдельные виды конструкционных пластмасс и т. п.

Горючими называются вещества (материалы, смеси), способные к самостоятельному горению в воздухе нормального состава. К ним относятся все вещества и материалы, не отвечающие требо­ваниям, предъявляемым к негорючим и трудногорючим веществам и материалам, например: авиационные топлива, спирты, органиче­ские и неорганические масла, декоративно-отделочные материалы на основе пластмасс, текстильные материалы, магний, натрий, сера и другие материалы и химические вещества.

В свою очередь, все горючие вещества и материалы подразделяются на три подгруппы: легковоспламеняющиеся, средней воспламеняемости, трудновоспламеняющиеся.

Легковоспламеняющимися называются вещества (материалы, смеси), способные воспламеняться от кратковременного воздействия пламени спички, искры, накаленного электрического провода и тому подобных источников зажигания с низкой энергией.

Среднюю воспламенимость имеют вещества (материалы, смеси), способные воспламеняться от длительного воздействия источника зажигания с низкой энергией.

Трудновоспламеняющимися называются вещества (материалы, смеси), способные воспламеняться только под воздействием мощ­ного источника зажигания, который нагревает значительную часть вещества до температуры воспламенения.

К подгруппе легковоспламеняющихся веществ и материалов в первую очередь относятся газы и легковоспламеняющиеся жидкости.

К легковоспламеняющимся жидкостям (ЛВЖ) из всех жидкос­тей, обращающихся в производстве, относятся горючие жидкости с температурой вспышки, не превышающей + 61° С в закрытом тиг­ле. Они делятся на три разряда:

I - особо опасные ЛВЖ с температурой вспышки до - 18° С;

II - постоянно опасные ЛВЖ с температурой вспышки от - 18 до 23° С;

III - ЛЖВ, опасные при повышенной температуре воздуха или жидкости с температурой вспышки от 23° до 61° С.

Температурой вспышки называется самая низкая (в условиях специальных испытаний) температура горючего вещества, при кото­рой над его поверхностью образуются пары или газы, способные вспыхивать в воздухе от источника зажигания, но скорость их об­разования еще недостаточна для устойчивого горения. Для ЛВЖ температура вспышки на 1 -5° С ниже температуры воспламенения.

Температурой воспламенения называется температура горюче­го вещества, при которой оно выделяет горючие пары и газы с та­кой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение.

Практически все горючие и трудногорючие вещества и материа­лы горят в паровой или газовой фазе, исключение составляют ти­тан, алюминий, антрацит и ряд других. Горючие вещества и материа­лы могут различаться по химическому составу, агрегатному состоянию другим свойствам, исходя из чего процессы подготовки их к горению протекают по-разному. Газы вступают в реакцию горения If Практически без каких-либо изменений, так как их перемешивание с окислителем (кислородом воздуха) происходит при любых температурах среды и не требует значительных дополнительных затрат f энергии. Жидкости должны сначала испариться и перейти в парообразное состояние, на что затрачивается определенное количество тепловой энергии, и только в паровой фазе перемешиваются с окислителем и горят. Твердые вещества и материалы при своей под­готовке к горению требуют значительно большее количество энергии, так как сначала они должны либо расплавиться, либо разло­житься. Расплавленные или разложившиеся вещества и материалы должны испариться и перемешаться с окислителем, после чего под воздействием источника зажигания возникает процесс горения. Кау­чук, резина и другие пластические материалы, а также магний и его, сплавы перед воспламенением плавятся и испаряются (при этом пластмассы разлагаются). Такие материалы, как бумага, древесина, хлопчатобумажные ткани и отдельные виды конструкционных пласт­масс при нагревании разлагаются с образованием газообразных про­дуктов и твердого остатка (как правило, угля).

Окислитель. Окислителем обычно служит кислород воздуха. Воз­дух по своему составу представляет собой смесь многих газов, ос­новными из которых являются: азот (N 2)- 78,2% по объему и 75,5% по массе; кислород (О 2) - 20,9% по объему и 23,2% по массе; инерт­ные газы (Не, Ne, Аг, Кг) - 0,9% по объему и 1,3% по массе. Помимо данных газов в воздушном объеме всегда присутствует незначительное количество углекислого газа, водяных паров и пыли. Все эти составляющие воздуха, кроме кислорода, при горении органических веществ и материалов в реакцию горения практически не вступают. Кислород, азот и инертные газы считаются постоянными составными частями воздуха. Содержание же углекислого газа, водяных паров и пыли непостоянно и может изменяться в зависимости от условий, в которых протекает тот или иной процесс горения.

Источник зажигания. Им может быть горящее или накаленное тело, а также электрический разряд, обладающие запасом энергии и температурой, достаточными для возникновения горения других веществ.

На практике существуют или возникают различные явления, по­вышающие температуру веществ и материалов, находящихся в производстве или на хранении, что в большинстве случаев приводит к возникновению процесса горения как локально, так и во всем объеме горючего вещества или материала. К источникам зажигания относят­ся: искры, образующиеся при ударах металла о металл или другие твердые материалы; искры и капли расплавленного металла при ко­ротких замыканиях в электрооборудовании и при производстве сварочных и других огневых работ; нагрев электрических проводов при перегрузках электрических сетей; механический нагрев трущихся деталей машин, биологический нагрев при окислении растительных масел и ветоши, смоченной этими маслами; горящие спич, окурки и т. п. Характер воздействия этих источников зажигания неодинаков. Так, искры, образующиеся при ударах металлических предметов, как источник зажигания имеют весьма малую мощность и способны воспламенить только газопаровоздушные смеси: метано-воздушную, ацетиленовоздушную, сероуглеродно-воздушную и др. Искры, возникающие при коротких замыканиях в электрооборудова­нии или при электросварке, обладают мощной воспламеняющей спо­собностью и могут вызвать горение практически всех горючих веществ и материалов независимо от их агрегатного состояния.

Горючая среда. При возникновении и протекании процесса го­рения горючее вещество и окислитель являются реагирующими ве­ществами и представляют собой горючую среду, а источник зажи­гания является стартером процесса горения. При установившемся горении источником зажигания еще не горящих веществ и материа­лов служит теплота, выделяющаяся из зоны реакции горения.

Горючие среды могут быть физически однородными (гомоген­ными) и неоднородными (гетерогенными). К первым относятся среды, в которых горючее вещество и окислитель (воздух) равномерно пе­ремешаны: смеси горючих газов, паров и пылей с воздухом. Приме­рами горения однородной среды могут служить: горение паров, под­нимающихся со свободной поверхности жидкости (разлитого авиа­топлива ТС-1 при авиационном происшествии); горение газа, выте­кающего из поврежденного баллона или трубопровода; взрывы газо-, паро- и пылевоздушных смесей. К гетерогенным относятся среды, в которых горючее вещество (материал) и окислитель не перемешаны и имеют поверхность раздела: твердые горючие вещества и материа­лы, струи горючих газов и жидкостей, поступающие в воздух под высоким давлением, и т. п. Примером горения неоднородной среды является горение титана, алюминия, антрацита или нефтяных и га­зовых фонтанов, когда нефть и газ поступают, в зону горения под большим давлением и имеют весьма значительные скорости истече­ния.

Пламя. Пространство, в котором сгорают пары, газы и взвеси, называется пламенем. Пламя может быть кинетическим или диффу­зионным в зависимости от того, горит ли заранее подготовленная смесь паров, газов или пыли с воздухом или такая смесь образует­ся непосредственно в зоне пламени в процессе горения. Процессы, протекающие в кинетическом пламени, характеризуются высокими скоростями протекания реакции горения (линейная скорость распро­странения пламени может превышать 1000 м/с) и, как правило, пред­ставляют собой взрыв горючей среды, сопровождающийся высоким уровнем тепловыделения и резким повышением давления в зоне го­рения.

В условиях пожара практически все газы, пары, жидкости и твер­дые вещества и материалы горят диффузионным пламенем. Струк­тура данного пламени существенно зависит от сечения потока горю­чих паров или газов и его скорости. По характеру этого потока разли­чают ламинарное и турбулентное диффузионное пламя. Первое возникает при малых сечениях потока горючих паров или газов, движущихся с небольшой скоростью (пламя свечи, спички, газа в горелке домашней плиты и т. п.). На пожарах при горении различных веществ и материалов образуется турбулентное диффузионное пламя, минарное и турбулентное пламя представляет собой зону реакции горения, которая окружает зону паров или газов, последняя практически занимает весь объем зоны горения. Зона реакции горения иффузионном пламени представляет очень тонкий (всего несколько микрометров) слой, в котором происходит выделение тепла и светурбулентное пламя в отличие от ламинарного характеризуется I, что не имеет четких очертаний, постоянных сечений и положений фронта пламени.

Температура в зоне паров значительно ниже, чем в зоне реакции.

В пламени авиационных топлив температура потока паров около поверхности жидкости приближается к температуре ее кипения (для авиатоплива ТС-1 эта температура лежит в пределах 150 - 280° С). По мере движения потока паров к зоне реакции их температура по­вышается сначала за счет теплового излучения пламени, а затем - диффузии из зоны реакции нагретых продуктов сгорания. В резуль­тате нагрева происходит термическое разложение (диссоциация) парообразных веществ, и образующиеся свободные атомы и радика­лы совместно с продуктами сгорания поступают непосредственно в зону реакции, т. е. в пламя. Атомы углерода, поступая в зону реак­ции горения, нагреваются и начинают светиться, образуя так называемое светящееся пламя. Температура зоны реакции горения меня­ется по высоте пламени. В нижней части пламени температура сни­жается за счет расхода значительного количества тепла на нагрев массы холодного воздуха, поступающего в зону горения, и является минимальной для каждого вида горения. Наибольшая температура развивается в средней части пламени, поскольку в верхней скорость реакции уменьшается за счет падения концентрации реагирующих компонентов (выгорания), в связи с чем падает уровень тепловы­деления и снижается температура.

Парциальное давление кислорода воздуха в нормальных условиях равно 228,72 кПа, а в зоне реакции горения - 0, поэтому в ре­зультате разности парциальных давлений кислород из окружающего воздуха диффундирует (фильтруется, просачивается) через слой продуктов сгорания к зоне реакции. Поступление же в зону реакции горения горючих компонентов практически ничем не ограничивается. Таким образом, скорость реакции горения при развившемся процессе зависит в основном только от количества кислорода, поступающего в зону реакции, т. е. от скорости его диффузии. В случае горения неоднородной среды проникновению кислорода в зону реакции также препятствуют продукты сгорания, выделяющиеся в пространство, примыкающее к зоне реакции.

Отсутствие достаточного количества кислорода в зоне реакции горения тормозит скорость ее протекания. Если бы этого торможения не происходило, то все реакции горения, происходящие в атмосфере, протекали бы с постоянно возрастающей скоростью и заканчивались взрывом реагирующих веществ. Процессы горения, как и все химические процессы, протекают с различными скоростями, зависящими от условий, в которых они протекают, от природы реагирующих веществ, от их агрегатного со­стояния. Например, взрывчатые вещества разлагаются в тысячные доли секунды, а химические процессы в земной коре длятся сотни и тысячи лет. Взаимодействие веществ в газовой и паровой фазах про­текают значительно быстрее, чем в жидком, а тем более твердом со­стоянии. Так, разлитое авиационное топливо ТС-1 сгорает относи­тельно медленно, образуя коптящее пламя (неполное сгорание), а подготовленная паровоздушная смесь этого топлива с воздухом сго­рает со взрывом. Скорость взаимодействия твердых веществ и ма­териалов с окислителем резко изменяется в зависимости от степени их измельченное. Например, алюминий и титан, медленно горя­щие в слитках, при наличии особых условий могут образовывать в пылевидном состоянии взрывоопасные пылевоздушные смеси, разви­вающие при горении давления взрыва соответственно в 0,62 и 0,49 МПа.

Горение как химический процесс во всех случаях происходит одинаково. Однако как физический процесс оно отличается по харак­теру протекания реакции горения, поэтому процессы горения в на­чальной стадии делятся на следующие виды: самовозгорание, воспла­менение и самовоспламенение.

Самовозгорание. Отдельные вещества (материалы, смеси) при хранении и в процессе эксплуатации технологического оборудования способны самовозгораться. Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возник­новению горения вещества в отсутствии источника загорания. К ве­ществам, способным самовозгораться, относятся растительные и жирные масла, тряпки и ветошь, смоченные растительными масла­ми, сульфиды железа и другие индивидуальные химические вещест­ва. Растительные и жирные масла (подсолнечное, льняное, конопля­ное, кукурузное, животные жиры и т. п.) относятся к классу жиров и представляют собой смесь глицеридов высокомолекулярных жир­ных кислот. Молекулы этих кислот имеют ненасыщенные (двойные) связи, способствующие при определенных условиях самовозгоранию данных веществ. Согласно перекисной теории А. Н. Баха окисление может происходить за счет присоединения кислорода к метиленовой группе, находящейся в положении по отношению к двойной свя­зи, с образованием гидроперекиси. Как известно, все перекиси и гид­роперекиси - нестойкие химические соединения. При их распаде образуются свободные радикалы, полимеризующиеся в более круп­ные органические молекулы. При полимеризации всегда выделяется определенное количество тепла, что в конечном результате может привести к самовозгоранию окисляющегося органического вещест­ва. Самовозгорание органических веществ возникает при определен­ных условиях. К ним относятся: содержание в масле или жире гли­церидов высокомолекулярных кар боковых кислот не ниже опреде­ленного минимального количества; наличие большой поверхности контакта с окислителем и малой теплоотдачи; определенное соотношение жиров и масел я пропитанного ими пористого или волокнистого материала.

Сульфиды железа FeS, Fe 2 S 3 могут образовываться в технологическом оборудовании складов службы ГСМ авиапредприятий. Они способны самовозгораться на воздухе, особенно в присутствии горючиx паров и газов. Рассмотрим механизм соединения сульфидов железа с кислородом воздуха на примере реакции окисления природного соединения пирита FeS2:

FeS 2 + 2О 2 = FeS + 2SO 2 + 222,3 кДж.

Помимо сульфидов железа могут самовозгораться такие материалы, как бурый уголь, торф, продукты растительного происхождения: сено, солома, силосная масса и др.

Наиболее опасным является самовозгорание индивидуальных, химических веществ при их неправильном хранении, поскольку этот процесс может привести к пожару на объекте, где хранятся данные вещества. Эти вещества по своим химическим свойствам делятся на три группы: самовозгорающиеся при контакте с воздухом, с водой и друг с. другом.

Вещества, относящиеся к первой группе, мы не рассматриваем, поскольку они практически не встречаются в технологии авиапредприятий.

Ко второй группе относится ряд веществ, из которых наиболь­ший интерес представляют карбид кальция СаС2 и окись кальция СаО. При взаимодействии с водой карбида кальция происходит вы­деление ацетилена, являющегося горючим газом, и значительного ко­личества тепла. При относительно малом количестве воды система карбид кальция - вода может разгореться до 920 К, что может вы­звать взрыв ацетиленовоздушной смеси:

СаС 2 +2Н 2 О= С 2 Н 2 + Са(ОН) 2+127 кДж.

Помимо карбида кальция, способностью разогреваться до темпе­ратуры свечения при попадании на нее небольших количеств воды обладает окись кальция СаО, что также может привести к загоранию тары и сгораемых конструктивных элементов помещения склада:

СаО + Н 2 О = Са(ОН) 2 + 64,5 кДж.

К третьей группе относятся сильные окислители, индивидуальные Химические вещества, а также органические вещества и материалы. Например, нельзя совместно хранить такие вещества, как перманганат калия и глицерин; концентрированную азотную кислоту со ски­пидаром, этиловым спиртом и сероводородом; галогены с горючими,газами и легковоспламеняющимися жидкостями; серную кислоту с се­литрами, хлоратами, перхлоратами, так как в этом случае между ни­ми возможна химическая реакция, идущая с выделением большого количества тепла.

Воспламенение. Помимо самовозгорания возможно просто возгорание, т. е. возникновение горения под воздействием источника зажигания. Возгорание, сопровождающееся появлением пламени, называется воспламенением. При этом происходит нагрев объема, прилегающего к точке теплового воздействия. В результате повы­шения температуры в указанном объеме происходит распростране­ние тепла на граничащие с ним участки (объемы) горючей среды. Чем большее количество горючего вещества (материала, смеси) вовлекается в процесс горения, тем больше тепла выделяется в ок­ружающее пространство. Таким образом, процесс горения разви­вается самопроизвольно. Источник зажигания в данном случае пер­воначально нагревает только малый объем горючей смеси, в то время как температура всего объема горючей среды может оставаться не­изменной.

Процесс воспламенения различается по своему характеру в зави­симости от вида горючей смеси. Наиболее опасными являются газо­воздушные смеси. Однако и для них минимальная энергия источни­ка воспламенения зависит от многих параметров, основными из кото­рых являются процентный состав смеси, вид горючего вещества, дав­ление смеси, поскольку от этих величин зависят температура воспла­менения, нормальная скорость распространения пламени и темпера­тура горения. Помимо этого на минимальную температуру источни­ка воспламенения оказывает влияние продолжительность его кон­такта с горючей средой.

Воспламенение жидкостей возможно лишь в том случае, если температура окружающей среды или самой жидкости достаточна для испарения такого количества паров, которое необходимо для воз­никновения устойчивого горения. Для различных горючих жидкостей эта температура неодинакова. При температурах ниже температуры воспламенения горение невозможно, так как скорость испарения той или иной жидкости в данном случае слишком мала. С ростом тем­пературы наружного воздуха или самой горючей жидкости при про­чих равных условиях испаряемость жидкостей растет и количество паров становится достаточным для возникновения устойчивого го­рения.

Самовоспламенение. Им называется самовозгорание, сопровож­дающееся появлением пламени. Помимо процессов самовозгорания и воспламенения в практике встречается также процесс самовос­пламенения различных горючих сред. По своей химической природе все эти три процесса не отличаются друг от друга. Разница между ними лежит в физической сущности процесса горения, так как в отли­чие от процессов самовозгорания и воспламенения процесс само­воспламенения идет сразу во всем объеме реагирующей горючей среды. С точки зрения физики, это кинетический процесс горения уже перемешанной и подготовленной смеси, идущий с высокими ско­ростями распространения пламени. При горении паро-, пыле- и газо­воздушных смесей это, как правило, скорости взрыва. Для возник­новения процесса самовоспламенения необходимо, чтобы весь объем горючей смеси имел температуру самовоспламенения данной смеси. Под температурой самовоспламенения понимают самую низкую температуру вещества (материала, смеси), при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения. Температура самовоспламенения горючего вещества не является постоянной величиной. Она зависит от скоростей тепловыделения и теплоотвода, которыё в свою очередь зависят от объема смеси, концентрации, давления и других факторов. Температура самовоспламенения смесей горючих паров и газов с воздухом изменяется в зависимости от их процентного состава. Самая низкая температура самовоспламенения у стехиометрической смеси или смесей, близких к ней по концентра­циям реагирующих веществ. Температура самовоспламенения твер­дых веществ или материалов находится в обратной зависимости от степени их измельчения: чем выше степень измельченности вещества, тем ниже его температура самовоспламенения. Это связано с тем, что с измельчением веществ и материалов резко возрастает площадь контактной поверхности этих горючих компонентов и окислителя.

Горением называют физико-химический процесс, характеризую­щийся следующими признаками: химическими превращениями, выде­лением тепла и света. Для того чтобы возникло устойчивое горение, необходимо наличие трех факторов: горючего вещества (материала, смеси), окислителя и источника зажигания.

Химическая реакция горения, идущая с выделением значитель­ного количества тепла, почти всегда сопровождается различного рода физическими явлениями. Так, в процессе горения происходит перенос тепла реагирующих веществ и продуктов горения из одно­го места в другое. Все процессы, происходящие в зоне реакции горения, взаимосвязаны - скорость химических реакций определяется уровнем теплопередачи и скоростью диффузии вещества и, наоборот, физические параметры (температура, давление, скорость переноса вещества) зависят от скорости химической реакции.

Горючее вещество. Все вещества и материалы, обращающиеся в производстве, используемые в качестве сырья, полуфабрикатов, строительных конструктивных элементов, подразделяются на три группы: негорючие, трудногорючие и горючие.

Негорючими называются вещества и материалы, не способные к горению в воздухе нормального состава. Негорючие вещества и материалы составляют значительную группу. К ним относятся все естественные и искусственные неорганические вещества и материалы, применяемые в строительстве металлы, а также гипсовые или гипсо-волокнистые плиты при содержании органической массы до 8%, минерало-ватные плиты на синтетической, крахмальной или битумной связ­ке при содержании ее по массе до 6%.

Трудногорючими называются вещества (материалы), способные загораться под действием источника зажигания, но не способные самостоятельно гореть после его удаления. К ним относятся вещест­ва и материалы, состоящие из негорючих и горючих составляющих, например: асфальтобетон, гипсовые и бетонные материалы, содер­жащие более 8% по массе органического заполнителя; минерало-ватные плиты на битумной связке при содержании ее от 7 до 15%; глиносоломенные материалы объемной массой не менее 900 кг/м 3 ; войлок, пропитанный глиняным раствором; древесина, подвергнутая глубокой пропитке антипиренами; цементный фибролит; отдельные виды конструкционных пластмасс и т. п.

Горючими называются вещества (материалы, смеси), способные к самостоятельному горению в воздухе нормального состава. К ним относятся все вещества и материалы, не отвечающие требо­ваниям, предъявляемым к негорючим и трудногорючим веществам и материалам, например: авиационные топлива, спирты, органиче­ские и неорганические масла, декоративно-отделочные материалы на основе пластмасс, текстильные материалы, магний, натрий, сера и другие материалы и химические вещества.

В свою очередь, все горючие вещества и материалы подразделяются на три подгруппы: легковоспламеняющиеся, средней воспламеняемости, трудновоспламеняющиеся.

Легковоспламеняющимися называются вещества (материалы, смеси), способные воспламеняться от кратковременного воздействия пламени спички, искры, накаленного электрического провода и тому подобных источников зажигания с низкой энергией.

Среднюю воспламенимость имеют вещества (материалы, смеси), способные воспламеняться от длительного воздействия источника зажигания с низкой энергией.

Трудновоспламеняющимися называются вещества (материалы, смеси), способные воспламеняться только под воздействием мощ­ного источника зажигания, который нагревает значительную часть вещества до температуры воспламенения.

К подгруппе легковоспламеняющихся веществ и материалов в первую очередь относятся газы и легковоспламеняющиеся жидкости.

К легковоспламеняющимся жидкостям (ЛВЖ) из всех жидкос­тей, обращающихся в производстве, относятся горючие жидкости с температурой вспышки, не превышающей + 61° С в закрытом тиг­ле. Они делятся на три разряда:

I - особо опасные ЛВЖ с температурой вспышки до - 18° С;

II - постоянно опасные ЛВЖ с температурой вспышки от - 18 до 23° С;

III - ЛЖВ, опасные при повышенной температуре воздуха или жидкости с температурой вспышки от 23° до 61° С.

Температурой вспышки называется самая низкая (в условиях специальных испытаний) температура горючего вещества, при кото­рой над его поверхностью образуются пары или газы, способные вспыхивать в воздухе от источника зажигания, но скорость их об­разования еще недостаточна для устойчивого горения. Для ЛВЖ температура вспышки на 1 -5° С ниже температуры воспламенения.

Температурой воспламенения называется температура горюче­го вещества, при которой оно выделяет горючие пары и газы с та­кой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение.

Практически все горючие и трудногорючие вещества и материа­лы горят в паровой или газовой фазе, исключение составляют ти­тан, алюминий, антрацит и ряд других. Горючие вещества и материа­лы могут различаться по химическому составу, агрегатному состоянию другим свойствам, исходя из чего процессы подготовки их к горению протекают по-разному. Газы вступают в реакцию горения If Практически без каких-либо изменений, так как их перемешивание с окислителем (кислородом воздуха) происходит при любых температурах среды и не требует значительных дополнительных затрат f энергии. Жидкости должны сначала испариться и перейти в парообразное состояние, на что затрачивается определенное количество тепловой энергии, и только в паровой фазе перемешиваются с окислителем и горят. Твердые вещества и материалы при своей под­готовке к горению требуют значительно большее количество энергии, так как сначала они должны либо расплавиться, либо разло­житься. Расплавленные или разложившиеся вещества и материалы должны испариться и перемешаться с окислителем, после чего под воздействием источника зажигания возникает процесс горения. Кау­чук, резина и другие пластические материалы, а также магний и его, сплавы перед воспламенением плавятся и испаряются (при этом пластмассы разлагаются). Такие материалы, как бумага, древесина, хлопчатобумажные ткани и отдельные виды конструкционных пласт­масс при нагревании разлагаются с образованием газообразных про­дуктов и твердого остатка (как правило, угля).

Окислитель. Окислителем обычно служит кислород воздуха. Воз­дух по своему составу представляет собой смесь многих газов, ос­новными из которых являются: азот (N 2)- 78,2% по объему и 75,5% по массе; кислород (О 2) - 20,9% по объему и 23,2% по массе; инерт­ные газы (Не, Ne, Аг, Кг) - 0,9% по объему и 1,3% по массе. Помимо данных газов в воздушном объеме всегда присутствует незначительное количество углекислого газа, водяных паров и пыли. Все эти составляющие воздуха, кроме кислорода, при горении органических веществ и материалов в реакцию горения практически не вступают. Кислород, азот и инертные газы считаются постоянными составными частями воздуха. Содержание же углекислого газа, водяных паров и пыли непостоянно и может изменяться в зависимости от условий, в которых протекает тот или иной процесс горения.

Источник зажигания. Им может быть горящее или накаленное тело, а также электрический разряд, обладающие запасом энергии и температурой, достаточными для возникновения горения других веществ.

На практике существуют или возникают различные явления, по­вышающие температуру веществ и материалов, находящихся в производстве или на хранении, что в большинстве случаев приводит к возникновению процесса горения как локально, так и во всем объеме горючего вещества или материала. К источникам зажигания относят­ся: искры, образующиеся при ударах металла о металл или другие твердые материалы; искры и капли расплавленного металла при ко­ротких замыканиях в электрооборудовании и при производстве сварочных и других огневых работ; нагрев электрических проводов при перегрузках электрических сетей; механический нагрев трущихся деталей машин, биологический нагрев при окислении растительных масел и ветоши, смоченной этими маслами; горящие спич, окурки и т. п. Характер воздействия этих источников зажигания неодинаков. Так, искры, образующиеся при ударах металлических предметов, как источник зажигания имеют весьма малую мощность и способны воспламенить только газопаровоздушные смеси: метано-воздушную, ацетиленовоздушную, сероуглеродно-воздушную и др. Искры, возникающие при коротких замыканиях в электрооборудова­нии или при электросварке, обладают мощной воспламеняющей спо­собностью и могут вызвать горение практически всех горючих веществ и материалов независимо от их агрегатного состояния.

Горючая среда. При возникновении и протекании процесса го­рения горючее вещество и окислитель являются реагирующими ве­ществами и представляют собой горючую среду, а источник зажи­гания является стартером процесса горения. При установившемся горении источником зажигания еще не горящих веществ и материа­лов служит теплота, выделяющаяся из зоны реакции горения.

Горючие среды могут быть физически однородными (гомоген­ными) и неоднородными (гетерогенными). К первым относятся среды, в которых горючее вещество и окислитель (воздух) равномерно пе­ремешаны: смеси горючих газов, паров и пылей с воздухом. Приме­рами горения однородной среды могут служить: горение паров, под­нимающихся со свободной поверхности жидкости (разлитого авиа­топлива ТС-1 при авиационном происшествии); горение газа, выте­кающего из поврежденного баллона или трубопровода; взрывы газо-, паро- и пылевоздушных смесей. К гетерогенным относятся среды, в которых горючее вещество (материал) и окислитель не перемешаны и имеют поверхность раздела: твердые горючие вещества и материа­лы, струи горючих газов и жидкостей, поступающие в воздух под высоким давлением, и т. п. Примером горения неоднородной среды является горение титана, алюминия, антрацита или нефтяных и га­зовых фонтанов, когда нефть и газ поступают, в зону горения под большим давлением и имеют весьма значительные скорости истече­ния.

Пламя. Пространство, в котором сгорают пары, газы и взвеси, называется пламенем. Пламя может быть кинетическим или диффу­зионным в зависимости от того, горит ли заранее подготовленная смесь паров, газов или пыли с воздухом или такая смесь образует­ся непосредственно в зоне пламени в процессе горения. Процессы, протекающие в кинетическом пламени, характеризуются высокими скоростями протекания реакции горения (линейная скорость распро­странения пламени может превышать 1000 м/с) и, как правило, пред­ставляют собой взрыв горючей среды, сопровождающийся высоким уровнем тепловыделения и резким повышением давления в зоне го­рения.

В условиях пожара практически все газы, пары, жидкости и твер­дые вещества и материалы горят диффузионным пламенем. Струк­тура данного пламени существенно зависит от сечения потока горю­чих паров или газов и его скорости. По характеру этого потока разли­чают ламинарное и турбулентное диффузионное пламя. Первое возникает при малых сечениях потока горючих паров или газов, движущихся с небольшой скоростью (пламя свечи, спички, газа в горелке домашней плиты и т. п.). На пожарах при горении различных веществ и материалов образуется турбулентное диффузионное пламя, минарное и турбулентное пламя представляет собой зону реакции горения, которая окружает зону паров или газов, последняя практически занимает весь объем зоны горения. Зона реакции горения иффузионном пламени представляет очень тонкий (всего несколько микрометров) слой, в котором происходит выделение тепла и светурбулентное пламя в отличие от ламинарного характеризуется I, что не имеет четких очертаний, постоянных сечений и положений фронта пламени.

Температура в зоне паров значительно ниже, чем в зоне реакции.

В пламени авиационных топлив температура потока паров около поверхности жидкости приближается к температуре ее кипения (для авиатоплива ТС-1 эта температура лежит в пределах 150 - 280° С). По мере движения потока паров к зоне реакции их температура по­вышается сначала за счет теплового излучения пламени, а затем - диффузии из зоны реакции нагретых продуктов сгорания. В резуль­тате нагрева происходит термическое разложение (диссоциация) парообразных веществ, и образующиеся свободные атомы и радика­лы совместно с продуктами сгорания поступают непосредственно в зону реакции, т. е. в пламя. Атомы углерода, поступая в зону реак­ции горения, нагреваются и начинают светиться, образуя так называемое светящееся пламя. Температура зоны реакции горения меня­ется по высоте пламени. В нижней части пламени температура сни­жается за счет расхода значительного количества тепла на нагрев массы холодного воздуха, поступающего в зону горения, и является минимальной для каждого вида горения. Наибольшая температура развивается в средней части пламени, поскольку в верхней скорость реакции уменьшается за счет падения концентрации реагирующих компонентов (выгорания), в связи с чем падает уровень тепловы­деления и снижается температура.

Парциальное давление кислорода воздуха в нормальных условиях равно 228,72 кПа, а в зоне реакции горения - 0, поэтому в ре­зультате разности парциальных давлений кислород из окружающего воздуха диффундирует (фильтруется, просачивается) через слой продуктов сгорания к зоне реакции. Поступление же в зону реакции горения горючих компонентов практически ничем не ограничивается. Таким образом, скорость реакции горения при развившемся процессе зависит в основном только от количества кислорода, поступающего в зону реакции, т. е. от скорости его диффузии. В случае горения неоднородной среды проникновению кислорода в зону реакции также препятствуют продукты сгорания, выделяющиеся в пространство, примыкающее к зоне реакции.

Отсутствие достаточного количества кислорода в зоне реакции горения тормозит скорость ее протекания. Если бы этого торможения не происходило, то все реакции горения, происходящие в атмосфере, протекали бы с постоянно возрастающей скоростью и заканчивались взрывом реагирующих веществ. Процессы горения, как и все химические процессы, протекают с различными скоростями, зависящими от условий, в которых они протекают, от природы реагирующих веществ, от их агрегатного со­стояния. Например, взрывчатые вещества разлагаются в тысячные доли секунды, а химические процессы в земной коре длятся сотни и тысячи лет. Взаимодействие веществ в газовой и паровой фазах про­текают значительно быстрее, чем в жидком, а тем более твердом со­стоянии. Так, разлитое авиационное топливо ТС-1 сгорает относи­тельно медленно, образуя коптящее пламя (неполное сгорание), а подготовленная паровоздушная смесь этого топлива с воздухом сго­рает со взрывом. Скорость взаимодействия твердых веществ и ма­териалов с окислителем резко изменяется в зависимости от степени их измельченное. Например, алюминий и титан, медленно горя­щие в слитках, при наличии особых условий могут образовывать в пылевидном состоянии взрывоопасные пылевоздушные смеси, разви­вающие при горении давления взрыва соответственно в 0,62 и 0,49 МПа.

Горение как химический процесс во всех случаях происходит одинаково. Однако как физический процесс оно отличается по харак­теру протекания реакции горения, поэтому процессы горения в на­чальной стадии делятся на следующие виды: самовозгорание, воспла­менение и самовоспламенение.

Самовозгорание. Отдельные вещества (материалы, смеси) при хранении и в процессе эксплуатации технологического оборудования способны самовозгораться. Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возник­новению горения вещества в отсутствии источника загорания. К ве­ществам, способным самовозгораться, относятся растительные и жирные масла, тряпки и ветошь, смоченные растительными масла­ми, сульфиды железа и другие индивидуальные химические вещест­ва. Растительные и жирные масла (подсолнечное, льняное, конопля­ное, кукурузное, животные жиры и т. п.) относятся к классу жиров и представляют собой смесь глицеридов высокомолекулярных жир­ных кислот. Молекулы этих кислот имеют ненасыщенные (двойные) связи, способствующие при определенных условиях самовозгоранию данных веществ. Согласно перекисной теории А. Н. Баха окисление может происходить за счет присоединения кислорода к метиленовой группе, находящейся в положении по отношению к двойной свя­зи, с образованием гидроперекиси. Как известно, все перекиси и гид­роперекиси - нестойкие химические соединения. При их распаде образуются свободные радикалы, полимеризующиеся в более круп­ные органические молекулы. При полимеризации всегда выделяется определенное количество тепла, что в конечном результате может привести к самовозгоранию окисляющегося органического вещест­ва. Самовозгорание органических веществ возникает при определен­ных условиях. К ним относятся: содержание в масле или жире гли­церидов высокомолекулярных кар боковых кислот не ниже опреде­ленного минимального количества; наличие большой поверхности контакта с окислителем и малой теплоотдачи; определенное соотношение жиров и масел я пропитанного ими пористого или волокнистого материала.

Сульфиды железа FeS, Fe 2 S 3 могут образовываться в технологическом оборудовании складов службы ГСМ авиапредприятий. Они способны самовозгораться на воздухе, особенно в присутствии горючиx паров и газов. Рассмотрим механизм соединения сульфидов железа с кислородом воздуха на примере реакции окисления природного соединения пирита FeS2:

FeS 2 + 2О 2 = FeS + 2SO 2 + 222,3 кДж.

Помимо сульфидов железа могут самовозгораться такие материалы, как бурый уголь, торф, продукты растительного происхождения: сено, солома, силосная масса и др.

Наиболее опасным является самовозгорание индивидуальных, химических веществ при их неправильном хранении, поскольку этот процесс может привести к пожару на объекте, где хранятся данные вещества. Эти вещества по своим химическим свойствам делятся на три группы: самовозгорающиеся при контакте с воздухом, с водой и друг с. другом.

Вещества, относящиеся к первой группе, мы не рассматриваем, поскольку они практически не встречаются в технологии авиапредприятий.

Ко второй группе относится ряд веществ, из которых наиболь­ший интерес представляют карбид кальция СаС2 и окись кальция СаО. При взаимодействии с водой карбида кальция происходит вы­деление ацетилена, являющегося горючим газом, и значительного ко­личества тепла. При относительно малом количестве воды система карбид кальция - вода может разгореться до 920 К, что может вы­звать взрыв ацетиленовоздушной смеси:

СаС 2 +2Н 2 О= С 2 Н 2 + Са(ОН) 2+127 кДж.

Помимо карбида кальция, способностью разогреваться до темпе­ратуры свечения при попадании на нее небольших количеств воды обладает окись кальция СаО, что также может привести к загоранию тары и сгораемых конструктивных элементов помещения склада:

СаО + Н 2 О = Са(ОН) 2 + 64,5 кДж.

К третьей группе относятся сильные окислители, индивидуальные Химические вещества, а также органические вещества и материалы. Например, нельзя совместно хранить такие вещества, как перманганат калия и глицерин; концентрированную азотную кислоту со ски­пидаром, этиловым спиртом и сероводородом; галогены с горючими,газами и легковоспламеняющимися жидкостями; серную кислоту с се­литрами, хлоратами, перхлоратами, так как в этом случае между ни­ми возможна химическая реакция, идущая с выделением большого количества тепла.

Воспламенение. Помимо самовозгорания возможно просто возгорание, т. е. возникновение горения под воздействием источника зажигания. Возгорание, сопровождающееся появлением пламени, называется воспламенением. При этом происходит нагрев объема, прилегающего к точке теплового воздействия. В результате повы­шения температуры в указанном объеме происходит распростране­ние тепла на граничащие с ним участки (объемы) горючей среды. Чем большее количество горючего вещества (материала, смеси) вовлекается в процесс горения, тем больше тепла выделяется в ок­ружающее пространство. Таким образом, процесс горения разви­вается самопроизвольно. Источник зажигания в данном случае пер­воначально нагревает только малый объем горючей смеси, в то время как температура всего объема горючей среды может оставаться не­изменной.

Процесс воспламенения различается по своему характеру в зави­симости от вида горючей смеси. Наиболее опасными являются газо­воздушные смеси. Однако и для них минимальная энергия источни­ка воспламенения зависит от многих параметров, основными из кото­рых являются процентный состав смеси, вид горючего вещества, дав­ление смеси, поскольку от этих величин зависят температура воспла­менения, нормальная скорость распространения пламени и темпера­тура горения. Помимо этого на минимальную температуру источни­ка воспламенения оказывает влияние продолжительность его кон­такта с горючей средой.

Воспламенение жидкостей возможно лишь в том случае, если температура окружающей среды или самой жидкости достаточна для испарения такого количества паров, которое необходимо для воз­никновения устойчивого горения. Для различных горючих жидкостей эта температура неодинакова. При температурах ниже температуры воспламенения горение невозможно, так как скорость испарения той или иной жидкости в данном случае слишком мала. С ростом тем­пературы наружного воздуха или самой горючей жидкости при про­чих равных условиях испаряемость жидкостей растет и количество паров становится достаточным для возникновения устойчивого го­рения.

Самовоспламенение. Им называется самовозгорание, сопровож­дающееся появлением пламени. Помимо процессов самовозгорания и воспламенения в практике встречается также процесс самовос­пламенения различных горючих сред. По своей химической природе все эти три процесса не отличаются друг от друга. Разница между ними лежит в физической сущности процесса горения, так как в отли­чие от процессов самовозгорания и воспламенения процесс само­воспламенения идет сразу во всем объеме реагирующей горючей среды. С точки зрения физики, это кинетический процесс горения уже перемешанной и подготовленной смеси, идущий с высокими ско­ростями распространения пламени. При горении паро-, пыле- и газо­воздушных смесей это, как правило, скорости взрыва. Для возник­новения процесса самовоспламенения необходимо, чтобы весь объем горючей смеси имел температуру самовоспламенения данной смеси. Под температурой самовоспламенения понимают самую низкую температуру вещества (материала, смеси), при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения. Температура самовоспламенения горючего вещества не является постоянной величиной. Она зависит от скоростей тепловыделения и теплоотвода, которыё в свою очередь зависят от объема смеси, концентрации, давления и других факторов. Температура самовоспламенения смесей горючих паров и газов с воздухом изменяется в зависимости от их процентного состава. Самая низкая температура самовоспламенения у стехиометрической смеси или смесей, близких к ней по концентра­циям реагирующих веществ. Температура самовоспламенения твер­дых веществ или материалов находится в обратной зависимости от степени их измельчения: чем выше степень измельченности вещества, тем ниже его температура самовоспламенения. Это связано с тем, что с измельчением веществ и материалов резко возрастает площадь контактной поверхности этих горючих компонентов и окислителя.

Похожие публикации